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Controlled release phosphorus (P) fertilizers and humic acid (HA) applications are two
effective and significant techniques or measures for preventing P loss and enhancing
maize development. However, the underlying physiological mechanism of how the
controlled release P fertilizers combined with HA affect the maize production and
P-use efficiency (PUE) remains unknown. The effects of applying coated diammonium
phosphate (CDAP) and HA together on soil nutrient supply intensity, soil phosphatase
activity, photosynthesis, endogenous hormone contents, and yield of maize, as well as
PUE, were examined in this study. In a pot experiment, two types of P fertilizers—CDAP
and diammonium phosphate (DAP)– as well as two HA application rates (0 and 45 kg
ha−1) and two P levels (60 and 75 kg P2O5 ha−1) were utilized. Results showed that
the key elements that influence the growth and yield of the maize were the availability
of P content in soil, plant photosynthesis, and hormone levels. The combination of
CDAP and HA had a greater impact on yield and PUE over the course of 2 years than
either DAP alone or DAP combined with HA. Besides, using CDAP in combination with
HA increased the yield and PUE by 4.2 and 8.4%, respectively, as compared to the
application of CDAP alone at 75 kg P2O5 ha−1. From the twelve-leaf to milk stages,
the available P content in the soil was increased by an average of 38.6% with the
combination of CDAP and HA compared to the application of CDAP alone at 75 kg P2O5

ha−1. In addition, the application of CDAP combined with HA boosted the activities of
ATP synthase, as well as the content of cytokinin (CTK), and hence improved the maize
photosynthetic rate (Pn). When compared to the application of CDAP alone or DAP
combined with HA, the Pn of CDAP + HA treatments was enhanced by 17.9–35.1%
at the same P rate. In conclusion, as an environmentally friendly fertilizer, the combined
application of CDAP and HA improved the intensity of the soil nutrient supply, regulated
photosynthetic capabilities, and increased the yield and PUE, which is important for
agricultural production, P resource conservation, and environmental protection.
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INTRODUCTION

Phosphorus (P), as a structural element, is one of the essential
macronutrients for plant growth and development (Johnston
and Poulton, 2019; Ding et al., 2021). The P deficiency
limits virtually all major metabolic processes, in plants, such
as photosynthesis and respiration (Plaxton and Tran, 2011).
However, agricultural production of over 40% of the world’s
arable land is limited by P deficiency (Balemi and Negisho, 2012;
Zhu et al., 2018). Therefore, P fertilizers are commonly applied
to meet crop demand. Because of sorption, precipitation (usually
by interaction with Ca2+ and Mg2+ in calcareous soils, and
Fe3+ and Al3+ in acidic soils), and microbial immobilization,
the P-use efficiency (PUE) of most crops is only 10–15% (Castro
and Torrent, 1998; Roberts and Johnston, 2015; Zhu et al., 2018).
The applied P accumulates in soils and causes soil degradation
and environmental concerns, such as water eutrophication (Leslie
et al., 2017). Moreover, the detrimental effects of climate change
on P transport in soil and lake eutrophication, such as global
warming, drought, and heavy rainfalls, have been exposed (Piao
et al., 2010; Fahad et al., 2016, 2020). China is the largest producer
and consumer of P fertilizers in the world, but the reserve of
phosphate rock, the main source of phosphate in fertilizer, is
limited (Zhang et al., 2008; Ma et al., 2011). Therefore, effective
P management is of importance for PUE improvement, resource
reservation, and environmental protection.

Effective P management involving appropriate P fertilizers is
vital for high PUE (Zheng et al., 2016; Tian et al., 2018). Many
environmentally friendly methods for increasing P availability
have been proposed, including the use of P-solubilizing
microorganisms (Adnan et al., 2020; Wahid et al., 2020), partial
acidification of rock phosphates (Sarkar et al., 2018), combined
application of biochar and P fertilizers (Fahad et al., 2016),
and foliar application of P fertilizers (Rafiullah et al., 2020).
The application of controlled-release fertilizers is one of these
methods. Controlled-release P fertilizers show high PUE in
both acidic and alkaline soils. The PUE of controlled-release P
fertilizers was reported to be higher than that of water-soluble P
fertilizers (Sarkar et al., 2018). Coated diammonium phosphate
(CDAP), a controlled-release P fertilizer, releases P according
to the demand of the plant, which not only improves PUE and
crop yield but also reduces the environmental risk posed by the
excessive use of fertilizers (Cruz et al., 2017; Lu et al., 2019).
Chen et al. (2020) demonstrated that compared to diammonium
phosphate (DAP), CDAP significantly increased maize yield and
PUE by 9.65 and 7.72%, respectively.

Humic acid (HA) applied to soil as an activator is also reported
to increase the availability of soil P (Zhu et al., 2018). HA
consists of aromatic and aliphatic structures harboring various
functional groups (mainly oxygen-containing), such as carboxyl
(–COOH) and phenolic hydroxyl (–OH). Studies have shown
that HA application reduced P fixation, improved the efficiency
of low and high solubility P sources, increased P availability,
and improved PUE (Çimrin et al., 2010; Rosa et al., 2018; Shafi
et al., 2020; Xu et al., 2021). HA improved soil structure by
encouraging the formation of stable aggregates, which increased
the productivity of soil crops (Zhou et al., 2019). In addition,

HA has been shown to improve certain aspects of growth in
essential agronomic crops like soybean, wheat, rice, and maize
(Calvo et al., 2014; Rosa et al., 2018). As a plant biostimulant,
HA increases photosynthesis, reduces transpiration, stimulates
root and shoot growth, and enhances stress resistance of plants
(Canellas et al., 2013; Dantas et al., 2018; Xu et al., 2021), and
is linked with changes in the hormone contents and enzyme
activities and enhancement of H+-ATPase activity (Zandonadi
et al., 2010; Calvo et al., 2014). However, since HA is a weak
nutritional material, it cannot supply the nutrient requirements
in crop production on its own.

Many research has been conducted on the effects of HA
application, the combination of water-soluble P fertilizer and
HA, and HA mixed with urea or controlled-release urea on soil
quality, plant development, and fertilizer use efficiency (Shafi
et al., 2020; Li Z. L. et al., 2021; Xu et al., 2021). Rosa et al.
(2018) found that combining HA with phosphate fertilizers (e.g.,
single superphosphate) boosted root dry matter, and nutrient
uptake increased the shoot dry matter output, as compared to
biomass produced in soil that had not been treated with HA.
To our knowledge, few studies on the effects of combining HA
with controlled release P fertilizer on crop production have been
conducted. We hypothesized that the combined application of
CDAP and HA would improve crop growth, crop yield, and
PUE. This study was aimed to: (1) investigate the effects of
CDAP combined with HA on soil P availability, (2) understand
the roles of photosynthesis and endogenous hormones in the
increase of maize production when CDAP and HA are applied
together, and (3) determine the factors that influence crop yield
and PUE. Findings from this study should give a technological
foundation for developing an effective fertilization strategy using
controlled-release P fertilizers and biostimulants.

MATERIALS AND METHODS

Soil, Coated Diammonium Phosphate,
and Humic Acid Used
The soil for the pot experiment was acquired from a field at
the research farm of the National Engineering Laboratory for
Efficient Utilization of Soil Fertility Resources (NELEUSFR),
Shandong Agricultural University (SDAU), China. It is classified
as Typic Hapludalf (Soil Survey Staff, USDA, 1999) or Typic-
Hapli-Udic Argosols (Chinese Soil Taxonomy, CRGCST, 2001).
Physical and chemical properties of the soil were as follows: pH:
7.83 (1:2.5 soil to water ratio), organic matter content: 12.10 g
kg−1, total P: 0.32 g kg−1, available P: 13.50 mg kg−1, NO3

−−

N: 71.45 mg kg−1, NH4
+-N: 9.45 mg kg−1, and available K:

92.32 mg kg−1.
The controlled-release P fertilizer, the CDAP (17.2% N, 44.0%

P2O5), was prepared by NELEUSFR, SDAU, China. The coating
consisted of 10% of paraffin and 90% of polyurethane. Resin-
coated controlled-release urea (43.0% N; 3-month release period)
was purchased from Kingenta Ecological Engineering Group Co.,
Ltd., Shandong, China. The other fertilizers, urea (46% N), DAP
(18.0% N, 46.0% P2O5), and potassium chloride (60.0% K2O),
were purchased from the local market. The HA (2.0-0%-3.0%
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N-P2O5-K2O) was purchased from Quanlin Jiayou Fertilizer Co.,
Ltd., Shandong, China. It had a pH of 5.40 (1:2.5 soil to HA ratio).

Pot Experiment
The pot experiment was carried out in the research farm of
NELEUSFR, SDAU, China. With an average annual temperature
of 13.2◦C, the experiment location has a moderate continental
monsoon climate. The following nine treatments were put up,
each with four replications: (1) Control (no P fertilization);
(2) P, 100% (DAP at 75 kg P2O5 ha−1); (3) P, 80% (DAP at
60 kg P2O5 ha−1); (4) CP,100% (CDAP at 75 kg P2O5 ha−1);
5) CP, 80% (CDAP at 60 kg P2O5 ha−1); (6) P, 100% + HA
(DAP at 75 kg P2O5 ha−1 combined with HA); (7) P, 80%
+ HA (DAP at 60 kg P2O5 ha−1 combined with HA); (8)
CP, 100% + HA (CDAP at 75 kg P2O5 ha−1 combined with
HA); and (9) CP, 80% + HA (CDAP at 60 kg P2O5 ha−1

combined with HA).
In each ceramic pot (36.0 cm in height, 30.0 cm in diameter),

1 kg sand was first placed in the bottom to improve aeration and
to promote more oxygen supply to the root system (Li Z. L. et al.,
2021), and then 20 kg of soil was placed on the top of the sand
layer (Yu et al., 2021). Before usage, the test soil was air-dried,
blended equally, and sieved. The sand (0.35–0.5 mm) used was
purchased from the local market.

For the control treatment, nitrogen and potassium fertilizers
were applied once as a basal fertilizer at 225 kg N ha−1 and
150 kg K2O ha−1, respectively, whereas for the other treatments,
nitrogen, P, and potassium fertilizers were applied at 225 kg N
ha−1, 75 or 60 kg P2O5 ha−1, and 150 kg K2O ha−1, respectively
(Zheng et al., 2016). These fertilizer rates were calculated based on
the common practices in the area. For all treatments, both coated
controlled-release nitrogen and conventional nitrogen were used
to provide 60 and 40% of the total applied nitrogen, respectively
(Zheng et al., 2016; Qu et al., 2020). HA was applied at 45 kg
ha−1.

On June 20, 2017, three seeds of maize (Zea mays L. cv.
Zhengdan 958) were sown in each container. At the three-
leaf stage, the seedlings were reduced to one. Agricultural
management, such as pest and weed control, was performed as
needed according to local practices. In 2018, the experiment was
repeated using the same pots. Maize was planted on June 12, 2018,
and harvested on September 26, 2018.

Maize ears were harvested after maturity on September
29, 2017, and September 26, 2018, respectively. To deactivate
enzymes, kernels and plant samples were oven-dried at 105◦C
for 15 min, then dried at 65◦C to a constant weight (Zheng
et al., 2016; Gao et al., 2021). The biomass and yield of the
maize were measured.

Sampling Analyses
To learn the nutrient release pattern of CDAP, 10 g of CDAP
was placed in a glass bottle containing 200 ml distilled water and
incubated at 25◦C. The solution in the bottle was sampled at days
1, 3, 5, 7, 10, 14, 28, 42, 56, 70, 84, 98, and 112 and analyzed for N
and P concentrations according to the National Standard of the
People’s Republic of China—Slow-Release Fertilizers (Liu et al.,
2009). The functional groups of HA were identified with an FT-IR
TENSOR analyzer (Bruker Co., Germany).

In 2017, at the growth stages of seedling (V3), six-leaf (V6),
twelve-leaf (V12), and milk stages (R3) of soil samples were taken
from 0 to 20 cm layer of each pot, air-dried, ground, and sieved
to < 2 mm; plant height was measured from the soil surface to
the top of the plant stem; the diameter of the maize stem was
measured at the middle of the third node from the soil surface;
The readings from the Soil Plant Analysis Development (SPAD)
chlorophyll meter were taken between 09:00 and 11:00 a.m.
(SPAD-502, Minolta, Japan). Soil available P was extracted with
0.5 M NaHCO3 (pH = 8.5) and quantified using an automatic
chemical analyzer (Smartchem200, AMS, Italy). Soil NO3

−-N
and NH4

+-N were extracted with 0.01 M CaCl2 (1:10 soil to
water ratio) and measured with a continuous-flow injection
analyzer (AA3-A001-02E, Bran-Luebbe, Germany; Houba et al.,
1986; Dou et al., 2000). Soil available K was extracted with 1.0
M CH3COONH4 and determined using a flame photometer
(Lu, 2000).

In 2018, at the V12 stage, the photosynthetic rates were
determined between 09:00 and 11:00 a.m. using a LI-
6400XT portable photosynthesis system (LI-Cor, Lincoln, NE,
United States). Then, the fresh plant leaves, roots, and soil were
sampled and frozen in liquid nitrogen for biochemical analysis.
Contents of phosphoenolpyruvate carboxylase (PEPC), ADP-
glucose pyrophosphorylase (AGPase), adenosine triphosphate
(ATP) synthase, pyruvate phosphate dikinase (PPDK), auxin–
indole-3-acetic acid (IAA), cytokinin (CTK), abscisic acid (ABA),
and gibberellin (GA) of maize leaves were measured using the
ELISA kit from Shanghai HengYuan Biological Technology
Co., Ltd. (Shanghai, China) according to the manufacturer’s
instructions. Acid phosphatase (AP) and alkaline phosphatase
(ALP) activities of maize root and soil were determined
using the ELISA kit.

Total P content in the plant was measured using the
molybdenum-antimony method after digestion with H2SO4-
H2O2 (Lu, 2000). For the P fertilization treatments, PUE was
calculated as follows (Devkota et al., 2013):

PUE (%) = (maize P uptake– maize P uptake in Control)/total
P from fertilizer× 100%

Statistical Analyses
Data were collected and analyzed with Microsoft Excel 2010,
and figures were generated using SigmaPlot software (Version
12.5, MMIV, Systat Software Inc., San Jose, CA, United States;
Figures 1–7) and Origin software (Version 2021b, OriginLab
Corporation, MA, United States; Figure 8 and Spearman’s
correlation analysis in Figure 9). Analysis of variance technique
(one-way ANOVA) with mean separation using Duncan’s test
(P < 0.05) was performed with IBM SPSS Statistics 22 (SPSS Inc.,
IL, United States).

Origin software was used to determine the determinants on
the application of different fertilizations in impacting maize yield
and PUE using the chord diagram, principal component analysis,
and Spearman’s correlation analysis (Hou et al., 2019; Li R. C.
et al., 2021). With the exception of the control treatment, data
were collected and divided into four categories: (1) uncoated
DAP treatments (Un-P; the mean value of P 100% and P 80%
treatments); (2) coated DAP treatments (CP; the mean value of
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FIGURE 1 | Release rates and accumulative release rates of nutrient from coated diammonium phosphate (CDAP) in 25◦C water (A); infrared spectrogram of humic
acid (HA) (B).

CP 100% and CP 80% treatments); (3) uncoated DAP combined
with HA treatments (P + HA; the mean value of P 100% + HA
and P 80%+HA treatments); (4) coated DAP combined with HA
treatments (CP+HA; the mean value of CP 100 %+HA and CP
80%+HA treatments).

RESULTS

Nutrient Release Pattern of Coated
Diammonium Phosphate and Functional
Groups of Humic Acid
Under laboratory conditions in water (25◦C), nutrient release
from CDAP followed a linear pattern over time (Figure 1A). By

FIGURE 2 | Changes of soil pH in different fertilization treatments. Control, no
P fertilizer added; P 100%, diammonium phosphate (DAP) at 75 kg P2O5

ha−1; P80%, DAP at 60 kg P2O5 ha−1; CP 100%, coated DAP (CDAP) at
75 kg P2O5 ha−1; CP 80%, CDAP at 60 kg P2O5 ha−1; P 100% + HA, DAP
at 75 kg P2O5 ha−1 and humic acid (HA); P 80% + HA, DAP at 60 kg P2O5

ha−1 and HA; CP 100% + HA, CDAP at 75 kg P2O5 ha−1 and HA; CP 80%
+ HA, CDAP at 60 kg P2O5 ha−1 and HA. V3, seedling stage; V6, six-leaf
stage; V12, twelve-leaf stage; R3, milk stage.

day 112, the cumulative release rates of P and N from CDAP
reached 66.1 and 83.7%, respectively. The release of P and N
was steady during the first 10 days (5.2 and 7.7% released,
respectively), accelerated during the days 10–28 (8.1, 11.3%
released, respectively), and slowed down afterward. However, the
final cumulative release rates of P and N were different.

The FT-IR spectrum of HA displayed several characteristic
peaks (Figure 1B). The peaks at 1,226 and 1,188 cm−1 are due
to the existence of the C-O group. The peak at 1,117 cm−1

is be attributed to the C-H stretching of the benzene ring
or C-O stretching. The characteristic peak at 3,396 cm−1

corresponds to the stretching vibration of O-H in an aromatic
ring (Sarlaki et al., 2021).

Soil pH and Contents of Available
Nutrients
The dominant form of orthophosphate ion present in the soil
is pH dependent. At the V3 stage, the soil pH in CP 100%, P
100% + HA, and CP 100% +HA was 0.29, 0.22, and 0.10 units,
respectively, lower than that in P 100% (Figure 2). The soil pH
in CP 80%, P 80% + HA, and CP 80% + HA was significantly
reduced by 0.33, 0.43, and 0.39 units, respectively, while that in P
80% was only reduced by 0.02 units compared to P1 00%. The P
100% treatment resulted in the highest soil pH at the V12 stage.
From the V12 to the R3 stage, the largest decrease in soil pH (0.7
units) occurred in P 100%.

Soil available P content was affected by the P fertilizers and
fertilizer application rate (Figure 3A). The control treatment
displayed the lowest soil available P content at the V3, V6, V12,
and R3 growth stages. The application of CDAP significantly
increased the soil available P content during the late growth
stages of maize. At the V12 stage, soil available P content in
CP 100%, P 100% + HA, and CP 100% + HA was 1.3, 8.0,
and 16.7%, respectively, higher than that in P 100%. At the
lower P application level (60 kg P2O5 ha−1), the CP 80%,
P 80% + HA, and CP 80% + HA treatments significantly
increased the soil available P content by 38.8, 50.6, and
19.5%, respectively, compared to the P 100% treatment. When
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FIGURE 3 | Changes of soil available P (A), available K (B), NH4
+-N (C), and NO3

−-N (D) contents in different fertilization treatments. Control, no P fertilizer added;
P 100%, diammonium phosphate (DAP) at 75 kg P2O5 ha−1; P80%, DAP at 60 kg P2O5 ha−1; CP 100%, coated DAP (CDAP) at 75 kg P2O5 ha−1; C P80%,
CDAP at 60 kg P2O5 ha−1; P100%+HA, DAP at 75 kg P2O5 ha−1 and combined with humic acid (HA); P 80% + HA, DAP at 60 kg P2O5 ha−1 and combined with
HA; CP 100% + HA, CDAP at 75 kg P2O5 ha−1 and combined with HA; CP 80% + HA, CDAP at 60 kg P2O5 ha−1 and combined with HA. V3, seedling stage; V6,
six-leaf stage; V12, twelve-leaf stage; R3, milk stage.

coated with polyurethane or applied together with HA, the
DAP increased the soil available P content at the late growth
stages of maize. At the V12 and R3 stages, soil available
P content in CP 100%, P 100% + HA, and CP 100% +
HA was 18.1, 35.7, and 61.8%, respectively, higher than that
in P100%. The average soil available P content in CP 100%
+ HA was 47.8 mg kg−1, significantly higher than that in
CP 100% by 9.5%.

Soil inorganic N (NO3
−-N and NH4

+-N) content
(Figures 3C,D) was high at the early growth stages and
decreased at the late growth stages of maize in all treatments.
At the V6, V12, and R3 stages, soil inorganic N content in the
treatments with combined application of P fertilizer (CDAP or
DAP) and HA was higher than that in the treatments applied
with DAP only. At the V12 stage, the inorganic N content in
CP 100% and P 100% + HA was higher than that in P 100%.
The highest inorganic N content was found in CP 80% while
the lowest was in P 100% at the V12 stage. In the treatments
with P fertilization, soil available K content was low at the V3
stage, which increased rapidly to the highest value at the V6 stage
and then decreased afterward (Figure 3B). At the V6 stage, soil

available K content in CP 100% and CP 80% was 27.7 and 2.7%,
respectively, higher than that in P 100%.

Acid Phosphatase and Alkaline
Phosphatase Activities of Root and Soil
Phosphatase is a very important hydrolase that is ubiquitous in
plants and soil. The root AP activity was increased by 11.6 and
17.2%, while the root ALP activity was increased by 24.7 and
89.5% in CP 100% and P 100% + HA, respectively, compared to
P 100% (Figures 4A,B). The CP 100%+HA treatment increased
the activities of root AP and ALP by 18.1 and 50.1%, respectively,
compared to CP 100%. The root AP and ALP activities in CP
80% + HA were higher than those in CP 100%, though the P
application rate was 20% lower in CP 80%+HA.

The highest soil AP activity was found in P 80% + HA,
while the highest soil ALP activity was found in CP 100%
(Figures 4C,D). There were no significant differences in soil AP
activity between the treatments with 75 kg P2O5 ha−1. There were
no significant differences in soil ALP activity between P 100% +
HA and P 100%. The combined application of CDAP and HA did
not have a clear effect on soil AP and ALP activities.
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FIGURE 4 | Activities of root acid phosphatase (A), root alkaline phosphatase (B), soil acid phosphatase (C), and soil alkaline phosphatase (D) in different fertilization
treatments at the twelve-leaf stage of maize. Control, no P fertilizer added; P 100%, diammonium phosphate (DAP) at 75 kg P2O5 ha−1; P80%, DAP at 60 kg P2O5

ha−1; CP 100%, coated DAP (CDAP) at 75 kg P2O5 ha−1; CP 80%, CDAP at 60 kg P2O5 ha−1; P 100% + HA, DAP at 75 kg P2O5 ha−1 and combined with humic
acid (HA); P 80% + HA, DAP at 60 kg P2O5 ha−1 and combined with HA; CP 100% + HA, CDAP at 75 kg P2O5 ha−1 and combined with HA; CP 80% +HA, CDAP
at 60 kg P2O5 ha−1 and combined with HA. Different letters above the bars indicate significant differences at P < 0.05 followed by Duncan’s multiple range test.

Soil Plant Analysis Development Value,
Photosynthetic Rate, and
Photosynthesis Enzyme Activities
The readings from the SPAD value were employed to indicate
the chlorophyll content of leaves, and the SPAD-502 chlorophyll
meters were used to estimate it. All treatments exhibited an
increasing trend in SPAD values over time (Figure 5). At the V12
stage, the SPAD value in the treatments with the application of
CDAP, the treatments with the combined application of DAP and
HA, and the treatments with the combined application of CDAP
and HA were 2.1–8.4%, 4.9–7.9%, and 8.2–12.9%, respectively,
higher than that in the treatments with the application of DAP
at the same P rate. In addition, the SPAD value was significantly
increased in CP 80%, P 80% + HA, and CP 80% + HA by 9.5,
12.5, and 21.1%, respectively, compared to P 100%, though 20%
less P was applied in these treatments. The application of HA
increased the leaf SPAD value of maize.

Photosynthesis is a fundamental physiological process of
maize that uses light energy to accumulate organic matter.
The combined application of CDAP and HA enhanced

photosynthesis at the V12 stage, a vital growth stage of maize
(Figure 6). The photosynthetic rate in CP 100% + HA was the
highest of all the treatments. For the treatments with 75 kg P2O5
ha−1, the photosynthetic rate was in the order of CP 100% +
HA > P 100% + HA > CP 100%. Of the treatments with 60 kg
P2O5 ha−1, P 80% + HA had the highest photosynthetic rate.
Photosynthesis, a process that involves many enzymes, is strongly
affected by the orthophosphate concentrations in cytosol and
chloroplast. The different P treatments showed different effects
on the activities of photosynthesis-related enzymes (Figure 6 and
Supplementary Figure 1). Of all the treatments, P 80% had the
lowest PEPC and PPDK activities (Supplementary Figure 1). The
addition of HA significantly increased the activities of PEPC, ATP
synthase, and PPDK.

Endogenous Hormones in Maize Leaf
Endogenous hormones serve a critical role in plant growth and
development, even at very low levels. Figure 7 showed the
contents of IAA, ABA, CTK, and GA in maize leaves during
the V12 stage. Compared to P 100%, the CTK and GA contents
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FIGURE 5 | Changes in the reading of Soil Plant Analysis Development
(SPAD) chlorophyll meter with maize growth in different fertilization treatments.
Control, no P fertilizer added; P 100%, diammonium phosphate (DAP) at
75 kg P2O5 ha−1; P 80%, DAP at 60 kg P2O5 ha−1; CP 100%, coated DAP
(CDAP) at 75 kg P2O5 ha−1; CP 80%, CDAP at 60 kg P2O5 ha−1; P 100% +
HA, DAP at 75 kg P2O5 ha−1 and combined with humic acid (HA); P 80% +H
A, DAP at 60 kg P2O5 ha−1 and combined with HA; CP 100% + HA, CDAP
at 75 kg P2O5 ha−1 and combined with HA; CP 80% + HA, CDAP at 60 kg
P2O5 ha−1 and combined with HA. V3, seedling stage; V6, six-leaf stage;
V12, twelve-leaf stage; R3, milk stage.

in CP 100% were increased by 32.4 and 21.1%, respectively.
The P 100% + HA treatment increased IAA content by 34.6%
and CTK content by 27.2%. The CP 100% + HA treatment
increased IAA, CTK, and GA contents by 5.8, 46.4, and 21.5%,
respectively. Moreover, the IAA and CTK contents were 30.5 and

10.6%, respectively, higher in CP 100%+HA and 63.3 and 9.2%,
respectively, higher in CP 80%+HA than those in CP 100%.

Maize Plant Height and Stem Diameter
Changes in plant height and stem diameter at different maize
growth stages are presented in Table 1. The maize plants in the
control treatment were the shortest with the slenderest stems
at the V3, V6, V12, and R3 stages. Compared to P 100%, the
treatments with CP 100%, P 100% + HA, and CP 100% + HA
increased the plant height by 3.7, 7.3, and 9.9%, respectively,
while CP 80%, P 80% + HA, and CP 80% + HA increased
the plant height by 7.8, 6.6, and 10.1%, respectively. At the V3
stage, CP 100%, P 100% + HA, and CP 100% + HA increased
the diameter of the maize stem by 10.4–20.0%, 10.1–15.1%, and
7.8–12.6%, respectively, compared to P 100%.

Maize Yield, P-Use Efficiency, and Net
Profit of Maize Production
In both 2017 and 2018, the maize yield of the control treatment
was significantly lower than that of the other treatments (Table 2).
Compared to P 100%, the 2-year average grain yield in CP 100%
and P 100% + HA was significantly higher by 13.5 and 10.3%,
respectively, while that in CP 80% and P 80% + HA, the grain
yield was higher by 11.0 and 10.0%, respectively. The grain yield
in CP 100% + HA was 17.2 and 16.0% higher than that in P
100% in 2017 and 2018, respectively. In 2018, the highest yield
was obtained in CP 100% + HA, which was 4.2 and 4.7% higher
than that in CP 100% and P 100% + HA, respectively. The PUE
of CDAP or DAP combined with HA was significantly higher
than that of DAP (Table 2). The 2-year average PUE in CP 100%,
P 100% + HA, and CP 100% + HA was 24.4, 13.8, and 27.8
percentage points, respectively, higher than that in P 100%. The

FIGURE 6 | Photosynthetic rate (A) and ATP synthase activity (B) of maize in different fertilization treatments at the twelve-leaf stage. Control, no P fertilizer added; P
100%, diammonium phosphate (DAP) at 75 kg P2O5 ha−1; P80%, DAP at 60 kg P2O5 ha−1; CP 100%, coated DAP (CDAP) at 75 kg P2O5 ha−1; CP 80%, CDAP
at 60 kg P2O5 ha−1; P 100% + HA, DAP at 75 kg P2O5 ha−1 and combined with humic acid (HA); P 80% + HA, DAP at 60 kg P2O5 ha−1 and combined with HA;
CP 100% + HA, CDAP at 75 kg P2O5 ha−1 and combined with HA; CP 80% + HA, CDAP at 60 kg P2O5 ha−1 and combined with HA. Different letters above the
bars indicate significant differences at P < 0.05 followed by Duncan’s multiple range test.
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FIGURE 7 | Auxin indole-3-acetic acid (IAA) (A), abscisic acid (ABA) (B), cytokinin (CTK) (C) and gibberellin GA (D) contents of maize leaves in different fertilization
treatments at the twelve-leaf stage. Control, no P fertilizer added; P 100%, diammonium phosphate (DAP) at 75 kg P2O5 ha−1; P80%, DAP at 60 kg P2O5 ha−1;
CP 100%, coated DAP (CDAP) at 75 kg P2O5 ha−1; CP8 0%, CDAP at 60 kg P2O5 ha−1; P 100% + HA, DAP at 75 kg P2O5 ha−1 and combined with humic acid
(HA); P 80% + HA, DAP at 60 kg P2O5 ha−1 and combined with HA; CP 100% + HA, CDAP at 75 kg P2O5 ha−1 and combined with HA; CP 80% + HA, CDAP at
60 kg P2O5 ha−1 and combined with HA. Different letters above the bars indicate significant differences at P < 0.05 followed by Duncan’s multiple range test.

CP 80%, P 80% + HA, and CP 80% + HA treatments achieved a
higher average of PUE than the P 100% treatment by 26.4, 20.7,
and 27.4 percentage points, respectively.

When DAP was used in combination with HA, or when
CDAP was applied alone or in combination with HA, the
maize production cost was higher than when DAP was applied
alone (Table 3). However, the application of CDAP, alone or
together with HA, generally increased the maize grain yield. Of
all treatments, CP 100% achieved the highest average net income.
Compared to P 100%, the average net income of CP 100% and CP
80% was increased by 483.1 and 440.8 USD ha−1, respectively,
while that of P 100% + HA and P 80% + HA was increased by
287.1 and 321.5 USD ha−1, respectively. The highest income was
achieved by the CP 100% + HA treatment, which was 485.6 and
198.5 USD ha−1 greater than that by the P 100% and P 100%+HA
treatments, respectively.

Correlation Analysis
Correlation analysis showed that there was a positive effect
with the application of CDAP in combination with HA on
yield, biomass, height, available P content, soil AP, soil ALP,

root AP, root ALP, IAA, ABA, CTK, GA, PEPC, AGPase, and
ATP synthase (Figure 8A). In addition, it was obvious that the
contribution of the application of CDAP combined with HA
respond to these indices than other treatments, including the
combination of DAP and HA and application of CDAP and DAP,
respectively. Principal component analysis revealed that the 21
parameters were divided into PC 1 (53.6%) and PC 2 (22.3%).
PC 1 and PC 2 explained 53.2% of the differences among the
21 indicators (Figure 8B). In addition, pH and AGPase were
distributed in the second quadrant, and they had a negative
relationship with the other parameters mainly distributed in the
first and fourth quadrants.

DISCUSSION

Effects of Coated Diammonium
Phosphate on P Supply Intensity in the
Soil Solution and Its Availability
It is important to balance fertilizer input and crop uptake in high-
yielding maize production (Shoji et al., 2001; Geng et al., 2015).
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FIGURE 8 | (A) Chord diagram for showing the effects of the different treatments on these indices. This plot links these treatments via ribbons to their associated
indexes. (B) Principal component analysis shows the relationship among grain yield, growth parameters, and soil nutrient. Height, plant height; SAP, soil acid
phosphatase; SALP, soil alkaline phosphatase; RAP, root acid phosphatase; RALP, root alkaline phosphatase; Pn, photosynthetic rate; PEPC, Phosphoenolpyruvate
carboxylase; AGPase, ADP-glucose pyrophosphorylase; PPDK, pyruvate phosphate dikinase; IAA, indole-3-acetic acid auxin; CTK, cytokinin; ABA, abscisic acid;
GA, gibberellin. Un-P, uncoated DAP treatments (P 100% and P 80% treatments); CP, coated DAP treatments (CP 100% and CP 80% treatments); P + HA,
uncoated DAP combined with HA treatments (P 100% + HA and P 80% +HA treatments); CP + HA, coated DAP combined with HA treatments (CP 100% + HA and
CP 80% + HA treatments).

FIGURE 9 | Correlation relations between maize yield and different indices. Spearman’s correlation between soil variables, growth parameters, and maize yields.
Blue represents negative correlation and red represents positive correlation. The darker the color, the stronger the correlation, and vice versa (*P ≤ 0.05). Height,
plant height; SAP, soil acid phosphatase; SALP, soil alkaline phosphatase; RAP, root acid phosphatase; RALP, root alkaline phosphatase; Pn, photosynthetic rate;
PEPC, Phosphoenolpyruvate carboxylase; AGPase, ADP-glucose pyrophosphorylase; PPDK, pyruvate phosphate dikinase; IAA, indole-3-acetic acid auxin; CTK,
cytokinin; ABA, abscisic acid; GA, gibberellin.

The nutrient release curve of CDAP (Figure 1A) is similar to
the sigmoidal nutrient uptake curve of maize (Bender et al.,
2013). Lu et al. (2020) reported similar results pertaining to
the nutrient release characteristics of CDAP that match with

the nutrient uptake requirement of maize much better than
the conventional P fertilizer. Based on soil available P changes
during maize growth (Figure 3A), it is speculated that CDAP
had a longer P-release period in the pot experiment than in the
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TABLE 1 | Plant height and stem diameter of maize in different fertilization treatments.

Treatmenta Plant height (cm) Plant stem diameter (mm)

V3b V6 V12 R3 V3 V6 V12 R3

Control 54.3ac 95.3a 210.0a 223.1a 10.0d 20.3b 21.9a 25.5a

P100% 60.5a 112.6a 202.5a 224.0a 12.8abc 25.9a 25.5a 28.2a

P80% 57.9a 111.9a 234.8a 233.4a 11.2cd 22.2ab 23.2a 26.6a

CP100% 62.9a 116.0a 234.0a 232.3a 14.1a 24.7ab 24.9a 27.5a

CP80% 61.8a 117.0a 241.0a 241.5a 13.4ab 24.6ab 25.1a 27.8a

P100%+HA 63.4a 120.9a 239.8a 240.4a 14.1a 25.0ab 24.2a 27.8a

P80%+HA 62.4a 111.3a 236.3a 238.8a 12.9abc 22.1ab 22.2a 26.4a

CP100%+HA 59.3a 114.1a 245.5a 246.3a 14.4a 23.8ab 24.4a 26.4a

CP80%+HA 59.2a 114.5a 232.0a 246.6a 12.1bc 23.7ab 25.2a 26.0a

aControl, no P fertilizer added; P 100%, diammonium phosphate (DAP) at 75 kg P2O5 ha−1; P 80%, DAP at 60 kg P2O5 ha−1; CP 100%, coated DAP (CDAP) at 75 kg
P2O5 ha−1; CP 80%, CDAP at 60 kg P2O5 ha−1; P100%+HA, DAP at 75 kg P2O5 ha−1 and combined with humic acid (HA); P 80% + HA, DAP at 60 kg P2O5 ha−1

and combined with HA; CP 100% + HA, CDAP at 75 kg P2O5 ha−1 and combined with HA; CP 80% + HA, CDAP at 60 kg P2O5 ha−1 and combined with HA.
bGrowth stages: V3, seedling stage; V6, six-leaf stage; V12, twelve-leaf stage; R3, milk stage.
cMeans within each column followed by the same letters were not significantly different based on one-way ANOVA followed by Duncan’s test (P < 0.05).

TABLE 2 | Maize yield and phosphorus use efficiency (PUE) in different fertilization treatments.

Treatmenta Kernel
(ear−1)

Plant biomass
(g pot−1)

Yield
(g pot−1)

Yield change
vs. P100% (%)

PUE
(%)

PUE change
vs. P100%

2017

Control 487bb 267.0d 130.3d −9.1 – –

P100% 543ab 301.2c 143.4c 0.0 16.7f –

P80% 488b 304.0c 140.8c −1.8 17.2f 0.5

CP100% 556ab 329.2a 166.2a 15.9 37.2c 20.5

CP80% 492b 318.1b 159.4b 11.1 39.3c 22.6

P100%+HA 600a 308.1c 159.1b 10.9 25.2e 8.5

P80%+HA 517b 324.2ab 158.9b 10.8 33.0d 16.3

CP100%+HA 523b 322.9ab 168.1a 17.2 40.3b 23.5

CP80%+HA 515b 319.9ab 161.2b 12.4 42.2a 25.5

2018

Control 508c 319.5e 149.6e −8.8 – –

P100% 585abc 334.6d 164.0d 0.0 15.5f –

P80% 573bc 347.4c 164.5d 0.3 16.6f 1.1

CP100% 650ab 372.8a 182.6bc 11.3 43.8c 28.3

CP80% 651ab 359.1bc 181.8c 10.9 45.7b 30.3

P100%+HA 629ab 376.0a 180.0c 9.7 34.6e 19.1

P80%+HA 603ab 351.7c 179.3c 9.3 40.6d 25.1

CP100%+HA 669a 382.9a 190.3a 16.0 47.5b 32.1

CP80%+HA 650ab 370.7ab 186.7ab 13.8 44.9a 29.4

aControl, no P fertilizer added; P 100%, diammonium phosphate (DAP) at 75 kg P2O5 ha−1; P 80%, DAP at 60 kg P2O5 ha−1; CP 100%, coated DAP (CDAP) at 75 kg
P2O5 ha−1; CP 80%, CDAP at 60 kg P2O5 ha−1; P 100% + HA, DAP at 75 kg P2O5 ha−1 and combined with humic acid (HA); P 80% + HA, DAP at 60 kg P2O5 ha−1

and combined with HA; CP 100% + HA, CDAP at 75 kg P2O5 ha−1 and combined with HA; CP 80% + HA, CDAP at 60 kg P2O5 ha−1 and combined with HA.
bMeans within each column in each year followed by the same letters were not significantly different based on one-way ANOVA followed by Duncan’s test (P < 0.05).

laboratory incubation (Figure 1A). First, the coating of CDAP
was done by a polyurethane block copolymer containing soft
and hard segments, with swelling properties for gradual nutrient
release (Hou et al., 2015; Lu et al., 2016). Second, the nutrient
release from coated fertilizers is greatly affected by humidity
and temperature (Yang et al., 2011). Although soil temperature
(26.1◦C on average) during maize growth in the pot experiment
was closer to the incubation temperature in the laboratory, soil

moisture was low compared with the moisture condition in
laboratory incubation (Li et al., 2020), which might have greatly
slowed down the P release. Our findings were in line with those
of Zheng et al. (2016), who discovered changes in nutrient release
characteristics between field soils and laboratory soils.

Sufficient nutrient supply is a requirement for high crop yield.
In this study, the maize yield in CP 100% and CP 80% was
increased by 13.5 and 11.0%, respectively, compared to P 100%
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TABLE 3 | Cost and net profits of maize production in different fertilization treatments.

Treatmentb Costa(USD ha−1 year−1) Total income(USD ha−1) Net income(USD ha−1)

P
fertilizer

Labor 2017 2018 2017 2018 Average Change vs.
P100%

Control 405.4 72.5 3403.5dc 3906.7e 2925.6e 3428.8d 3177.2e −4.0

P100% 633.2 72.5 3744.8c 4282.7d 3039.1d 3577.0c 3308.0d –

P80% 590.0 72.5 3676.2c 4295.5d 3013.7d 3633.0c 3323.3d 0.5

CP100% 690.4 72.5 4339.9a 4768.5bc 3576.8a 4005.4a 3791.1a 14.6

CP80% 633.8 72.5 4162.1b 4748.6c 3455.6b 4042.1a 3748.8ab 13.3

P100%+HA 759.4 72.5 4154.6b 4699.8c 3322.5c 3867.6b 3595.1c 8.7

P80%+HA 712.9 72.5 4149.4b 4680.9c 3363.7c 3895.3b 3629.5c 9.7

CP100%+HA 813.1 72.5 4390.0a 4969.0a 3504.2b 4083.1a 3793.6a 14.7

CP80%+HA 756.6 72.5 4209.7b 4875.5ab 3380.4c 4046.2a 3713.3b 12.3

aBased on the current mean market price. Data in the table were calculated based on the current mean market price; maize, 313.4 USD t−1; CDAP (coated diammonium
phosphate), 557.4 USD t−1; DAP (diammonium phosphate), 447.8 USD t−1; Urea, 238.8 USD t−1; Controlled-release urea, 348.4 USD t−1; Potassium chloride, 373.1
USD t−1; humic acid (HA), 302 USD t−1; Labor cost for seeding, field management, and harvest, 72.5 USD ha−1; and other costs including those for machinery, irrigation,
pesticides, insecticides, seeds, and other materials and expenses, 1320.5 USD ha−1.
bControl, no P fertilizer added; P 100%, DAP at 75 kg P2O5 ha−1; P 80%, DAP at 60 kg P2O5 ha−1; CP 100%, CDAP at 75 kg P2O5 ha−1; CP 80%, CDAP at 60 kg
P2O5 ha−1; P 100% + HA, DAP at 75 kg P2O5 ha−1 and combined with HA; P 80% + HA, DAP at 60 kg P2O5 ha−1 and combined with HA; CP 100% +HA, CDAP at
75 kg P2O5 ha−1 and combined with HA; CP 80% + HA, CDAP at 60 kg P2O5 ha−1 and combined with HA.
cMeans within each column followed by the same letters were not significantly different based on one-way ANOVA followed by Duncan’s test (P < 0.05).

(Table 1). The coating of CDAP not only separates DAP from
direct contact with the soil, thus preventing P from fixation by
the soil via sorption, complexation, and precipitation (Roberts
and Johnston, 2015) but also stops DAP from rapid dissolution
and loss of surface runoff and subsurface flow (Hively et al., 2006;
Holman et al., 2008). The V12 stage is a highly P-demanding
growth stage of maize, during which a large amount of P is needed
for grain development in the later stages (Bender et al., 2013).
The application of CDAP increased the activity of phosphatase,
AP in particular, in the root by 11.5–24.7% at the V12 stage
(Figure 4), leading to higher P availability due to more organic
P being hydrolyzed.

Additionally, the application of conventional P fertilizer (i.e.,
DAP) resulted in a higher soil available P content at the V3
stage (Figure 2), which would lead to a higher P content in
the maize plant (Bender et al., 2013). However, high available P
would inhibit the synthesis and the activity of phosphatase and
in turn, would slow down the decomposition of protein-phytic
acid-mineral element complex. Consequently, the availability of
mineral elements would be decreased (Sarah et al., 2018). As
CDAP released P into the soil solution at a rate that matches the
maize demand, maize growth was not limited by P, resulting in a
high grain yield.

Effects of Humic Acid on the P
Availability and Maize Growth
Humic acid, as a P activator, accelerated P transformation into
bioavailable forms. On the one hand, soil pH was lower in
the treatments with combined application of HA and DAP
than in the treatments with an application of DAP alone
at the V3 stage. The presence of HA increases the altering
of the root exudate profile and it also enhances the release
of oxalate and citrate from maize roots, compared to maize
not treated with HA (Canellas et al., 2008; Rosa et al., 2018;

Ma et al., 2021). Additionally, H+ is produced during HA
decomposition (Hue, 1991), leading to an available P increase in
calcareous soils with the dissolution of insoluble P compounds.
On the other hand, the adsorption of HA generates a repulsive
negative electric potential on the adsorption plane and a
steric hindrance on the mineral surface, further inhibiting P
binding on the soil surface (Wang, 2016). Additionally, HA
complexes with Ca2+, Fe3+, and Al3+, reduce P precipitation
with these cations. This was associated with the rich functional
groups in HA, such as O-H in aromatic rings, C-O, and
C-H in benzene rings (Figure 1B; Sarlaki et al., 2021).
Furthermore, the application of HA increased the phosphatase
(i.e., soil AP and root AP) activity (Figure 4) and in turn
the amount of P released from the soil solid phase or from
P fertilizers (Nardi et al., 2017; Zhu et al., 2018), leading to
an increase in the available P content (Figure 3A). Therefore,
HA protected P fertilizer to avoid wasting and improved the P
availability in soil.

In addition to the P availability in soil, the HA use
increased the growth of maize. As a biostimulant, HA
possesses aliphatic and aromatic structures with various
functional groups (mainly oxygen-containing). Its phenolic
and quinone groups interact with enzymes in plant cell
and stimulate plant metabolism, thereby promoting growth
and improving crop yield (Fan et al., 2015). In this study,
the photosynthetic rate of maize leaves at the key growth
stage was enhanced by the application of HA (Figure 6).
The application of HA improved photosynthesis by
increasing the activities of PEPC, ATP synthase, and PPDK
(Figure 6 and Supplementary Figure 1) and influenced the
important metabolic pathways in photosynthesis, such as
photosynthetic carbon assimilation, oxidative phosphorylation,
and photosynthetic phosphorylation (Gao et al., 2017;
Nardi et al., 2017).
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The endogenous hormone plays a key role in regulating plant
growth and developmental processes as well as in regulating plant
responses to the external environment (Fahad et al., 2015a,b).
The P 100% + HA treatment increased the IAA, ABA, and CTK
contents in maize leaves by 34.6, 9.1, and 27.2%, respectively,
compared to the P 100% treatment at the V12 stage. These
results are in confirmation with the reports by Nardi et al.
(2017). Nardi et al. (2002) suggested that humic-like substances
behave as signaling molecules in the rhizosphere, eliciting the
production of phytohormones. Moreover, HA stimulates the
expression of IAA5 and IAA19, two early auxin-responsive genes
(Nardi et al., 2002). These phytohormones can act either locally
(at the site of their synthesis) or transported to some other sites
within the maize plant body to mediate growth and development
responses of both under ambient and stressful conditions (Peleg
and Blumwald, 2011; Fahad et al., 2015a). Furthermore, IAA and
HA can enhance the synthesis and activity of plasma membrane
H+-ATPase, an enzyme that converts energy for transmembrane
transportation of nutrients including P, then energizes secondary
ion transporters, and promotes the nutrient uptake of maize
(Zandonadi et al., 2010).

Interactive Effects of Coated
Diammonium Phosphate and Humic Acid
The interactive effect of CDAP and HA improved maize
grain yield and PUE (Figure 9). The CDAP synchronized
the P supply with plant demand. The HA increased the
photosynthetic rate of maize to accumulate organic matter.
Additionally, the functional groups of HA, such as –COOH
and –OH (Figure 1B), adsorb to the soil surface and react with
soil minerals, influencing metal speciation and solubility and
reducing P fixation (Nardi et al., 2017; Sarlaki et al., 2021),
which is conducive to meeting the P demand of maize in the
early growth stage. Furthermore, some studies have shown that
HA was capable of promoting root growth and modifying root
architecture (Olaetxea et al., 2018) as well as modifying the
gene expression of the main high-affinity root transporters of
phosphate to increase the phosphate root uptake (Jindo et al.,
2016; Olaetxea et al., 2018). Therefore, the combination of CDAP
and HA was able to improve the overall P nutrition in maize
plants. Besides, the contents of IAA and CTK in maize leaves
were improved when treated with CDAP combined with HA.
Meanwhile, the ATP synthase activity and the photosynthetic
rate were improved (Figure 9) leading to better crop growth and
grain development.

The interactive effect of CDAP and HA on maize yield
was not significant in 2017. This may be because maize is a
highly P-efficient crop and not very sensitive to P levels in soil
(Ciarelli et al., 1998; Ci et al., 2012). However, the yield in CP
100% + HA was significantly higher than that in CP 100%
in 2018. This is because the combination of CDAP and HA
exerts beneficial effects on plant growth by improving the soil
structure, fertility, and quality (Calvo et al., 2014; Raiesi, 2021; Xu
et al., 2021), and two consecutive years of application eventually
resulted in significant changes. The combination of CDAP and
HA provides an HA-incorporated enhanced-efficiency P fertilizer

for environmentally friendly fertilization (Figure 9), and future
research should include P-inefficient crops (e.g., wheat).

CONCLUSION

The application of CDAP combined with HA increased the soil
available P content, improved the root acid phosphatase activity,
ATP synthase activity, and cytokinin content, increased the
photosynthetic rate, and plant height, and eventually increased
the maize grain yield and PUE. When P was applied at
75 kg P2O5 ha−1, higher maize grain yield was obtained
by CDAP-HA combination than by CDAP alone or DAP-
HA combination, and in the second year of cultivation, these
differences became bigger and significant. Even at 60 kg P2O5
ha−1, the combined application of CDAP and HA presented
a higher grain yield and PUE in the second year than the
conventional fertilization. Overall, the combined application of
CDAP and HA is of significance in improving PUE, reducing
P loss to the environment, ensuring food security, realizing
sustainable utilization of land and fertilizer resources, and
increasing the economic return of crops. Future studies should be
conducted in different regions with various soil types and crops
to develop an effective strategy of fertilization with controlled-
release fertilizers and biostimulants (e.g., HA).
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