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The outer epidermal cell walls of plant shoots are covered with a cuticle, a continuous 
lipid structure that provides protection from desiccation, UV light, pathogens, and insects. 
The cuticle is mostly composed of cutin and cuticular wax. Cuticular wax synthesis is 
synchronized with surface area expansion during plant development and is associated 
with plant responses to biotic and abiotic stresses. Cuticular wax deposition is tightly 
regulated by well-established transcriptional and post-transcriptional regulatory 
mechanisms, as well as post-translationally via the ubiquitin-26S proteasome system 
(UPS). The UPS is highly conserved in eukaryotes and involves the covalent attachment 
of polyubiquitin chains to the target protein by an E3 ligase, followed by the degradation 
of the modified protein by the 26S proteasome. A large number of E3 ligases are encoded 
in the Arabidopsis genome, but only a few have been implicated in the regulation of 
cuticular wax deposition. In this study, we have conducted an E3 ligase reverse genetic 
screen and identified a novel RING-type E3 ubiquitin ligase, AtARRE, which negatively 
regulates wax biosynthesis in Arabidopsis. Arabidopsis plants overexpressing AtARRE 
exhibit glossy stems and siliques, reduced fertility and fusion between aerial organs. Wax 
load and wax compositional analyses of AtARRE overexpressors showed that the alkane-
forming branch of the wax biosynthetic pathway is affected. Co-expression of AtARRE 
and candidate target proteins involved in alkane formation in both Nicotiana benthamiana 
and stable Arabidopsis transgenic lines demonstrated that AtARRE controls the levels of 
wax biosynthetic enzymes ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3). CER1 
has also been confirmed to be a ubiquitination substrate of the AtARRE E3 ligase by an 
in vivo ubiquitination assay using a reconstituted Escherichia coli system. The AtARRE 
gene is expressed throughout the plant, with the highest expression detected in fully 
expanded rosette leaves and oldest stem internodes. AtARRE gene expression can also 
be induced by exposure to pathogens. These findings reveal that wax biosynthesis in 
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mature plant tissues and in response to pathogen infection is controlled 
post-translationally.
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INTRODUCTION

The primary aerial surfaces of land plants are covered with a 
cuticle, a continuous lipidic layer that restricts transpirational 
water loss, reflects harmful UV light, and prevents organ fusions 
during development (Reicosky and Hanover, 1978; Sieber et al., 
2000; Riederer and Schreiber, 2001; Riederer, 2006). The cuticle 
also serves as a protective barrier against pathogens and insects 
(Müller, 2018; Ziv et  al., 2018) and is involved in drought-
stress signaling (Wang et  al., 2011).

The cuticle is mostly composed of cutin and cuticular wax 
(Samuels et  al., 2008). Cutin is a polymer of oxidized 16- and 
18-carbon (C16 and C18) fatty acids and glycerol (Beisson 
et  al., 2012), which forms the structural scaffold of the cuticle. 
Cuticular wax embeds and overlays this cutin matrix and is 
composed of very long-chain fatty acids (VLCFAs; C20-C38) 
and their derivatives, including alkanes, aldehydes, primary 
and secondary alcohols, ketones, and esters. Small amounts 
of triterpenoids, flavonoids, or sterols may also be  present 
(Jetter et al., 2006; Buschhaus and Jetter, 2011). Wax composition 
varies among plant species, as well as between different organs, 
tissues, and developmental stages of the same plant species. 
These variations in wax composition affect the biochemical 
and physical properties of the plant surface, which helps the 
plant adapt to different environments.

Cuticular wax is synthesized by epidermal cells. C16 and 
C18 fatty acids are made in the plastid and activated to acyl-CoA 
thioesters, which are translocated to the endoplasmic reticulum 
(ER) for further elongation to VLC acyl-CoA wax precursors 
by a fatty acid elongase (FAE) complex (Haslam and Kunst, 
2013a). In addition, the ECERIFERUM2-LIKE (CER2-LIKE) 
family of proteins is required for the formation of C30 to 
C34 VLC acyl-CoAs (Haslam et al., 2017). Following elongation, 
VLC acyl-CoAs are modified by one of two pathways, either 
the acyl reduction pathway, which generates primary alcohols 
and wax esters, or the alkane-forming pathway, which produces 
aldehydes, alkanes, secondary alcohols, and ketones (Samuels 
et  al., 2008). In Arabidopsis (Arabidopsis thaliana) leaves and 
stems, cuticular wax is predominantly derived from the alkane-
forming pathway. As the major wax component, alkanes represent 
over 70 and 50% of the total wax load in leaves and stems, 
respectively (Bourdenx et  al., 2011). It has been proposed that 
the formation of alkanes is catalyzed by a multiprotein complex 
comprising CER1, CER3, and a cytochrome B5 protein (CYTB5) 
that converts VLC acyl-CoAs to alkanes with aldehydes as 
intermediates (Rowland et  al., 2007; Bourdenx et  al., 2011; 
Bernard et  al., 2012). CYTB5 isoforms interact with CER1 
and provide the electron(s) required for this redox-dependent 
reaction. The CER1 and CER3 proteins are integral membrane 
proteins with 35% amino acid identity that contain eight 
conserved His clusters in their N-terminal domain and an 

uncharacterized WAX2 domain at their C-terminus (Aarts et al., 
1995; Chen et  al., 2003; Bernard et  al., 2012). In Arabidopsis 
stems, alkanes can be  further oxidized to secondary alcohols 
and ketones by a cytochrome P450 enzyme, the MID-CHAIN 
ALKANE HYDROXYLASE1 (MAH1; Greer et  al., 2007).

Wax biosynthesis is tightly controlled throughout plant 
development and in response to biotic and abiotic stresses. 
Forward and reverse genetic studies in Arabidopsis, barley 
(Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and 
tomato (Solanum lycopersicum) have significantly improved our 
understanding of cuticular wax deposition and regulatory 
pathways controlling this process (Samuels et  al., 2008; Yeats 
and Rose, 2013). Production of cuticular waxes is primarily 
under transcriptional regulation. Several independent studies 
have demonstrated that the WAX INDUCER1/SHINE1 (WIN1/
SHN1) transcription factor, known to predominantly regulate 
cutin production, also indirectly affects wax synthesis (Aharoni 
et al., 2004; Broun et al., 2004; Kannangara et al., 2007). Other 
transcription factors, including MYB16, MYB30, MYB94, MYB96, 
MYB106, and WRINKLED4, have been reported to positively 
regulate wax synthesis in Arabidopsis stems and leaves (Raffaele 
et  al., 2008; Seo et  al., 2011; Oshima et  al., 2013; Lee et  al., 
2014; Lee and Suh, 2015b; Park et  al., 2016). Conversely, the 
DEWAX and DEWAX2 transcription factors act as repressors 
of wax production in Arabidopsis (Go et  al., 2014; Kim 
et  al., 2018).

In addition to the transcriptional regulation described above, 
characterization of the Arabidopsis CER7 gene and suppressors 
of the cer7 mutant resulted in the discovery of a post-
transcriptional regulatory mechanism that affects stem wax 
deposition during inflorescence development. It involves CER7-
mediated CER3 gene silencing by trans-acting small interfering 
RNAs (tasiRNAs; Hooker et  al., 2007; Lam et  al., 2012, 2015). 
Recently, another type of small RNAs, microRNAs (miRNAs), 
were also shown to participate in the regulation of wax synthesis. 
Specifically, miR156 targets the SQUAMOSA PROMOTER 
BINDING PROTEIN-LIKE 9 (SPL9) transcription factor that 
positively regulates the expression of the alkane-forming enzyme 
CER1 through direct binding to the CER1 promoter. Furthermore, 
SPL9 was shown to be  involved in the optimization of diurnal 
wax production in Arabidopsis stems and leaves by direct 
protein–protein interaction with a negative regulator of wax 
synthesis DEWAX (Li et  al., 2019).

Work by several groups demonstrated that wax biosynthesis 
in Arabidopsis is also post-translationally controlled by the 
ubiquitin-proteasome system (UPS). The UPS involves two 
distinct steps: the covalent attachment of a polyubiquitin chain 
consisting of at least four ubiquitin residues to the protein 
target, followed by the degradation of the modified protein by 
the 26S proteasome. Ubiquitination is catalyzed by three enzymes: 
a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating 
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enzyme (E2), and a ubiquitin ligase (E3). Among these proteins, 
E3 ligases play key roles in determining substrate specificity 
(Hershko and Ciechanover, 1998; Vierstra, 2009). Several 
Arabidopsis E3 ligases have been shown to be  involved in 
regulating cuticular wax deposition. Characterization of the 
wax-deficient cer9 mutant and isolation of the CER9 gene 
revealed that it encodes a putative E3 ligase, although its enzyme 
activity and ubiquitination substrate have not been determined 
(Lü et  al., 2012). More recently, MYB30-INTERACTING E3 
LIGASE 1 (MIEL1) has been shown to negatively regulate 
cuticular wax biosynthesis in Arabidopsis stems by targeting 
MYB30 and MYB96 transcription factors for degradation (Lee 
and Seo, 2016; Gil et  al., 2017). Additionally, F-box protein 
SAGL1 targets wax biosynthetic enzyme CER3 for degradation 
thereby negatively regulating cuticular wax production in response 
to changes in ambient humidity (Kim et  al., 2019). In rice, 
the DROUGHT HYPERSENSITIVE E3 ligase negatively  
regulates wax production by targeting the RICE OUTERMOST 
CELL-SPECIFIC GENE4 (ROC4) transcription factor involved 
in drought-stress response for degradation by the UPS  
(Wang et  al., 2018b).

Based on the presence of over 1,400 putative E3 ligases 
encoded in the Arabidopsis genome (Kraft et  al., 2005) and 
their importance in the regulation of plant responses to 
environmental stress, we  reasoned that additional E3 ligases 
may be  involved in the control of cuticular wax deposition. 
Here, we report the identification of a RING-type E3 ubiquitin 
ligase named ABA-related RING-type E3 ligase (AtARRE) that 
negatively regulates wax production by promoting the degradation 
of wax biosynthetic enzymes CER1 and CER3. This E3 ligase 
was previously reported to be  involved in abscisic acid (ABA) 
signaling, but its ubiquitination target has not been identified 
(Wang et  al., 2018a). Our results demonstrate that Arabidopsis 
plants overexpressing AtARRE display glossy stems and siliques, 
markedly reduced wax loads, and often aerial organ fusions 
and reduced fertility. Co-expression of AtARRE and candidate 
substrates in both Nicotiana benthamiana and stable Arabidopsis 
transgenic lines indicates that CER1 and CER3 wax biosynthetic 
enzymes are targeted by the AtARRE for degradation via the 
26S proteasome. The AtARRE gene is highly expressed in tissues 
that exhibit no or low wax production, such as roots and 
cotyledons in older developing seedlings, as well as fully 
expanded rosette leaves and older internodes at the bottom 
of the stem in mature plants. AtARRE expression can also 
be  induced by pathogen infection. Taken together, our results 
suggest that AtARRE acts as a quick and efficient switch for 
turning off wax biosynthesis in tissues where it is no longer 
needed and upon exposure to pathogens.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Arabidopsis thaliana ecotype Columbia-0 (Col-0) wild type was 
used in this study. Arabidopsis T-DNA insertion lines atarre-1 
(SALK_094303), atarre-2 (SALK_034426C; Alonso et al., 2003), 

and the cer1-4 and cer4-4 mutants were obtained from the 
Arabidopsis Biological Resource Center (ABRC).1 GABI-KAT 
T-DNA line atarre-3 (GABI_383G01) was obtained from gabi-
kat.de (Kleinboelting et  al., 2012). cer3-6 was a gift from Dr. 
Takuji Wada (RIKEN, Japan). AtARRE overexpression lines in 
Col-0 background were identified from the snc1-influencing 
plant E3 ligase reverse (SNIPER) genetic screen (Tong et al., 2017).

Arabidopsis seeds were germinated on Arabidopsis thaliana 
(AT) medium (Haughn and Somerville, 1986) supplemented 
with 1% (w/v) agar and appropriate antibiotics for transgene 
selection. Seven-day-old seedlings were transplanted to soil 
(Sunshine Mix 4 or 5, SunGro, Canada) supplemented with 
liquid AT medium and grown in a plant growth chamber at 
20°C under continuous light [100 μmol m−2  s−1 of 
photosynthetically active radiation (PAR)]. Arabidopsis seeds 
grown for Agrobacterium-mediated transformation were directly 
spread on the soil supplemented with liquid AT medium at 
a density of 100 seeds/6″ pot and grown as described above.

Nicotiana benthamiana seeds were sown directly on soil 
(Sunshine Mix 4 or 5, SunGro, Canada) supplemented with 
liquid AT medium at a density of 1 seed/3.5″ square pot. 
Plants were grown under a 14-h light (25°C with 100 μmol m−2 s−1 
PAR) and 10-h dark (20°C) cycle. For the transient expression 
assay, 4- to 5-week-old plants were taken out of the growth 
chamber and left at room temperature for 3 to 4 h 
before infiltration.

RNA Isolation, RT-PCR, and qPCR
Plant tissues were collected and immediately frozen in liquid 
nitrogen. RNA was extracted from Arabidopsis leaves, stems, 
flowers, seedlings, and roots using TRIzol (Thermo Fisher 
Scientific) according to the manufacturer’s protocol. RNA 
was isolated from Arabidopsis siliques using a 
phenol:chloroform:isoamyl extraction and precipitated by 
lithium chloride and sodium acetate (Wilkins and Smart, 
1996). RNA integrity was examined on a 1% standard agarose 
gel, and RNA was quantified using a NanoDrop 8000 (Thermo 
Scientific). Genomic DNA was removed by DNase I treatment 
(New England Biolabs) following the manufacturer’s protocol, 
and single-stranded cDNA was synthesized from equal 
amounts of purified RNA using iScript RT Supermix (Bio-
Rad). ACTIN1 was used as an internal control. The iQ 
SYBR Green Supermix (Bio-Rad) was used in 20 μl reactions 
to perform qPCR in an iQ5 Multicolor Real-Time PCR 
Detection System (Bio-Rad) as specified by the manufacturer. 
Four technical replicates were performed for each sample, 
and gene expression levels were analyzed using the Pfaffl 
method (Pfaffl, 2001).

Cloning of Genes in Plant Expression 
Vectors
Standard methods were used for cloning, and all primer 
sequences are given in Supplementary Table  1. All constructs 
were confirmed by sequencing.

1 arabidopsis.org/
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The pGreenST/35S:HA-AtARRE construct, which was 
prepared for the SNIPER screen (Tong et  al., 2017), was 
used as the site-directed mutagenesis template. Of the five 
splice variants known for the AtARRE gene (AT5G66070), 
AT5G66070.1 was used for the work described here. The 
35S:HA-AtARRE(H197Y,H200Y) site-directed mutagenesis construct 
was generated using primers H197200Y_F and H197200Y_R 
designed using the one-step site-directed mutagenesis method 
(Zheng et  al., 2004). The PCR amplification was carried out 
using Phusion High Fidelity Polymerase (Thermo Fisher 
Scientific). The PCR products were separated by gel 
electrophoresis, purified using a PCR Purification Kit 
(BioBasic), and were further treated with restriction enzyme 
DpnI (New England Biolabs). The mutations in the 35S:HA-
AtARRE(H197Y,H200Y) construct were confirmed by sequencing.

The 35S:GFP-CER3 construct was prepared using Gateway 
cloning (Thermo Fisher) and destination vectors from 
Nakagawa et  al. (2007). The coding sequence of the CER3 
gene was amplified from WT cDNA using CER3cDNA_attbF 
and CER3cDNA_attbR_WSTOP primers and recombined into 
the entry vector pDONR221. The insert was then transferred 
into the destination vector pGWB6 to generate 
pGWB6/35S:GFP-CER3 and into pGWB15 to generate 
pGWB15/35S:HA-CER3. The CER3 coding sequence without 
stop codon was also amplified using CER3cDNA_attbF and 
CER3cDNA_attbR_NoSTOP primers, recombined to 
pDONR221, and then transferred to the destination vector 
pGWB5 to generate pGWB5/35S:CER3-GFP.

The 35S:CER1-GFP construct was made and provided by 
Dr. Hugo Zheng (McGill University, Canada). The coding region 
of the CER1 gene was subcloned into the vector 
pVKH18/35S:GFPC (Dean et al., 2007) to produce the C-terminal 
CER1-GFP fusion under the control of the enhanced 35S 
promoter. The 35S promoter fragment was then removed from 
the vector pVKH18/35S:CER1-GFP and replaced with the CER6 
promoter using HindIII and XbaI to generate pVKH18/
CER6p:CER1-GFP. The construct pBIN/35S:HDEL-mCherry was 
provided by Dr. Mathias Schuetz (Nelson et  al., 2007), and 
the construct pGreenST/35S:HA-SNIPER2 was described 
previously (Wu et  al., 2020).

To generate the construct AtARREp:GUS, a fragment of 
808 bp immediately upstream of the putative AtARRE start 
codon, which includes the 5′ UTR of AtARRE, as well as 3′ 
UTR and the last intron of the previous gene, was amplified 
from WT genomic DNA using LP_attb1_AtARRE and RP1_
attb2_AtARRE and recombined into pDONR221 before being 
introduced into pGWB3 (Nakagawa et al., 2007; Vincent et  al., 
2018) using GATEWAY cloning (Thermo Fisher).

Cloning of Genes in Bacterial Expression 
Vectors
Standard methods were used for cloning, and all primer 
sequences are given in Supplementary Table  1. All constructs 
were confirmed by sequencing.

To generate the construct pET28b/AtARRE-HIS for the in 
vitro ubiquitination assay, a 326 bp fragment of coding sequence 

downstream of the transmembrane domains and upstream 
of the stop codon of AtARRE was amplified from WT cDNA 
using AtARRETMdel_F_EcoRI_28b and AtARRETMdel_R_
SalI. This PCR product was ligated into the pET28b vector 
using EcoRI and SalI restriction sites to generate pET28b/
AtARRE-HIS.

To reconstitute the plant ubiquitination cascade in Escherichia 
coli, Duet expression vectors (kindly provided by Dr. Dongping 
Lu, Chinese Academy of Science, China) pCDFDuet/MBP-ABI3-
HA-AtUBA1-S, pCDFDuet/AtUBA1-S, pACYCDue/AIP2-Myc-
UBC8-S, and pET28a/FLAG-UBQ were used to generate target 
co-expression constructs (Han et  al., 2017). A 326 bp fragment 
of coding sequence downstream of the transmembrane domains 
and upstream of the stop codon of AtARRE was amplified 
from WT cDNA and ligated into the BamHI and StuI-digested 
pACYCDue/AIP2-Myc-UBC8-S vector to generate pACYCDue/
AtARRE-Myc-UBC8-S. An 837 bp fragment of coding sequence 
downstream of the transmembrane domains and upstream of 
the stop codon of CER1 was amplified from WT cDNA was 
ligated into the EcoRI and StuI-digested pCDFDuet/MBP-ABI3-
HA-AtUBA1-S vector to generate pCDFDuet/MBP-CER1- 
HA-AtUBA1-S.

Agrobacterium-Mediated Plant 
Transformation
To produce transgenic lines for E3 ubiquitin ligase activity 
test, degradation assay, and GUS assay, 35S:HA-AtARRE(H197Y,H200Y), 
CER6p:CER1-GFP, AtARREp:GUS, and AtARREp:AtARRE-GUS 
were introduced into Agrobacterium tumefaciens GV3101 cells 
carrying the pMP90 Ti plasmid. The pGreenST plasmid 35S:HA-
AtARRE(H197Y,H200Y) was co-transformed with the helper plasmid 
pSOUP (Hellens et  al., 2000). Transformation of WT or cer1-4 
plants was carried out using the floral spray method (Chung 
et  al., 2000). T1 transgenic seeds were harvested and screened 
on AT medium supplemented with 1% (w/v) agar and 
appropriate antibiotics.

Transient Expression in Nicotiana 
benthamiana
Transient expression in N. benthamiana was carried out using 
4- to 5-week-old plants. Agrobacterium cultures were grown 
overnight in 3 ml of LB medium under antibiotic selection 
and diluted 1/20  in LB medium with antibiotics and 50 μm 
acetosyringone and incubated for a further 3–5 h. During 
this time, plants were taken out of the growth chamber and 
left at room temperature before infiltration. Cultures were 
centrifuged and resuspended in resuspension medium (4.43 g/L 
MS, 10 mm MES, and 150 μm acetosyringone) at an optical 
density of 0.6 at A600. For co-expression of multiple constructs, 
suspensions were mixed in equal ratios. Agrobacterium 
suspension mixtures were infiltrated using a 1-ml syringe 
into the abaxial side of the N. benthamiana leaves. A permanent 
marker was used to mark the infiltrated area on the leaf. 
Infiltrated plants were incubated at room temperature for 
48 h, and then, leaf samples were collected for microscopic 
imaging and/or protein extraction.
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Cuticular Wax Extraction and Analysis by 
GC-FID
Cuticular wax extraction was performed using the method 
described by Haslam and Kunst (2013b). Briefly, the top 10 cm 
of 4- to 6-week-old inflorescence stems were cut and 
photographed to allow stem surface area to be  calculated by 
measuring the number of pixels of the two-dimensional area 
in Photoshop (Adobe), converting the values to cm2, and 
multiplying by π. After imaging, stems were submerged for 
30 s in chloroform containing 10 μg tetracosane as an internal 
standard. After wax extraction, chloroform was evaporated 
under a stream of nitrogen gas and wax components were 
silylated in 10 μl N, O-Bis (trimethylsilyl) trifluoroacetamide 
(BSTFA; Sigma), and 10 μl pyridine for 1 h at 80°C. After 
derivatization, the solvent was evaporated under nitrogen gas 
and waxes were re-dissolved in 30 μl of chloroform for GC 
analysis. Samples were analyzed on an Agilent 7890A gas 
chromatograph equipped with a flame ionization detector 
(GC-FID) using an HP1 column (Agilent) in a 2.7:1 split 
mode with H2 as the carrier gas at a flow rate of 30 ml/min. 
The gas chromatography program used was as follows: oven 
temperature was set at 50°C for 2 min, raised by 40°C/min 
to 200°C and held for 1 min, and then raised by 3°C/min to 
320°C and held for 15 min. Wax components were identified 
by comparing their retention times with those of the internal 
standards. Four biological replicates were processed for each line.

Microscopy
Fluorescence signals of transiently expressed constructs in  
N. benthamiana were detected using a Perkin Elmer Ultraview 
VoX Spinning Disk Confocal Microscope. N. benthamiana leaf 
discs were mounted in distilled water and immediately imaged 
using a glycerol immersion lens. GFP was excited using a 
488 nm laser with an 515/30 nm emission filter, and mCherry 
was excited using a 561 nm laser with an 595/50 nm emission 
filter. Confocal images were processed using the Volocity software 
(Perkin Elmer). GFP signal in infiltrated N. benthamiana leaf 
was also observed using a Nikon Eclipse 80i Scanning Laser 
Confocal Microscope excited with a 488 nm laser with an 
515/30 nm emission filter.

For scanning electron microscopy (SEM), segments from 
the apical 1 cm of dry stems were mounted onto stubs and 
sputter-coated with gold particles for 10 min at 40 mA in an 
SEM Prep  2 sputter coater (Nanotech). The coated samples 
were viewed using an S4700 field emission SEM (Hitachi) 
with an accelerating voltage of 5 kV and a working distance 
of 12 mm.

GUS Histochemical Assay
Tissues at different developmental stages from transgenic lines 
expressing AtARREp:GUS constructs were immersed in GUS 
staining buffer {100 mM Na-phosphate, 10 mM EDTA, pH 7.0, 
0.5 mM K3[Fe(CN)6], 0.5 mM K4[Fe(CN)6], 0.1% (v/v) Triton 
X-100, and 1 mM 5-bromo-4-chloro-3-indolyl-β-D-glucuronide 
(X-gluc)} and incubated for 1 to 3 h or overnight. The reaction 
was stopped by removing the GUS buffer and adding the 70% 

(v/v) ethanol. Chlorophyll was removed by incubating samples 
in 70–90% (v/v) ethanol before samples were examined under 
a Nikon SMZ18 Digital Microscope (Nikon, Japan).

Protein Extraction and Immunoblotting
Plant tissues were ground in liquid nitrogen, and total proteins 
were extracted in buffer containing 50 mM Tris-HCl, pH 7.5, 
150 mM NaCl, 1 mM EDTA, 10% (v/v) glycerol, 1% Triton 
X-100, 1 mM PMSF, and 1X Halt™ protease inhibitor cocktail 
(Thermo Fisher Scientific). After centrifugation at 18,000 g for 
20 min at 4°C, the supernatant was transferred to a new tube 
and the concentration of protein extract was determined using 
the Bradford reagent (Bio-Rad).

For SDS-polyacrylamide gel electrophoresis (SDS-PAGE), 4X 
SDS loading buffer (200 mM Tris-HCl, pH 6.8, 8% (w/v) SDS, 
0.4% (w/v) bromophenol blue, 40% glycerol, and 400 mM DTT) 
was added to solubilized protein samples, and 10–35 μl of each 
protein sample was separated on a 10% acrylamide gel with 
1% SDS at 200 V constant voltage for 50–60 min before being 
transferred to nitrocellulose membrane using a semi-dry blotting 
system (Bio-Rad) with Bjerrum Schafer-Nielsen buffer (Bio-
Rad). Transfer was carried out at a constant voltage of 15 V 
for 50 min before the membrane was stained with Ponceau S, 
imaged, washed, and then blocked with 5% skim milk powder 
in Tris-buffered saline with 0.1% tween 20 (TBS-T). For 
immunoblotting, membranes were incubated with primary 
antibody for 1 h at room temperature. Primary antibodies used 
were anti-GFP (dilution 1:5,000; mouse IgG; Roche), anti-HA 
(dilution 1:2,500; rat IgG; Roche), anti-HIS (dilution 1:1,000; 
mouse IgG; Santa Cruz Biotechnology), anti-FLAG (dilution 
1:5,000; mouse IgG; Sigma), anti-GST (dilution 1:1,000; rabbit 
IgG; Sigma), anti-Myc (dilution 1:1,000; Invitrogen), and anti-Ub 
(dilution 1:1,000; mouse IgG; Sigma). Membranes were then 
washed three times for 10 min each wash with TBS-T and 
then incubated with appropriate secondary antibodies, including 
anti-rabbit (dilution 1:10,000; Santa Cruz Biotechnology), anti-
mouse (dilution 1:25,000; Santa Cruz Biotechnology), and 
anti-rat (dilution 1:10,000; Santa Cruz Biotechnology), for 1 h 
at room temperature. The membrane was washed three times 
as above with TBS-T before horseradish peroxidase was detected 
with the ECL Prime western blotting detection kit (GE).

Cell-Free Degradation Assay
Plant-derived protein degradation assays were performed as 
described in Wang et  al. (2009), with modifications as follows. 
Total proteins were extracted from 8-day-old CER6pro:CER1-GFP/
cer1-4 transgenic seedlings and quantified. 80 μl protein extracts 
were then incubated with or without 40 μM MG132 (Sigma) 
at 30°C. Samples were taken at select time points, and the 
reaction was stopped by adding 5 μl 4X SDS loading buffer. 
CER1-GFP protein abundance in each sample was determined 
by immunoblotting using anti-GFP antibody.

In vitro Ubiquitination Assay
In vitro ubiquitination assays were performed as described 
in Zhao et  al. (2013), with modifications as follows. The 
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plasmid pET28b/AtARRE-HIS was transformed into E. coli 
strain Rosetta™2 (DE3) for protein production. A 500 ml 
culture was grown in Terrific Broth (TB) medium [1.2% (w/v) 
tryptone, 2.4% (w/v) yeast extract, 0.4% (v/v) glycerol, 100 mM 
K-PO4] until the exponential phase (OD600  = 0.6–1.0) before 
protein production was induced by adding 0.5 mM Isopropyl 
β-D-1-thiogalactopyranoside (IPTG). After growth overnight 
at 16–18°C, cells were collected by centrifugation at 6,000 g 
for 5 min and frozen in liquid nitrogen and stored at −80°C. 
Lysis buffer [50 mM NaPO4, pH 7.5, 200 mM NaCl, 0.1% 
(v/v) Triton X, 5% glycerol, 1 mM PMSF, 1X Halt™ protease 
inhibitor cocktail, and 1 mg/ml lysozyme] was added to the 
frozen sample pellets, thawed at 37°C for 1 min, and 
resuspended. Lysate was cleared by centrifugation at 14,000 g 
for 15 min at 4°C followed by filtration through a 0.45 μm 
filter. The AtARRE-HIS recombinant proteins were purified 
using HisPur Ni-NTA Resin (Thermo Fisher) according to 
the manufacturer’s protocol. Purified recombinant proteins 
AtUBA2-His and GST-AtUBC8 were kindly provided by 
Dr. Oliver Xiao’ou Dong (Dong et al., 2018).

In vivo Ubiquitination Assay in Bacteria
In vivo ubiquitination assays in bacteria were carried out 
using the system described by Han et  al. (2017). E. coli 
strain BL21 (DE3) containing different combinations of the 
expression vectors were grown in 2 ml of TB liquid medium 
with appropriate antibiotics at 37°C. When the culture A600 
nm reached 0.4–0.6, 0.5 mM IPTG was added to induce the 
recombinant protein expression. After induction, bacteria were 
further grown at 28°C for 10–12 h, stored at 4°C overnight, 
and then harvested from 300 μl of culture by centrifugation 
at 12,000 g for 5 min. The pellets were resuspended in 100 μl 
1x SDS loading buffer and boiled at 95°C for 5 min followed 
by immunoblotting.

RESULTS

Overexpression of AtARRE Results in 
Reduced Wax Accumulation on 
Arabidopsis Stems and Leaves
To identify novel E3 ligases involved in plant immunity, a 
SNIPER genetic screen has been carried out (Tong et al., 2017). 
In this screen, E3-ligase encoding genes induced during plant 
defense were overexpressed in the wild-type background. 
Unexpectedly, a number of independent transgenic plants with 
glossy bright green stems were uncovered among the T1 progeny, 
suggestive of altered cuticular wax accumulation (Figure  1A). 
In these plants, the AtARRE/At5g66070 gene encoding a RING-
type E3 ubiquitin ligase was expressed under the control of 
the cauliflower mosaic virus (CaMV) 35S promoter 
(Supplementary Figures S1A,B). Wax analysis of three 
representative AtARRE overexpression (AtARREOX) lines by 
gas chromatography demonstrated that they accumulated only 
10–50% of the WT inflorescence stem wax and only ~65% 
of the WT leaf wax (Figures  1B,C). The stem wax phenotype 

was further evaluated by scanning electron microscopy (SEM); 
wild-type stem surface was densely and uniformly covered 
with column-, vertical plate-, and rod-shaped wax crystals, 
whereas AtARREOX lines displayed considerably lower density 
of all types of wax structures (Figure  1D).

The wax deficiency uncovered in the AtARREOX lines 
prompted us to examine the wax phenotypes of atarre mutants. 
We  obtained three T-DNA insertion lines of AtARRE in the 
Col-0 ecotype and determined AtARRE gene expression in 
mutant alleles by qPCR. Even though we  detected reduced 
levels of AtARRE transcript in all three T-DNA lines 
(Supplementary Figures S1A,B), we found no major differences 
in the total stem wax load or composition with respect to 
the wild type (Supplementary Figures S1C,D).

AtARREOX Lines Exhibit Altered Wax 
Composition and Abnormal Organ 
Morphogenesis
To further investigate the role of AtARRE in cuticular wax 
biosynthesis, we  carried out a detailed analysis of wax 
composition of AtARREOX lines. We  found that amounts of 
all stem wax components were altered in AtARREOX plants 
in comparison with the wild type, and detected considerable 
changes in their relative proportions. In particular, there was 
a prominent decrease in absolute amounts of alkane pathway-
derived compounds that could be attributed primarily to C29 
alkanes (68–98.7% decrease), C29 ketones (50–97.6% decrease), 
and C29 secondary alcohols (56–97% decrease). Conversely, 
the amounts of fatty acids on AtARREOX stems were higher 
than in the wild type (115–167% increase) and so was the 
relative proportion of fatty acids, aldehydes, and primary 
alcohols (Figure  1E, Supplementary Figure S1E). We  also 
examined the wax composition of AtARREOX rosette leaves. 
As observed with stem wax, leaf wax also contained significantly 
reduced amounts of C29 and C31 alkanes relative to the 
wild type, but also increased amounts of C33 alkanes 
(Figure  1F). In addition, we  detected a major increase in 
C24 and C26 fatty acids, as well as C26 primary alcohols 
(Figure 1F). Collectively, these data suggest that wax production 
by the alkane-forming pathway is impaired in 
AtARRE overexpressors.

AtARREOX lines with the most severe wax deficiency 
displayed additional phenotypes including abnormal organ 
morphogenesis, dwarfism, organ fusions, and reduced fertility 
over multiple generations (Figure  2). For example, the 
inflorescence stems of AtARRE overexpressors were 
considerably shorter than the wild type. Additionally, these 
plants also exhibited organ fusions between flower buds, 
flowers, and siliques, as well as between flowers and leaves 
(Figures  2C,D). Reduced fertility was also often detected. 
In most cases, fertility could be  restored by growing plants 
under high humidity, except in individuals with severe  
floral organ fusions (Supplementary Figure S2). Similar 
phenotypes have previously been reported for several 
Arabidopsis wax-deficient eceriferum mutants (Koornneef 
et  al., 1989).
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AtARRE E3 Ubiquitin Ligase Activity Is 
Required for Its Function in Wax 
Deposition
AtARRE (AT5G66070) encodes a predicted polypeptide of 
221 amino acids with a molecular mass of 27 kDa containing 

three transmembrane domains located at the N-terminus and 
a RING domain located at the C-terminus (Figure 3A). RING 
domain proteins act as E3 ligases by binding to an E2-ubiquitin 
thioester and catalyzing ubiquitin transfer (Deshaies and 
Joazeiro, 2009). Whether the RING domain-related E3 ubiquitin 
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FIGURE 1 | Characterization of the wax-deficient phenotypes of AtARREOX lines. (A) Stems of 6-week-old wild type (WT) and three representative AtARREOX 
lines. Total stem (B) and leaf (C) wax load of WT and AtARREOX lines as determined by GC-FID. Error bars represent means ± SD (n = 4). (D) SEM images of WT 
and AtARREOX inflorescence stem surfaces. Scale bar = 20 μm. The stem (E) and rosette leaf (F) wax composition of WT and AtARREOX lines as measured by 
GC-FID. Error bars represent means ± SD (n = 4). Statistically significant differences between the WT and each AtARREOX line were determined by Student’s t test 
and are indicated by asterisks (p < 0.05).
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ligase activity of the AtARRE protein is required for its 
function in cuticular wax metabolism is not known. RING 
domain E3 ligases are known to undergo self-ubiquitination 
in the absence of their native substrate (Lorick et  al., 1999). 
We used this feature of RING E3 ligases to determine whether 
AtARRE has E3 ligase activity. Unfortunately, the insolubility 
of the full-length AtARRE protein upon expression in E. coli 
prohibited purification of enough protein for the self-
ubiquitination assay. Therefore, an AtARRE protein fragment 
without the N-terminal transmembrane domains was used 
to produce the recombinant AtARRE-HIS protein. Incubation 
of the purified AtARRE-HIS recombinant protein with E1, 
E2, ubiquitin, and ATP resulted in a laddering pattern 
characteristic of ubiquitination on a protein blot when anti-HIS 
antibodies were used for AtARRE-HIS detection. This laddering 
is indicative of a range of molecular weights for AtARRE-HIS 
as it carries ubiquitin chains of different lengths (Figure  3B). 
Such a laddering pattern was also detected when anti-Flag 
antibodies that were used for FLAG-Ub detection of Ub 

chains bound to AtARRE-HIS. Thus, AtARRE exhibits E3 
ligase activity and undergoes self-ubiquitination in vitro. The 
self-ubiquitination of AtARRE was not observed when E1, 
E2, or ubiquitin were omitted from the assays.

Conserved Cys and His residues in the RING domain 
are critical for the E3 ligase activity (Deshaies and Joazeiro, 
2009). Their substitution disrupts the RING domain and 
results in a dominant-negative form of E3 ligase predicted 
to confer the same phenotype as the loss of E3 ligase 
function. To further verify whether AtARRE E3 ligase activity 
is required for its function, we  replaced the conserved 
AtARRE RING domain His-197 and His-200 with Tyr residues 
by site-directed mutagenesis and expressed the modified 
protein in wild-type plants. In contrast to AtARRE 
overexpression which caused wax deficiency, overexpression 
of the double mutant AtARRE(H197YH200Y) protein had no effect 
on the stem wax load (Figure  3C). Thus, the E3 ligase 
activity of AtARRE is required for its function in stem 
wax deposition.

AtARRE Overexpression Phenotypes 
Mimic cer1 and cer3 Wax-Deficient 
Mutants
E3 ligase-mediated ubiquitination of proteins in most cases 
results in their degradation by the 26S proteasome. Because 
the most conspicuous result of AtARRE overexpression was 
reduced cuticular wax accumulation on Arabidopsis 
inflorescence stems, we  hypothesized that AtARRE may act 
as a negative regulator of wax deposition by ubiquitinating, 
and thus targeting for degradation, a key player involved in 
wax biosynthesis. If this is the case, identifying the 
ubiquitination substrate of AtARRE is critical for determining 
its biological function. As a first step in uncovering potential 
candidate ubiquitination substrates, we  compared stem wax 
compositional changes of AtARRE overexpressors with those 
of ecerifierum (cer) Arabidopsis mutants caused by loss-of-
function mutations in wax biosynthetic genes (Figure  4, 
Supplementary Figure S3). AtARRE overexpressors displayed 
dramatically reduced alkane, secondary alcohols, and ketone 
levels on their stem surfaces, similar to null mutants disrupted 
in CER1 and CER3 genes required for the production of 
waxes by the alkane-forming branch of wax biosynthesis, but 
not the mutants with lesions in the CER4 gene required for 
the production of waxes by the acyl reduction pathway. The 
distinguishing feature between cer1 and cer3 is that cer1 has 
slightly increased amounts of aldehydes and reduced primary 
alcohol levels, whereas cer3 exhibits a major reduction in 
aldehydes and similar amounts of primary alcohols to the 
wild type. Thus, the wax profile of AtARREOX lines is most 
similar to that of the cer1 mutant. Besides cuticular wax 
changes, some AtARREOX lines additionally display reduced 
plant height and reduced fertility previously described for 
the cer1-1 and cer3-1 mutant alleles (Koornneef et  al., 1989), 
and organ fusion phenotypes characteristic of cer3, but not 
cer1 mutants (Aarts et  al., 1995; Chen et  al., 2003; Bourdenx 
et  al., 2011).

A B

C D

FIGURE 2 | Abnormal organ morphogenesis in the AtARREOX lines. (A) Dry 
stems of WT (left) and a T3 AtARREOX_2 individual (right). (B) 6-week-old WT 
plant (left) and a T3 AtARREOX_3 plant (right). (C) Flowers of WT (Col-0). 
(D) Organ fusions between flower buds of a T3 AtARREOX_3 individual. Scale 
bars = 2 cm.
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AtARRE Promotes CER1 Degradation by 
the 26S Proteasome
To determine whether CER1 is subjected to 26S  
proteasome-dependent degradation, we performed a modified 
cell-free degradation assay. For this purpose, we  made 
CER6pro:CER1-GFP/cer1-4 transgenic lines in which the 
CER6pro:CER1-GFP transgene complemented the cer1-4 wax 
deficiency (Supplementary Figure S4A). Total proteins 

extracted from 8-day-old CER6pro:CER1-GFP/cer1-4 seedlings 
were incubated with or without the 26S proteasome inhibitor 
MG132 for 90 min and protein levels determined by 
immunoblotting. The CER1-GFP amounts decreased rapidly 
in the absence of MG132, but in the presence of MG132, 
the levels of CER1-GFP remained notably higher over time, 
suggesting that the 26S proteasome is involved in CER1 
proteolysis (Figure  5A).

A C

B

FIGURE 3 | AtARRE exhibits E3 ubiquitin ligase activity. (A) Schematic representations of the full-length AtARRE protein (top), AtARRE protein with mutated RING 
domain (middle) and truncated AtARRE protein without transmembrane domains used for self-ubiquitination assay (bottom). Arrows show the point mutations in the 
RING domain. (B) In vitro ubiquitination assays were performed in the presence (+) or absence (−) of AtUBA2 (E1; 140 kDa), AtUBC8 (E2; 44 kDa), AtARRE (E3; 
14.4 kDa), and ubiquitin (Ub; 9.5 kDa). Ubiquitination of AtARRE was detected by immunoblotting using an anti-FLAG antibody or anti-HIS antibody. AtUBC8 and 
AtUBA2 were detected by immunoblotting using anti-GST and anti-HIS antibody, respectively. Molecular mass markers are indicated on the left. (C) Stems of 
6-week-old WT, AtARREOX_3 (T3 generation), and representative AtARRE(H197YH200Y). AtARRE transcript accumulation in each sample was measured by RT-PCR. 
ACTIN was used as an internal control.
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We next carried out an Agrobacterium-mediated transient 
expression assay in N. benthamiana leaves. Agrobacterium cell 
cultures expressing 35Spro:CER1-GFP and 35Spro:HA-AtARRE 
were co-infiltrated on one half of a N. benthamiana leaf. Cell 
cultures expressing 35Spro:CER1-GFP and 35Spro:HA empty 
vector or 35Spro:CER1-GFP and the 35pro:HA-SNIPER2 vector 
containing the SNIPER2 E3 ligase gene not involved in wax 
deposition were co-infiltrated symmetrically on the other half 
of the same leaf as negative controls (Supplementary Figure S4B). 
35Spro:HDEL-mCherry was also included in each sample as a 
marker for ER visualization. In N. benthamiana cells transformed 
with CER1-GFP and 35Spro:HA empty vector, the GFP signal 
could be  easily detected after 48 h, persisted past 72 h and was 
undetectable 96 h after infiltration (Supplementary Figure S4C). 
Bright GFP fluorescence was also detected in cells co-expressing 
CER1-GFP and the SNIPER2 E3 ligase control 3 days post-
infiltration, but not in those cells co-expressing CER1-GFP 
and AtARRE (Figure  5B). In contrast, similar intensity of 
mCherry fluorescence from the ER-localized HDEL-mCherry 
marker was detected in all infiltrated regions on both sides 
of the leaf (Figure  5B). Immunoblot analysis confirmed that 
CER1-GFP protein level was much lower in the presence of 
AtARRE than in the negative control sample expressing SNIPER2 
E3 ligase (Figure  5D). Unlike the native AtARRE protein, 
co-expression of CER1-GFP and the AtARRE(H197YH200Y) protein 
with mutated RING domain did not affect CER1 protein levels, 

indicating that catalytic activity of AtARRE is required for 
CER1 degradation (Figures  5C,D). When the substrate CER1 
was replaced with CER2, a component of VLCFAs elongation 
machinery (Haslam et al., 2012), GFP tagged CER2 fluorescence 
signal intensity was found to be indistinguishable in the presence 
and absence of AtARRE. Immunoblot results were consistent 
with microscopy data (Supplementary Figures S4D,E) and 
demonstrate that AtARRE specifically targets CER1 for 
degradation by the 26S proteasome.

The AtARRE-dependent degradation of CER1 was further 
verified in stable transgenic lines of Arabidopsis. Plants harboring 
the CER1-GFP transgene were crossed with the wild type, 
AtARREOX, and AtARREOX(H197YH200Y) lines, and the abundance 
of the CER1-GFP in F1 progeny was examined by 
immunoblotting. Whereas CER1-GFP transcript accumulation 
was similar in the F1 progeny from all the crosses, the CER1-GFP 
protein level in the AtARREOX lines was much lower than 
observed in the wild type and AtARREOX(H197YH200Y) lines 
(Figure  5E). Collectively, these results confirm that AtARRE 
promotes the degradation of CER1, suggesting that CER1 is 
the ubiquitination substrate of AtARRE.

CER1 Is Ubiquitinated by AtARRE in a 
Reconstituted E. coli System
To directly test whether CER1 is a ubiquitination substrate 
of the AtARRE E3 ligase, we  performed an in vivo 

FIGURE 4 | A comparison of stem wax load and composition of AtARRE overexpression lines, and cer1-4, cer3-6, and cer4-4 mutants. Stem wax load and 
composition of 6-week-old WT, AtARREOX lines, cer1-4, cer3-6, and cer4-4 were determined by GC-FID. Values are means of four biological replicates, and error 
bars represent SD. Statistically significant differences of wax component amounts between the WT and different genotypes (p < 0.05) were determined by Student’s 
t test and are indicated by asterisks.
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ubiquitination assay in a heterologous E. coli system that 
expresses the Arabidopsis ubiquitination cascade (Han et al., 
2017). In this experiment, recombinant ubiquitination 
components E1 (AtUBA1-S), E2 (AtUBC8-S), E3 
(AtARRE-Myc), ubiquitin (His-Flag-AtUBQ10), and the 
presumed ubiquitination substrate (MBP-CER1-HA) were 
co-expressed in E. coli (Figure  6A), and bacterial lysates 
were analyzed by immunoblotting. Our results show that 
in the presence of all ubiquitination components, a smear 
indicative of CER1 ubiquitination can be  detected by an 
anti-HA antibody (Figure  6B). Using an anti-Myc antibody, 
AtARRE-Myc recombinant protein also shows a laddering 
pattern indicative of AtARRE self-ubiquitination. These data 
support the in vitro ubiquitination assay results that AtARRE 
is an active E3 ligase and demonstrate that it can ubiquitinate 
CER1 in vivo.

AtARRE Promotes CER3-GFP Degradation
Even though stem wax profiles of AtARRE overexpressors are 
more similar to the cer1 than the cer3 mutant, the overexpression 
lines also exhibit organ fusions previously detected in cer3, 
but not in cer1 mutants. Because CER1 and CER3 proteins 
are highly related and share 35% sequence identity (Bernard 
et  al., 2012), it is tempting to speculate that in addition to 
CER1, CER3 may also be  a target of the AtARRE-mediated 
ubiquitination and UPS proteolysis resulting in the dual cer1- 
and cer3-like phenotypic features of AtARRE overexpression 
lines. To investigate whether this is the case, we tested whether 
AtARRE affects the protein levels of CER3-GFP in N. benthamiana 
leaf epidermal cells. Agrobacterium cells expressing 
35Spro:CER3-GFP, the 35Spro:HA-AtARRE, and the 
35Spro:HDEL-mCherry transgenes were co-infiltrated on one 
half of a N. benthamiana leaf, while Agrobacterium cells 
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FIGURE 5 | AtARRE promotes CER1 degradation in the Nicotiana benthamiana transient expression system and in stable transgenic lines of Arabidopsis. 
(A) CER1 is turned over by the 26S proteasome in planta. Total proteins were extracted from 8-day-old CER6pro:CER1-GFP/cer1-4 transgenic plants and 
incubated with (+) or without (−) 40 μM MG132. CER1-GFP protein levels were detected over time by immunoblotting using anti-GFP antibody. (B,C) Transient 
expression in N. benthamiana leaf epidermal cells. CER1-GFP and an internal control HDEL-mCherry were co-expressed with HA-SNIPER2 E3 ligase or  
HA-AtARRE E3 ligase. CER1-GFP was co-expressed with HA-AtARRE or HA-AtARRE(H197YH200Y) with mutated RING domain. GFP fluorescence and mCherry 
fluorescence were examined by confocal microscopy. Scale bars = 100 μm. 4 technical replicates and 16 biological replicates have been performed. (D) Amounts of 
CER1-GFP protein were determined by immunoblotting using anti-GFP in the same leaves assayed for fluorescence in (B,C). (E) The AtARRE-dependent CER1 
degradation in stable transgenic lines of Arabidopsis. RNA was extracted from 4-week-old Arabidopsis leaves. The CER1-GFP steady-state transcript levels were 
determined by RT-PCR, and ACTIN was used as an internal control (top two rows). Total protein was extracted from the 4-week-old plant leaves. The CER1-GFP 
protein level was determined by immunoblotting using anti-GFP antibody; Ponceau S staining shows equal protein loading (bottom two rows).
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harboring 35Spro:CER3-GFP, 35Spro:HA-SNIPER2, and 
35Spro:HDEL-mCherry were co-infiltrated on the other side 
of the same leaf as a negative control. Similar to CER1-GFP, 

AtARRE promoted CER3-GFP degradation as indicated by 
considerably reduced CER3-GFP fluorescence in the presence 
of transiently co-expressed AtARRE in comparison with the 
control co-expressing CER3-GFP with HA-SNIPER2 E3 ligase. 
By contrast, the signal of the internal control HDEL-mCherry 
was prominent and indistinguishable on both halves of the 
leaf (Figure  7). These results demonstrate that CER3 is likely 
also the AtARRE ubiquitination target. We  tried to confirm 
that AtARRE controls the levels of CER3  in transgenic lines 
of Arabidopsis, but consistently failed to detect CER3-GFP 
protein on immunoblots.

AtARRE Gene Is Expressed in Tissues 
That Exhibit Low Wax Production and 
Upon Exposure to Pathogens
To obtain clues regarding the functional significance of the 
AtARRE-mediated protein degradation of wax biosynthetic 
enzymes, we  investigated the transcription profile of AtARRE 
gene in different plant tissues using qRT-PCR (Figure  8A). 
The AtARRE gene was expressed in all tissues examined, with 
higher expression in rosette leaves and lower expression in 
flowers and siliques. To further determine the AtARRE expression 
pattern in different cell types and at different Arabidopsis 
developmental stages, an 808 bp fragment of genomic sequence 
immediately upstream of the AtARRE coding region was fused 
to the β-glucuronidase (GUS) reporter gene, and this 
AtARREpro:GUS reporter was transformed into wild-type 
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FIGURE 6 | Ubiquitination of CER1 by AtARRE in a heterologous Escherichia 
coli system. (A) Schematic representation of the plasmids used in the assay. 
MBP, maltose-binding protein; HA, hemagglutinin. These constructs were 
transformed into the E. coli Rosetta (DE3) strain to reconstitute the 
ubiquitination cascade. (B) Bacterial lysates from E. coli strains expressing (+) 
or missing (−) combinations of AtUBA1-S (E1), AtUBC8-S (E2), AtARRE-MYC 
(E3), His-FLAG-UBQ10 (Ub), and MBP-CER1-HA (substrate) (+), and strains 
missing Ub or CER1 (−) were analyzed by immunoblotting. Anti-HA and anti-
MYC antibodies were used to detect ubiquitinated CER1 and self-ubiquitinated 
AtARRE, respectively. Anti-FLAG antibody was used to detect all Ub 
conjugates. Two replicates for each combination of constructs are shown.

FIGURE 7 | AtARRE promotes CER3 degradation in the N. benthamiana 
transient expression system. (A,C) 35Spro:CER3-GFP was co-expressed 
with 35Spro:HA-SNIPER2 or (B,D) 35Spro:HA-AtARRE. 35Spro:HDEL-
mCherry was included as an internal control and ER marker. GFP 
fluorescence (A,B) and mCherry fluorescence (C,D) signals of leaf epidermal 
cells were examined by confocal microscopy 72 h post-infiltration. 12 
biological replicates were performed. Scale bars = 100 μm.
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Arabidopsis. GUS activity was examined in tissue samples from 
mature plants and in developing seedlings of ten independent 
transgenic lines.

In mature plants, high GUS activity was detected in the 
fully expanded rosette leaves, sepals, pollen grains, and cauline 
leaves (Figures  8B–F). These results are consistent with the 
published RNA-seq data showing high AtARRE expression in 
mature leaves and sepals (Klepikova et  al., 2016). Strong GUS 
signal was also detected in, but not specific to, the epidermal 
cells of rosette leaves, as well as trichomes, which are specialized 
epidermal cells (Figure  8G). Surprisingly, no expression of 
AtARRE was detected in the epidermal cell layer of the stem 
(Figures 8H,I). This may be due to the fact that the 5′ promoter 
fragment used in the AtARREpro:GUS construct does not 
contain the regulatory element required for the AtARRE 
expression in stem epidermal cell layer. In fact, according to 
published RNA-seq and microarray data, AtARRE shows the 
highest expression level in the senescent first internode of the 
stem, and higher expression was detected in the epidermal 
cell layer at the bottom of the inflorescence stem compared 
to the top of the stem (Suh et  al., 2005; Klepikova et  al., 
2016). During seedling development, GUS activity was first 
detected in roots in 3-day-old seedlings and cotyledons at 
4 days after imbibition (Supplementary Figure S5), but the 
GUS staining was much more pronounced in both organs in 
5-day-old seedlings.

The observed expression profile fits the role of AtARRE as 
a negative regulator of wax biosynthesis in tissues that exhibit 
no or low wax production, such as mature cotyledons in older 
developing seedlings, as well as fully expanded rosette leaves 
and older internodes at the bottom of the stem in mature 

plants. Unexpectedly, AtARRE was also found to be  expressed 
in roots, even though CER1 and CER3 genes encoding AtARRE 
ubiquitination substrates are not expressed in roots or are 
expressed at a very low level, respectively (Bourdenx et al., 2011).

Because AtARRE was discovered in a reverse genetic screen 
conducted to identify novel plant immunity-related E3 ligases, 
we were interested in determining whether AtARRE is induced 
upon exposure to pathogens. An earlier study has shown that 
AtARRE is upregulated after treatment with chitin, a potent 
elicitor of plant defense responses (Libault et  al., 2007). Our 
qRT-PCR analysis revealed that elicitation with flg22, a peptide 
derived from bacterial flagellin, also results in a major increase 
in AtARRE expression (Figure  9A). In addition, infiltration 
of plants with the type III secretion deficient bacterial strain 
Pseudomonas syringae pv. tomato (P.s.t.) DC3000 hrcC− and 
the virulent bacterial strain P. syringae pv. maculicola (P.s.m.) 
ES4326 (Figures 9B,C) strongly upregulated AtARRE expression. 
Collectively, these data suggest that AtARRE may be  involved 
in regulating cuticular wax biosynthesis in response to 
pathogen attack.

DISCUSSION

As an integral part of the cuticle, wax protects plants against 
diverse biotic and abiotic stress factors present in their 
environment. To fulfill this protective role, wax composition 
and wax load need to be  continuously adjusted in response 
to changing environmental conditions (Shepherd and  
Wynne Griffiths, 2006; Bernard and Joubès, 2013). This is 
accomplished by extensive transcriptional, post-transcriptional, 

FIGURE 8 | Expression pattern of AtARRE gene in different plant tissues and cell types. (A) qRT-PCR analysis of AtARRE gene expression in the WT relative to 
flowers and normalized to ACTIN. Seedling and root tissue samples were derived from 10-day-old WT seedlings, and all other aerial tissues samples were derived 
from 6-week-old WT. Error bars represent means ± SD (n = 4). (B–I) Putative AtARRE promoter activity determined by GUS assay in transgenic lines expressing the 
AtARREpro:GUS reporter. Promoter activity was examined after GUS staining in 14-day-old seedlings (B), flowers (C), anthers containing pollen grains (D), siliques 
(E), cauline leaves (F), cross section of rosette leaf from a 6-week-old plant (G), cross section of the top 3 cm (H) and the bottom 3 cm (I) of the inflorescence stem 
of a 6-week-old plant.
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and post-translational regulation of cuticular wax metabolism 
(Lee and Suh, 2015a).

VLC alkanes are the major cuticular wax component in many 
plant species including Arabidopsis, where they comprise more 
than 70% of the total wax amount in leaves and 50% in stems 
(Bourdenx et  al., 2011). VLC alkane production is catalyzed by 
CER1 and CER3 enzymes, which together with the cytochrome 
B5 form a multiprotein ER-membrane-associated complex 
(Bourdenx et  al., 2011; Bernard et  al., 2012) Not surprisingly, 
both enzymes act as key control points for wax biosynthesis. 
Several transcription factors including MYB30, MYB94, MYB96, 
DEWAX, and DEWAX2 regulate the expression of CER1 and/
or CER3 in specific organs of Arabidopsis or in response to 
environmental stress (Raffaele et  al., 2008; Seo et  al., 2011; Go 
et  al., 2014; Lee and Suh, 2015b). Components involved in 
chromatin remodeling are also required for the  
transcriptional regulation of CER1 or CER3. HISTONE 
MONOUBIQUITINATION 1 and 2 (HUB1 and HUB2) are 
two E3 ligases that are involved in histone monoubiquitination 
and active chromatin formation, which leads to the transcriptional 
activation of wax biosynthetic genes, such as CER1 (Ménard 
et  al., 2014). GENERAL CONTROL NON-REPRESSED 
PROTEIN5 (GCN5) is a histone acetyltransferase that positively 
modulates CER3 expression via histone acetylation (Wang et al., 
2018c). In addition to transcriptional regulation, two classes of 

small RNAs, tasiRNA and miRNA, post-transcriptionally control 
CER3 and CER1 transcript levels, respectively (Lam et  al., 2012, 
2015; Li et  al., 2019). Finally, studies on the E3 ligase MIEL1 
have shown that it negatively regulates wax accumulation in 
aerial plant organs (Gil et al., 2017). MIEL1 controls the stability 
of wax-associated transcription factors MYB96 and MYB30 and 
thereby indirectly affects the expression of their downstream 
targets CER1 and CER3 (Marino et  al., 2013; Lee and Seo, 
2016; Gil et  al., 2017). Even though the regulatory framework 
governing wax accumulation has been established, the intricacies 
of this process remain poorly understood.

Here, we  demonstrate that CER1 and CER3 protein levels, 
and thus alkane formation, are also controlled directly by the 
AtARRE RING-type E3 ubiquitin ligase that we  identified in 
our SNIPER genetic screen (Tong et  al., 2017). We  found that 
AtARRE overexpression in wild-type Arabidopsis results in 
phenotypes characteristic of cuticular wax deficiency, including 
glossy stems and siliques, reduced fertility and fusions between 
aerial organs, suggesting that AtARRE is a negative regulator of 
wax biosynthesis (Figures  1A, 2). The wax analysis of AtARRE 
overexpression lines confirmed that they have reduced stem and 
leaf wax loads (Figures 1B–F) and revealed that their wax profile 
most closely resembled that of the cer1 mutant (Figure  4). 
Functional characterization of AtARRE showed that this protein 
has E3 ubiquitin ligase activity and that this activity depends 
on the integrity of the key amino acid residues in its RING 
domain. When these conserved residues in the RING domain 
were mutated, the AtARRE protein no longer had any effect on 
the stem wax accumulation when it was overexpressed in 
Arabidopsis (Figure  3). These results demonstrate that E3 ligase 
activity of AtARRE is essential for its function in wax biosynthesis.

Because wax composition of the AtARRE overexpressors 
was most similar to the cer1 mutant, we  tested whether CER1 
was the AtARRE ubiquitination substrate. An in vivo 
ubiquitination assay in a heterologous E. coli system expressing 
the Arabidopsis ubiquitination cascade confirmed AtARRE-
mediated CER1 ubiquitination (Figure 6). Furthermore, transient 
co-expression of AtARRE and CER1  in both N. benthamiana 
leaves and in stable transgenic lines of Arabidopsis resulted 
in AtARRE-dependent degradation of CER1. Thus, AtARRE 
E3 ligase negatively regulates cuticular wax accumulation by 
ubiquitinating VLC alkane biosynthetic enzyme CER1 and 
targeting it for degradation by the 26S proteasome (Figure  5).

It is well-established that the UPS is redundant and that 
individual proteins may be  targeted by multiple E3 ligases. 
Conversely, a single E3 ligase may have the ability to target multiple 
substrates for degradation (Iconomou and Saunders, 2016). CER1 
and CER3, two key VLC alkane biosynthetic enzymes, share 35% 
amino acid identity, and both are integral membrane proteins 
with eight conserved His clusters at their N-terminus and an 
uncharacterized WAX2 domain at their C-terminus (Bernard et al., 
2012). Due to their sequence similarity, it was possible that both 
of these proteins were substrates of the AtARRE E3 ligase. This 
fact, together with the observation that AtARRE overexpressors 
exhibit organ fusions similar to those detected in cer3, but not 
in cer1 mutants, prompted us to investigate whether AtARRE 
additionally controls CER3 levels. As previously demonstrated for 

A

C

B

FIGURE 9 | AtARRE gene expression is induced by flg22 and pathogen 
treatment. (A) Four-week-old WT plants were infiltrated with 100 nM flg22, 
(B) P.s.t. DC3000 hrcC− at a dose of OD600 = 0.002, or (C) P.s.m. ES4326 at 
a dose of OD600 = 0.0002. Samples were collected 0, 12, or 24 h after 
treatment. Expression level of AtARRE was measured by qRT-PCR, and 
values were normalized to the level of ACTIN. Error bars represent 
means ± SD (n = 4). Significant difference compared with WT was determined 
by Student’s t test and indicated by an asterisk (p < 0.01).
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CER1, AtARRE co-expression with CER3  in the N. benthamiana 
leaf indeed stimulated CER3 degradation (Figure 7). Thus, CER3 
is also likely an AtARRE ubiquitination substrate.

The expression analysis of AtARRE gene revealed that it is 
preferentially expressed in tissues that exhibit no or low wax 
production such as roots and cotyledons in the later stages 
of seedling development, as well as older rosette leaves and 
inflorescence stem sections (Figure  8). These data suggest that 
the primary role of AtARRE may be  to target CER1 and CER3 
proteins for degradation in order to terminate wax production 
via the alkane pathway in tissues where it is no longer needed. 
Additionally, AtARRE gene transcription is upregulated upon 
exposure to bacterial pathogen P. syringae (Figure  9). Previous 
analysis of the cer1 mutant showed that reduced VLC alkane 
levels in cuticular wax are associated with increased cuticle 
permeability, but have no major effect on plant immunity. In 
contrast, CER1 overexpression resulted in alkane overproduction 
and decreased cuticle permeability, but surprisingly also in 
greater susceptibility to P. syringae (Bourdenx et  al., 2011). 
Similarly, cucumber (Cucumis sativus) lines overexpressing CER3 
exhibited enhanced susceptibility to the fungal pathogen Botrytis 
cinerea (Wang et  al., 2015). Thus, induction of AtARRE upon 
exposure to pathogens and the resulting degradation of CER1 
and CER3 may serve as a regulatory mechanism aimed at 
decreasing VLC alkane levels and optimizing cuticular wax 
composition to enhance plant resistance to bacterial pathogens. 
However, further work is needed to clearly define the role of 
AtARRE in plant immunity.

Recently, AtARRE was also reported to be  induced by 
sodium chloride and ABA treatments (Wang et  al., 2018a). 
Analyses of seed germination, stomatal closure, root elongation, 
and expression of ABA-responsive genes in atarre mutants 
showed that all these processes were hypersensitive to ABA, 
whereas AtARRE overexpressors exhibited reduced ABA 
sensitivity, leading the authors to propose that AtARRE is a 
negative regulator of ABA-dependent abiotic stress responses 
in plants (Wang et  al., 2018a). This study did not identify 
the AtARRE ubiquitination target or propose the molecular 
mechanism governing these ABA stress responses, but it is 
unlikely that the AtARRE-mediated CER1 degradation by the 
proteasome that controls attenuation of cuticular wax 
biosynthesis in the shoot described here is involved. On the 
contrary, water deficit, salt, and ABA treatment have been 
shown to cause a large increase in wax amount in the leaf 
cuticle, predominantly due to an increase in VLC alkane 
content (Kosma et  al., 2009). A huge induction of the CER1 
alkane biosynthetic gene consistent with the elevated alkane 
amounts was also observed, presumably resulting in greater 
CER1 protein levels. Thus, even though the ABA signaling 
would not be expected to rely on the AtARRE-CER1 module, 
it is conceivable that AtARRE function in ABA-dependent 
signal transduction requires destruction of a different and 
as yet undiscovered protein target. A good example of an 
E3 ligase with multiple physiological roles that depend on 
proteasomal degradation of different protein substrates is 
MIEL1. MIEL1 controls seed germination and cuticular wax 
accumulation in Arabidopsis stems by primarily targeting 

MYB96 transcription factor for degradation, but in addition 
attenuates pathogen defense responses by promoting degradation 
of MYB30 (Marino et  al., 2013; Lee and Seo, 2016).

CONCLUSION

Our findings indicate that AtARRE E3 ubiquitin ligase negatively 
regulates cuticular wax accumulation in Arabidopsis shoots by 
promoting degradation of CER1 and CER3 VLC alkane 
biosynthetic enzymes. Based on its expression in mature and 
senescing tissues and its induction upon plant exposure to 
pathogens, we  propose that AtARRE serves as an efficient 
regulatory switch that terminates wax biosynthesis via the 
alkane-forming pathway when it is no longer required, or to 
optimize wax composition in response to pathogen infection.
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