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The endoplasmic reticulum (ER) is the organelle where one third of the proteins of a cell
are synthetized. Several of these proteins participate in the signaling and response of
cells, tissues, or from the organism to the environment. To secure the proper synthesis
and folding of these proteins, or the disposal of unfolded or misfolded proteins, the
ER has different mechanisms that interact and regulate each other. These mechanisms
are known as the ER quality control (ERQC), ER-associated degradation (ERAD) and
the unfolded protein response (UPR), all three participants of the maintenance of ER
protein homeostasis or proteostasis. Given the importance of the client proteins of
these ER mechanisms in the plant response to the environment, it is expected that
changes or alterations on their components have an impact on the plant response
to environmental cues or stresses. In this mini review, we focus on the impact of the
alteration of components of ERQC, ERAD and UPR in the plant response to abiotic
stresses such as drought, heat, osmotic, salt and irradiation. Also, we summarize
findings from recent publications looking for a connection between these processes
and their possible client(s) proteins. From this, we observed that a clear connection has
been established between the ERAD and UPR mechanisms, but evidence that connects
ERQC components to these both processes or their possible client(s) proteins is still
lacking. As a proposal, we suggest the use of proteomics approaches to uncover the
identity of these proteins and their connection with ER proteostasis.

Keywords: endoplasmic reticulum quality control (ERQC), endoplasmic reticulum associated degradation (ERAD),
unfolded protein response (UPR), chaperone, abiotic stress

INTRODUCTION

Plants are exposed to continuous environmental changes such as water bioavailability, salinity,
temperature, and irradiation that require a fast and dynamic response from the plant to survive
under these adverse conditions. Usually, this response involves changes of gene expression, and
concomitantly, changes on the plant cell proteome (Zhu, 2016). It is estimated that more than one
third of plant cell proteins are synthesized and folded at the endoplasmic reticulum (ER) (Chen
etal., 2005). To keep this process as efficient as possible, at the lumen of the ER, several chaperones
and co-chaperones assist the folding of unfolded or misfolded proteins (Strasser, 2018). Moreover,
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a specific subset of chaperones and co-chaperones participate in
the folding of glycoproteins in a process known as ER quality
control (ERQC); a mechanism that relies on the modification of
an N-glycan structure present on N-glycosylated proteins. As any
process, the synthesis and folding of proteins at ER considers
the production and persistence of misfolded proteins, which
are degraded by a specific group of proteins in a mechanism
termed ER associated degradation (ERAD) (Strasser, 2018).
Under certain conditions, these two mechanisms —ERQC and
ERAD— are surpassed by the accumulation and persistence of
unfolded and/or misfolded proteins, leading to an organellar state
that triggers signaling pathways that communicate the ER with
the nucleus, in order to restore the ER synthesis, folding and
degradation capabilities or proteostasis; this process is known
as the unfolded protein response (UPR) (Howell, 2013). The
UPR consist of two main signaling branches in plants, the
IRE1/bZIP60 and bZIP17/bZIP28, where the first involves the
processing of the transcription factor bZIP60 messenger RNA
by a membrane-bound kinase-RNAse termed IRE1 (Deng et al.,
2011; Nagashima et al., 2011; Moreno et al., 2012). The second
branch comprises two transcription factors, bZIP28 and bZIP17,
that are cleaved in the Golgi apparatus by two serine proteases
known as S1P and S2P (Liu et al., 2007a,b). All these components
of the ER protein processing and signaling pathways have been
associated with the plant response to abiotic stress. Nevertheless,
no client(s) protein(s) have been described as responsible for
the effects observed on ER chaperone, co-chaperone or signaling
components mutants that exhibit sensitivity to these abiotic
stress conditions. In the present review, we will focus on
the chaperones, co-chaperones and signaling components that
exhibit phenotypes of sensitivity or tolerance to abiotic stress
conditions such as cold, heat, osmotic and salt stresses, proposing
experimental approaches to understand their role and their
possible client(s) protein(s).

Endoplasmic Reticulum Quality Control

Components and Abiotic Stress

BiP is a HSP70-like chaperone protein and one of the most
abundant chaperones within the ER lumen. Under proteostasis
it binds to the hydrophobic surface of nascent polypeptide
chains incorporated into the lumen, preventing aggregation.
When UPR occurs, BiP disassociates bZIP28 to transiently bind
to misfolded or unfolded proteins, leading to the downstream
signaling of UPR (Srivastava et al., 2013). This is possible because
the luminal domain of bZIP28 contains regions of disordered
conformation that recruit BiP, controlling the activation of this
transcription factor but under UPR conditions, the affinity of
this chaperone for these regions is lower compared to unfolded
or misfolded proteins, releasing bZIP28 and promoting its
activation (Srivastava et al., 2013). Although, it has been reported
that a similar process occurs between BiP and IREI in yeasts
(Pincus et al., 2010), the role of BiP on the activation of IRE1L
signaling in plants as the possibility that IRE1 can bind misfolded
proteins, remains to be demonstrated. BiP has been found to
contribute to plant resistance in many kinds of abiotic stress,
such as osmotic, heat, heavy metal, cold and salt stress. In

soybean, four genes encoding BiP proteins have been described,
and soyBiPD has been linked to higher drought tolerance in
soybean (Valente et al., 2009) and in Nicotiana tabacum (Alvim
et al., 2001). In maize 22 BiP-like genes have been identified,
but only one of them, ZmBIPb, was found to be upregulated
by ER stress induced with DTT and heat (Li et al., 2012). The
possible involvement of other ZmBIPs into these and other
stresses, it remains to be determined. In wheat three BiP genes
have been described; TaBiP1, TaBiP2 and TaBiP3, all of them are
up-regulated during drought stress (Zhu et al., 2014), nonetheless
their specific involvement in different UPR-inducing conditions
is yet to be determined. A study of Lycium chinense identifies
LcBiP and reports that the overexpression of this gene on tobacco
confers resistance to cadmium-induced stress (Guan et al., 2015).
Another report in Capsicum annuum L. identified three genes
encoding BiP proteins; CaBiP1, CaBiP2 and CaBiP3, where
CaBiP1 overexpression in Arabidopsis thaliana was found to aid
plant tolerance to salt, osmotic and drought stress (Wang H. et al.,
2017). Recently, research in citrus species reported the presence
of CsBiP1 and CsBiP2 genes and showed that under drought
stress the expression of CsBiP1 is upregulated in C. limonia, and
CsBiP2 was observed to be upregulated in C. sinensis seedlings
under cold and osmotic stress (Guimardes et al., 2018), an
interesting observation that offers a unique opportunity to study
the regulation and role of BiP on different stresses. A similar
observation has been made on Solanum tuberosum, where three
candidates BiPs; StBiP1, StBiP2, and StBiP3 have been identified
and only StBiP3 is upregulated under salt stress (Herath et al,,
2020). Overall, these reports provide strong evidence that BiP
proteins are linked with different types of abiotic stresses,
nevertheless none of them identified or associated any client(s)
protein(s) to the observed phenotype, so further research into
client(s) of these chaperones, and the search for new BiPs in other
plants, would contribute to a better understanding of the role of
BiP under stress.

Calreticulin (CRT) and calnexin (CNX) are molecular
chaperones that aid the proper folding of proteins in the ER.
CRT is the principal Ca2 + storage/buffering protein in the
ER, and it is associated with the protein folding process and
Ca2 + homeostasis. On the other hand, CNX directly aids protein
folding by interacting with nascent proteins and assisting the
folding process. Both CRT and CNX are similar in sequence
and contribute to the restoration of the proteostasis during the
UPR (Garg et al., 2015). Regarding CRT and abiotic stress, it
has been reported in common wheat (Triticum aestivum L.),
that different isoforms of calreticulin have been identified and
overexpressed in tobacco plants, leading plants with enhanced
tolerance to abiotic stress. TaACRT1, was found to contribute to
salt tolerance when overexpressed in tobacco, whereas TaCRT3
was found to enhance tobacco plants tolerance to drought stress
(Jia et al., 2008; Xiang et al., 2015). Later, the study of a CRT
isoform present on the D genome of wheat, named TaCRT-
D, showed that overexpression of this isoform on A. thaliana
enhances plants tolerance to salt, drought, and osmotic stress
(Wang J. et al,, 2017). Rice CNX (OsCNX) has been linked
to higher drought and cold tolerance when this gene was
overexpressed in tobacco plants (Sarwat and Naqvi, 2013).
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Recently, a study of CNX1 gene in Tradescantia clone BNL
4430 referred to as TrCNX1, showed that the expression of this
gene is induced in the plant upon gamma irradiation. Moreover,
authors demonstrated a protective role of this chaperone against
irradiation stress (gamma and UV-B) when overexpressed in
E. coli, but studies in planta are still required to understand
the participation of this molecular chaperone during irradiation
stress (Ha et al., 2020).

Protein disulfide isomerases (PDIs) are molecular chaperones
that participate in the protein folding process by catalyzing
disulfide bonds. In A. thaliana, 12 PDI-like proteins have been
described, from these AtPDII to AtPDI6 plus AtPDI9, AtPDI10
and AtPDI11 are reported to be located in the ER (Yuen
et al., 2013). Recently, the expression of AtPDI9 was found
to increase during heat stress, and mutant plants on this gene
exhibit low pollen viability and altered morphology under heat
stress (Feldeverd et al., 2020). A recent study in Medicago
truncatula identified 17 PDI coding genes, from which MtPDI1-
1, MtPDI2-1, MtPDI2-2, and MtPDI4-1 were found to increase
expression levels under ER stress (Meng et al., 2021). Other report
on Solanum lycopersicum L. identified 19 PDI coding genes,
where the expression of SIPDI1-1, SIPDI1-3, SIPDI1-4, SIPDI2-
1, SIPDI4-1, and SIPDI5-1 was regulated by several abiotic stress
and ABA treatment (Wai et al., 2020). Whether or not MtPDIs
or SIPDIs participate in the plant response to abiotic stresses
should be determined.

UDP-Glucose:Glycoprotein Glucosyltransferase (UGGT) is an
enzyme that plays a central role on the ERQC system, since it
controls the re-entry of unfolded or misfolded glycoproteins to
the system through the modification of the N-glycan, present on
N-glycosylated glycoproteins. It has been reported that mutants
on UGGT in A. thaliana are sensitive to salt and heat stress
(Blanco-Herrera et al., 2015). In the case of UGGT, client’s
proteins are known, for example brassinosteroid insensitive 1
receptor (BRI1) and EF-Tu receptor (EFR) (Jin et al, 2007;
Li et al, 2009). Interestingly, the mutant form of the BRI1
receptor, bril-9, has been directly associated with sensitivity
to salt stress, since plants expressing bril-9 showed a lower
germination and grown than wild type plants exposed to salt
stress (Cui et al., 2012).

Other Endoplasmic Reticulum
Chaperones and Co-chaperones

Involved in Abiotic Stress

An ER-located small heat-shock protein (ER-sHSP) has been
shown to act as a molecular chaperone (Mamedov and Shono,
2008), and its overexpression relieve ER stress induced by
tunicamycin or DTT although its transcript is not being induced
by these chemical agents (Zhao et al, 2007). Moreover, the
transgenic tomato plants expressing constitutively this ER-sHSP
exhibit a high salt tolerance, accumulated more osmolytes and
soluble sugars, and absorbed less Na 4 maintaining higher levels
of K 4 and Ca2 + compared to control plants (Fu et al., 2016).
Interestingly, these plants show lower expression levels of ER
molecular chaperones, even under ER stress inducing conditions
and while still having tolerance against NaCl induced stress.

Sensitivity to Salt 1 (SES1) was identified in a screening
looking for mutants sensitive to salt and has been found to
alleviate heat stress and salt stress in plants at the same time it acts
as an ER molecular chaperone (Guan et al.,, 2018, 2019). Mutant
plants on sesI exhibit a higher expression of ER chaperones and
other proteostasis related components under salt and heat stress
conditions compared to wild type plants, but in neither case, the
overexpression of this gene confers a higher tolerance to these
stresses to plants (Guan et al., 2018, 2019). It also contains an
ERSE-L-like element on its promoter region, which was proven
to be able to bind to bZIP17 (Guan et al., 2018) and bZIP28
(Guan et al,, 2019), indicating that bZIP17 and bZIP28 could
be responsible for SES1 expression during salt and heat stress,
respectively. An attractive proposal is that a heterodimer formed
by bZIP17 and bZIP28 could potentially bind to SES1 and activate
its expression under abiotic stress conditions (Guan et al., 2019).

A list of ER chaperones and co-chaperones associated to
phenotypes of tolerance to abiotic stresses is depicted on Table 1.

Endoplasmic Reticulum Associated

Degradation Role on Abiotic Stress
The first ERAD component to be associated with abiotic stress
was SEL1L/HRD3A, part of the complex HRD1/HRD3, since
T-DNA insertional mutants on this gene showed a salt stress
sensitivity phenotype in A. thaliana (Liu et al., 2011). Moreover,
Liu et al. (2011) described that hrd3a mutants also exhibit
sensitivity to reactive oxygen species (ROS) inducing agents like
paraquat, suggesting that a possible explanation to the phenotype
observed upon salt stress on these plants could be related to their
lower capacity to deal with ROS. Later, another component of
ERAD known as OS9, was described to interact with SELIL and
a mutant on OS9 also exhibited a phenotype of sensitivity to salt
stress in A. thaliana (Hittner et al., 2012).

Another component of ERAD, ubiquitin-conjugating enzyme
32 (UBC32), has been described to act as a negative regulator
of plant tolerance to salt stress in A. thaliana (Cui et al., 2012).
In this work, authors observed that ubc32 mutant plants are
more tolerant to salt stress whereas overexpressor plants are
more sensitive. Moreover, Cui et al. (2012) showed that an
ubc32 T-DNA insertional mutant can restore the salt sensitivity
phenotype of bril-9 mutant, suggesting that salt stress phenotype
observed in ubc32 mutant plants is related to BR signaling.
Recently, Ahn et al. (2018) reported that UBC32 and two
homologs, UBC33 and UBC34, act as negative regulators of plant
response to drought stress in A. thaliana, reinforcing the role of
ERAD components in the plant response to abiotic stresses.

Unfolded Protein Response Signaling
Under Abiotic Stress

The first association of bZIP28 with abiotic stress was reported in
A. thaliana by Gao et al. (2008). This work indicates that bZIP28
was an important component of the plant response to heat stress
and it was involved in the regulation of chaperones expression.
Further work confirms the role of bZIP28 in the plant response
to heat stress and connect it to the maintenance of fertility under
heat stress (Zhang et al., 2017).
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TABLE 1 | List of ER chaperones associated with a tolerance phenotype to abiotic stress.

Chaperone Isoforms related to Origin Subcellular Related stress Known targets References
name ER stress localization
TaBiP TaBiP1, TaBiP2 and Triticum aestivum ER* Drought Unknown Zhu et al., 2014
TaBiP3
soyBiP soyBiPD Glycine max ER* Drought Unknown Valente et al., 2009
ZmBiP ZmBiPb Zea mays ER* Heat Unknown Lietal, 2012
LcBiP LcBiP Lycium Chinese ER* Cadmium Unknown Guan et al., 2015
CaBiP CaBiP1 Capsicum annuum L. ER Heat, salt, osmotic Unknown Wang H. et al.,
and drought 2017
StBiP StBiP3 Solanum tuberosum ER Salt Unknown Herath et al., 2020
CsBiP CsBiP1 Citrus limonia ER* Drought Unknown Guimarées et al.,
2018
CsBiP CsBiP2 Citrus sinensis ER* Cold and osmotic Unknown Guimaraes et al.,
2018
OsCNX OsCNX Oryza sativa ER* Drought Unknown Sarwat and Nagvi,
2013
TrCNX TrCNX1 Tradescantia clone BNL ER* Irradiation Unknown Ha et al., 2020
4430
TaCRT TaCRT3 Triticum aestivum L. Cytoplasmic and Drought Unknown Jia et al., 2008
nuclear compartments
TaCRT TaCRT-D Triticum aestivum L. ER* Salt, drought, Unknown Wang J. et al.,
mannitol 2017
TaCRT TaCRT1 Triticum aestivum L. ER* Salt Unknown Xiang et al., 2015
AtPDI AtPDI9 Arabidopsis thaliana ER Heat Unknown Yuen et al., 2013;
Feldeverd et al.,
2020
SES1 SES1 Arabidopsis thaliana ER Heat and salt Unknown Guan et al., 2018,
2019
ER-sHSP ER-sHSP Lycopersicon esculentum ER* Salt Unknown Fuetal., 2016

*ER localization is predicted but unconfirmed experimentally.

In the case of bZIP17, it was associated with plant response
to salt stress by Liu et al. (2007b). This work indicates that
T-DNA insertional mutants on bZIP17 are more sensitive to
salt stress. A subsequent work explores the possibility that the
overexpression of a soluble form of bZIP17 could enhance the
plant tolerance to salt stress with positive results when this
construct was under the control of a stress inducible promoter
(Liu et al., 2008). A recent work by Ramakrishna et al. (2018),
showed that bZIP17 overexpression from Finger millet (Eleusine
coracana L.) in tobacco plants enhanced tolerance to salt,
osmotic, drought and heat stress.

With regards to the IRE1/bZIP60 signaling arm of the
UPR, and plant response to heat stress, it has been reported
a close association (Deng et al, 2016). Also, it has been
reported that bZIP60 overexpression has a positive effect in
plant tolerance to salt stress (Fujita et al., 2007). Moreover, it
has been recently reported that IRE1 also could play a role
in plant response to salt stress, specifically in the maintenance
of the root meristem under salt stress (Iwata et al., 2017).
Later, Babitha et al. (2015) described that overexpression of
bZIP60 from Finger millet (Eleusine coracana L.) in tobacco
plants enhanced tolerance to salt, osmotic, drought and chemical
induced ER stress. Recently, the overexpression of the spliced
form of an ortholog of AtbZIP60 from the resurrection plant
Boea hygrometrica (BhbZIP60S) on A. thaliana, was shown

to confer tolerance to drought, tunicamycin and mannitol
(Wang B. et al, 2017). A similar observation was made
by Geng et al. (2018), where the overexpression of the
spliced form of TabZIP60 from wheat (Triticum aestivum) in
A. thaliana, confers tolerance to heat stress but no other abiotic
stress was analyzed.

Integration of Endoplasmic Reticulum
Quality Control, Endoplasmic Reticulum
Associated Degradation, and Unfolded

Protein Response During Abiotic Stress

Since the first report of bZIP17 role on salt stress in A. thaliana
(Liu et al., 2007b), a question regarding the regulation of ERQC
components under salt stress by UPR components has been a
focus of attention. Liu et al. (2007b) reports that bZIP17 regulates
other target genes different from ERQC components. Later, Che
et al. (2010) associated the activation of bZIP17 to heat stress and
described that the soluble form of this transcription factor, under
its own promoter or under a constitutive one, like CaMV 35S,
can regulate the expression of several ERQC components such as
BiP, CRT, CNX and PDIL under no stress conditions. Another
observation from Henriquez-Valencia et al. (2015), indicates that
from several ERQC components, only BiP3 is upregulated under
salt stress conditions and its expression is dependent on bZIP17.
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These differences could be associated to the transcription factors
that are induced specifically under certain abiotic stresses that
can bind the promoter of ERQC components as it has been
recently proposed (Ko and Brandizzi, 2021). A similar situation
occurs with bZIP60, since the first report that indicate its
involvement on salt stress, showed that no ERQC gene expression
was altered on plants that overexpress bZIP60 under unstressed
conditions (Fujita et al., 2007). A possibility is that under no
stress conditions, no processing of bZIP60 by IRE1 occur, so no
changes in the expression of ERQC components take place. Later,
another report indicates that the overexpression of a truncated
version of the unspliced form bZIP60 lacking the C-terminal
portion contain a transmembrane domain conferred tolerance
to salt stress but no connection between ERQC components
and bZIP60 was established (Tang et al., 2012). Recently two
reports indicate the up regulation of ERQC components on plants
that overexpressed bZIP60 from Eleusine coracana L. and Boea
hygrometrica (Babitha et al., 2015; Wang B. et al., 2017). Different
scenario is associated with bZIP28 where its tolerance to heat
stress has been associated with changes in expression on ERQC
components (Deng et al., 2016).

With regards to the association between ERAD and UPR,
the work by Li et al. (2017) established a connection between a
component of ERAD, HRD3A, and each of the UPR components
bZIP17, bZIP28 and bZIP60. Interestingly, the susceptible
phenotype of hrd3a to salt stress can be compensated by the
overexpression of bZIP17, bZIP28 and bZIP60. Moreover, this
work shows that overexpression of these transcription factors
leads to increased expression of ERQC components under salt
stress conditions, suggesting a connection between the increase
of ERQC components’ levels and the plant tolerance to salt stress.
In agreement with these observations, a recent work by Tian et al.
(2019), reports that pretreatment of plants with Tunicamycin or
DTT, leads to a lower mortality rate when plants are exposed
to high salt stress conditions (200 mM). Also, authors indicate
an increase on the transcript level of ERQC, UPR, and ERAD
components on their salt acclimation system. Furthermore, Tian
et al. (2019) explore the role of bZIP17 and HRD3A on plant
acclimation to salt stress, and their results showed that both genes
play an important role on this process, where bzipl7 mutants
exhibit an almost total compromise on plant acclimation to salt.
Overall, these observations highlight the role of ERAD and UPR
in the plant response to salt stress, but whether these mechanisms
are related to other abiotic stresses is a question that remains.

FUTURE CHALLENGES AND
PERSPECTIVES

One of the major questions that remains, after the significant
progress that has been made on the role of the ER proteostasis
in the plant response to abiotic stress, is what the clients of
the ERQC mechanism are and how these are related to the
plant response to this kind of stress. As far as it is known,
the mutant version of the BRI1 receptor, bril-9, is the only
protein that has been connected to ER proteostasis and salt
stress. Nevertheless, the bril-9 protein is not an endogenous

protein, exposing the fact that no client(s) protein(s) are known
to require ERQC components under abiotic stress conditions.
Moreover, from all the chaperones and co-chaperones reviewed
on this work (Table 1), no client(s) has been described. To
identify these proteins, we propose the use of established
approaches like quantitative proteomics analyses or novel ones
such as proximity labeling. Indeed, on the ER proteostasis field
of research, Lyu et al. (2020) has explored the differences in
protein composition between A. thaliana ecotypes Col-0 and
Ler under ER stress conditions induced by Tunicamycin, based
on a previous observation that Ler ecotype plants are more
susceptible to chemical induced ER stress. As a result of this
approach, Lyu et al. (2020) found out that 11 proteins related to
protein folding, protein degradation and vesicle trafficking were
differentially accumulated on Col-0 ecotype plants suggesting
that this approach could contribute to the understanding of the
role of certain ER proteostasis components (ERQC, ERAD and
UPR) and identify their client(s) on plant response to abiotic
stresses. Another strategy would be the use of proximity labeling
approach, a new technique that has been probed in plants and has
demonstrated to be efficient in the identification of interacting
proteins (Mair et al., 2019; Zhang et al., 2019; Cho et al., 2020).
Indeed, Kim et al. (2021) reports the tracking of secretory
proteins using this technique in a mouse model, an approach
that consider the expression ER-localized version of a labeling
protein (TurbolD), suggesting that the labeling of proteins in
the ER lumen is possible. We envision that the fusion of ERQC
chaperones to labeling proteins will help the identification of
client(s) of these ERQC chaperones under abiotic stresses such
as drought, osmotic, salt and irradiation. Also, we consider that
the use of multi-OMICs approaches could help to understand the
role of ER proteostasis in the plant response to abiotic stress as
this strategy has been demonstrated in human cells derived from
patients with a particular form of amyotrophic lateral sclerosis
(Straub et al, 2021). The use of these methods will help to
answer this outstanding question and move forward the ER
proteostasis field.
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