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Flavonoids Modulate the
Accumulation of Toxins From
Aspergillus flavus in Maize Kernels

Lina Castano-Duque*, Matthew K. Gilbert*, Brian M. Mack, Matthew D. Lebar,
Carol H. Carter-Wientjes, Christine M. Sickler, Jeffrey W. Cary and Kanniah Rajasekaran

United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States

Aspergillus flavus is an opportunistic fungal pathogen capable of producing aflatoxins,
potent carcinogenic toxins that accumulate in maize kernels after infection. To better
understand the molecular mechanisms of maize resistance to A. flavus growth and
aflatoxin accumulation, we performed a high-throughput transcriptomic study in situ
using maize kernels infected with A. flavus strain 3357. Three maize lines were
evaluated: aflatoxin-contamination resistant line TZAR102, semi-resistant MI82, and
susceptible line Va35. A modified genotype-environment association method (GEA)
used to detect loci under selection via redundancy analysis (RDA) was used with
the transcriptomic data to detect genes significantly influenced by maize line, fungal
treatment, and duration of infection. Gene ontology enrichment analysis of genes
highly expressed in infected kernels identified molecular pathways associated with
defense responses to fungi and other microbes such as production of pathogenesis-
related (PR) proteins and lipid bilayer formation. To further identify novel genes of
interest, we incorporated genomic and phenotypic field data from a genome wide
association analysis with gene expression data, allowing us to detect significantly
expressed quantitative trait loci (€QTL). These results identified significant association
between flavonoid biosynthetic pathway genes and infection by A. flavus. In planta
fungal infections showed that the resistant line, TZAR102, has a higher fold increase of
the metabolites naringenin and luteolin than the susceptible line, Va35, when comparing
untreated and fungal infected plants. These results suggest flavonoids contribute to
plant resistance mechanisms against aflatoxin contamination through modulation of
toxin accumulation in maize kernels.

Keywords: Aspergillus, aflatoxin, GWAS, systems biology, in planta, flavonoids

INTRODUCTION

Aspergillus flavus is a saprophytic and opportunistic fungus that can infect multiple crops of
economic significance such as cotton, maize, tree nuts, and peanuts. During seed development,
A. flavus infection can lead to fungal production of several toxic secondary metabolites, including
the polyketide-derived aflatoxins (Moellenbeck et al., 2001; Wu et al., 2014), as well as cyclopiazonic
acid and aflatrem (Frisvad et al., 2019). In the United States, financial losses due to aflatoxin (AF)
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contamination have been estimated to be between $163 million
and $500 million annually for maize, peanuts, and other
crops (Wu, 2006; Mitchell et al., 2016). In developing sub-
Saharan Africa, where regulatory controls are often ineffective,
consumption of AF-contaminated foods is directly linked to liver
disease, tumor development, stunted development in children,
immunosuppression, and other abnormalities (reviewed in Wu
etal., 2014).

The AF compounds produced by A. flavus include structurally
similar chemical forms named B;, and B, (Rigo et al., 2002;
Kumeda et al., 2003). Several approaches have been employed
to mitigate the impacts of aflatoxin contamination in maize.
These include classic breeding techniques to increase fungal
resistance (Brown et al., 2013), the development of genetically
modified (GM) maize crops (Cary et al., 2011; Arias et al,
2015; Rajasekaran et al., 2018), and preharvest bioremediation
(Senghor et al,, 2019) by applying non-toxin-producing strains
of A. flavus to crop fields, resulting in lower total AF
accumulation (Ehrlich, 2014). The latter approach has resulted
in several biocontrol products currently being used in several
countries for controlling AF in maize, groundnuts, and cotton
(Senghor et al., 2019).

Elucidating the molecular processes of resistance to aflatoxin
contamination in maize remains important to developing
mitigation strategies. Several high-throughput sequencing
analyses have been conducted to determine the genes and
potential proteins that influence crop host resistance in maize,
particularly when colonized with A. flavus (Shu et al., 2015; Liu
et al., 2021). Microarray analysis performed in two resistant
and two susceptible lines showed differentially expressed genes
located in previously identified quantitative trait loci (QTL)
regions (Kelley et al., 2012). Other studies have identified genes
correlated with A. flavus infection, such as 5,061 fungal genes
(Dolezal et al., 2013) and 4,000 maize genes (Dolezal et al., 2014),
which are differentially expressed after 96 h of infection. Among
the differentially expressed genes in maize, several are involved
in plant defense, signaling pathways, and potential disruption
in kernel development (Dolezal et al., 2014). A quantative gene
expression study that examined 94 genes that were previously
linked to host resistance to A. flavus identified two major groups
of maize lines: Group 1 showed high aflatoxin accumulation
and low levels of gene expression, and Group 2 showed low
aflatoxin accumulation and high levels of gene expression (Jiang
et al.,, 2013). Results of these studies indicate that there are genes
whose expression is correlated with resistant [R] and susceptible
[S] maize lines (Luo et al, 2011; Kelley et al.,, 2012; Dolezal
et al,, 2013, 2014). Nevertheless, a comprehensive study that
links transcriptomics and genomics data followed by functional
analyses has yet to be undertaken to determine the biological
role of these genes and proteins of interest in host resistance
against this fungus.

Multiple studies have focused on understanding the natural
genetic variation that contributes to maize resistance to aflatoxin
accumulation, including studies that have detected QTLs in
several chromosomal bins with hundreds of candidate genes
(Warburton et al.,, 2011, 2015; Farfan et al., 2015). Association
mapping using 300 inbred maize lines revealed a considerable

amount of genetic and phenotypic variation for maturity,
aflatoxin contamination, and other traits (Warburton et al., 2013,
2015). Another study that aimed to identify genomic regions
associated with yield, resistance to aflatoxin contamination, and
other important agronomic traits used 346 maize inbred lines
to determine that the aflatoxin mitigation trait involved multiple
loci (Farfan et al., 2015).

Systems genetics or genome-wide association studies (GWAS)
can incorporate -omics information such as the expression
or accumulation of transcripts, proteins, metabolites, and
phenotypes to identify genes or other mechanisms associated
with host resistance (Civelek and Lusis, 2014; Feltus, 2014).
Furthermore, this analysis can be combined with known pathway
and network data or developed into novel network identification
(Wang et al.,, 2010; Califano et al.,, 2012; Ramanan et al., 2012;
Dembeck et al., 2015). Such explicit pathway approaches using
high-throughput sequencing data with GWAS may detect the
enrichment of genes in a network even if individual associations
do not attain genome-wide significance thresholds. This then
results in refinement in the identification of candidate loci
during fine mapping (Pickrell, 2014; Rodgers-Melnick et al., 2015;
Kremling et al., 2019). Using bioinformatic approaches such as
these, systems genetics can greatly improve the ability to find and
understand the genes and pathways responsible for complex trait
variation in plants.

Here, we report a system and pathway GWAS bioinformatics
data analysis approach using RNA sequencing data of aflatoxin
contamination resistant (TZAR102), semi-resistant (MI82), and
susceptible (Va35) maize lines inoculated with A. flavus and then
combined with previously published GWAS data on aflatoxin
contamination (Warburton et al., 2015). Our bioinformatics
analysis identified several candidate loci and pathways of interest
associated with the molecular mechanisms of maize resistance
to aflatoxin accumulation, such as cellular transport, vesicular
and lipid droplet formation, production of flavonoids, including
flavones and anthocyanins, and differential accumulation of
pathogenesis-related (PR) genes and tetraspanins. In this
study, we report in planta functional evidence that flavonoid
accumulation in resistant maize lines correlates well with lower
accumulation of aflatoxin.

MATERIALS AND METHODS

Fungal Strains and Maize Lines

Aspergillus flavus strain NRRL 3357 is described by Nierman
et al. (2015), herein called A. flavus, and was grown at 31°C on
V8 medium [5% V8 Vegetable Juice (Campbell Soup Company,
Camden, NJ, United States), 2% agar, pH 5.2]. To prepare
inoculum, conidia from 6-day-old cultures were suspended in
0.02% Triton X-100; the conidial concentration was determined
with a hemocytometer and adjusted to 4 x 10° conidia
ml~!. Maize lines used include the aflatoxin contamination
susceptible line Va35 (USDA NPGS Acc. PI587150), resistant
line TZAR102 (USDA NPGS Acc. PI 654049) (Brown et al,
2013; Brown and Goldman, 2016), and semi-resistant line MI82
(Brown and Goldman, 2016).
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Maize Kernel Infection Assay

Maize kernels from the three maize lines described above were
inoculated with A. flavus NRRL 3357. This assay is based on
the kernel screening assay (KSA) as previously described (Brown
et al, 1993). Briefly, dehydrated kernels were sterilized with
70% ethanol and soaked in an inoculum of 4 x 10° fresh
spores/ml in distilled water of A. flavus NRRL 3357 for 3 min.
The same procedure was applied to the mock-treated kernels,
but no A. flavus spores were added to the distilled water. Kernels
were removed from inoculum and incubated at 31°C in the dark.
A. flavus-infected maize kernels were collected at 8 h, 3 days, and
7 days post inoculation. The kernel exterior was cleaned with
deionized water to remove external mycelia. Kernels were then
frozen in liquid nitrogen and stored at —80°C.

RNA Extraction for High-Throughput
Sequencing

Kernel samples were ground with 0.5-mm diameter zirconia-
silica beads (BioSpec Products, Bartlesville, OK, United States)
using a TissueLyser II (Qiagen, Germantown, MD, United States)
for RNA extraction. Total RNA was extracted from ground
samples using QIAzol Lysis Reagent (Qiagen), following the
miRNeasy Mini Kit manufacturer’s protocol (Qiagen). For
DNase treatment, RNA was treated with PureLink DNase
(ThermoFisher, Waltham, MA, United States). After the
extraction, quality and quantity of RNA were confirmed using a
2100 Bioanalyzer with Agilent RNA 6000 Nano Kit (Agilent, La
Jolla, CA, United States). A total of 1 g of RNA was used to do
further DNase treatment using TURBO DNase (Thermofisher).
mRNA was then isolated with Dynabeads Oligo (dT) 25, using
three rounds of isolation per the manufacturer’s protocol. RNA
libraries were prepared with 10- to 50-ng purified mRNA using
NEBNext Ultra directional RNA library Prep Kit for Illumina
(New England BioLabs, Ipswich, MA, United States), following
the manufacturer’s protocol. The library size was approximately
450 bp as measured using 2100 Bioanalyzer with an Agilent High
Sensitivity DNA kit (Agilent). Concentrations of the samples
were measured using a Qubit dsDNA HS kit (ThermoFisher)
on a Qubit fluorometer. A total of 48 libraries were combined
into two pooled samples at a final concentration of 1.8 pM each
and sequenced using an Illumina NextSeq 500 sequencer in a
high-output mode, providing 909 million paired-end (PE) reads
(2 x 150 bp). The raw reads were submitted to NCBI and can be
accessed under BioProject PRINA767817.

High-Throughput Sequencing Data
Analysis

RNA extractions contained material from maize and
fungi, so the sequencing reads were competitively aligned
with the concatenated Zeamays B73 genome (version
435 from Gramene) and A. flavus NRRL 3357 genome
(JCVI-afll-v2.0; GCA_000006275.2). STAR (version 2.7.3a)
was used to align the reads with the following settings:-
alignIntronMax 60000-outFilterMismatchNoverReadLmax
0.15-outFilterMismatchNmax 23-outFilterMultimapNmax
20-twopassMode Basic. Reads mapping to genes were counted

using feature Counts (version 1.5.2) (Liao et al., 2014) with the
settings: “-a -p -s 2 —primary.”

Raw counts from each sample were processed using DESeq2
(v1.28.1); briefly, the counts were normalized by the dispersion
estimates and library size factors (Anders and Huber, 2010). To
determine gene expression differences, we used an additive model
that included the following factors: genotype (Va35: V, TZAR102:
T, and MI82: M), treatment (Treated: Fungus: F and untreated:
mock: m) and time (8 h, 3 and 7 days). Statistical analyses for each
individual factor were performed using DESeq2 (v1.28.1) with
a Wald test and false discovery rate adjustment for the p-values
(Anders and Huber, 2010). For the contrasting comparisons
in genes expression, we used the following: genotype, Va35 vs.
TZAR102, Va35 vs. MI82; treatment, untreated vs. treated; time,
8 h vs. 3 days and 8 h vs. 7 days. To examine the effect of
fungal treatment within the different maize lines in more granular
detail, an additional model was used with DESeq2 using a single
term, which was a concatenation of the three terms above.
Pairwise comparisons between treated and untreated samples
were then made for each maize line at each time point. Genes
were considered differentially expressed if the absolute value of
log2 fold change was greater than 1 and the adjusted p-value was
less than 0.05. Normalized counts were used for further analysis,
and all the boxplots were generated using R and the log base 2 of
count values.

Metabolic Pathway Visualization

Normalized count data for each biological replicate were averaged
and used for generating metabolic pathway views by using
pathway tools software V23.0 and an omics dashboard tool (Karp
et al.,, 2002, 2015; Latendresse and Karp, 2011). We generated
graphs from the omics dashboard from the online tool by using
a logarithmic scale for the expression data and the sum of all
data values in each metabolic pathway category. In each graph,
the displayed expression abundance was the cumulative effect of
many small changes thus showing the way the cell is switching
toward a specific metabolic activity in each sample.

Multivariate Linear Analysis

To explore the general variation of gene expression data,
a redundancy analysis (RDA) was performed to determine
multivariate linear associations between the normalized gene
expression counts and the variables influencing their expression:
maize line (Genotype: Va35, MI82, and TZARI102), fungal
treatment (treatment: untreated and treated), and time after
inoculation (time: 8 h, 3 days, and 7 days) by using R V3.6.1
(R Core Team, 2015). The RDA analysis is a modified version
of a genotype-environment association method (GEA) used to
detect loci under selection (Forester et al., 2018). The modified
RDA method from Forester et al., 2018 was done by replacing the
genotype variable with the gene expression matrix and replacing
its various environments with maize line, fungal treatment, and
time after inoculation matrixes. This type of modified GEA-RDA
analysis has been performed in rice by using gene expression
data and independent variables such as flooded and non-
flooded environments and different rice genotypes (Castano-
Duque et al., 2021). These modifications allowed us to detect
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the groups of expressed genes that are significantly influenced
by the maize line, treatment, and time simultaneously. An
ANOVA was performed on the RDA model to determine the
significance of each independent factor in the model by using
999 permutations to reduce the false discovery rate. Finally, to
determine the genes that are highly influenced by the multivariate
explanatory variables (maize line, fungal treatment, and time
after inoculation) in the model, the loadings of the genes in
the RDA ordination space were scanned using two significant
RDA axes to determine which genes are within three standard
deviations (two tailed p-value = 0.0027) within the genes loading
values distribution. The genes that are closer to the center of the
distribution tend to have low or no correlation with the maize
line, treatment or time, while those in the tails of the distribution
are most likely significantly influenced by the independent
variables of the experiment (Legendre and Legendre, 1998;
Forester et al., 2018). To detect directionality of the correlation
of the expression of the genes in relation to the independent
variables, further analyses were performed using DESeq2. Also,
to determine biological enrichment of these significant genes, a
gene ontology enrichment analysis was performed.

Gene Ontology Enrichment

The genes that passed the standard deviation cut-off value from
the RDA were analyzed using a singular ontology enrichment
analysis AgriGO V2.0 online annotation tool (Du et al., 2010;
Tian et al., 2017). In short, we provided a list of genes/probes
names (genes that passed standard deviation cut-off), and
enriched GO terms were computed using Fisher’s Exact Test
using the maize genome locus (maizesequence.org, with 25,288
genes annotated) as background followed by the Yekutieli
(FDR) multi-test adjustment method for p-values. Functional
enrichment analysis was done to test for enrichment of GO
terms and CornCyc pathways within differentially expressed
genes and co-expression modules using GOseq (Young et al,
2010). The p-values were corrected for multiple testing using the
Benjamini and Hochberg method, and the adjusted p-values were
considered enriched if they were less than 0.05.

Co-expression Analysis

Co-expression networks were individually created for each of the
three maize lines using the variance stabilized mRNA counts from
DESeq2 as input for WGNCA (Langfelder and Horvath, 2008).
The network adjacency matrix was created with the settings
“corFnc = ‘bicor, type = ‘signed hybrid, power = 12.” Module
preservation analysis was done using the module Preservation
function, comparing the MI82 and Va35 modules with the
TZAR102 modules as the reference. Heatmaps were made using
the tidy Heatmap R package (Mangiola and Papenfuss, 2020) with
the regularized log transformed counts from DESeq2.

Linkage of Genome-Wide Association
Analysis With High-Throughput
Sequencing Data

We performed a genome-wide association analysis (GWAS)
on published phenotypic data for aflatoxin concentrations

measured on 300 maize genotypes (Warburton et al,
2015). The phenotypic data used were the logarithm of LS
means of aflatoxin concentrations calculated as described
and provided by Warburton et al. (2015). We further
performed a transformation step on the LS means to achieve
data normality (StarO9LSM"2, Starl0OLSM"3, CSta09LSM,
CStalOLSM, Lubb09LSM"3, and Lubb10LSM"2). We ran GWAS
on GAPIT V3.0 (Lipka et al, 2012) by using 405,648 the
single nucleotide polymorphisms (SNP) data base [provided
by Warburton et al. (2015) and filtered to keep the major
and minor alleles asbinary type], a mixed linear model, a
kinship matrix (generated by GAPIT using the vanRaden
method), and six principal components (generated by
GAPIT).

Single Nucleotide Polymorphisms-to-Gene

and Gene-Set Analysis

We performed a gene-set analysis using MAGMA V1.05 (de
Leeuw et al, 2015) by assigning SNPs to genes, taking into
account a linkage disequilibrium of 2.5Kb windows at each
flanking side of the annotated maize reference genome (V4,
gramene.org accessed January 2020). This analysis used 404,860
SNPs out of the 405,648 SNPs (provided by Warburton et al.,
2015), and 28,297 annotated genes containing valid SNPs in
genotype data. We performed an association analysis of the SNP-
to-gene data and the GWAS p-values, followed by a p-value
estimation based on 1,000 permutations to correct for multiple
testing errors. Finally, we used MAGMA to generate a meta-
analysis that included all sites and seasons by using the weighted
Stouffer’s Z method (Stouffer et al., 1949) to combine p-values
from independent statistical tests.

Dense Module Search for Genome-Wide

Association Studies

We linked the gene identities of the meta-analysis results
from MAGMA to a pre-built protein-protein interaction (PPI)
network from maize (Musungu et al., 2015). We added to the
network analysis the gene expression data as a case-control
experiment where the case was TZAR102 (fungus treated) and
control was Virginia35 (Va35) (fungus treated) and performed
a dense module search (dmGWAS R package) (Wang et al,
2015) in R V3. 9.1. The dense module algorithm generated
a 100-protein subnetwork based on p-values from MAGMA
and the gene expression values. Networks were visualized using
Cytoscape V3.7.2, and the fold change ratios of gene expression
with their corrected p-values were used to determine highly
activated areas of the network (Ideker et al., 2002). Finally,
to determine proteins of interest within the highly activated
areas of the network, we used the gene expression plasticity
to determine which genes were stress response linked (high
plasticity) and which were housekeeping linked (low plasticity)
(Xiao et al., 2019).

In planta Experiments
Maize plants were grown in a BSL-2 greenhouse at the
USDA-ARS Southern Regional Research Center in New
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Orleans, Louisiana. The greenhouse bays were equipped
with supplemental lights to provide 14-h/8-h day/night cycle
at 80°/70°C. In planta fungal inoculations were performed
~20 days after pollination when the kernels were in the milk
stage. Infection with A. flavus spore suspension (1 x 10°
conidia ml~!) was done by puncturing the kernels to a depth
of ~5 mm with a sewing needle dipped in the spore suspension
(Supplementary Figure 3), otherwise known as the pin-prick
technique, which has been established as the most efficient
inoculation technique in planta (maize plants) and in field
conditions (Zummo and Scott, 1989). Kernels were collected
3 days post-inoculation, flash frozen, and stored at —80°C for
further analysis.

RNA Extraction for Quantitative
Real-Time PCR Analysis

We evaluated the pattern of gene expression from the genes
of interest by using whole kernels collected from the in planta
experiments. Whole kernel samples (N = 3) were ground
using a ball-mill tissue Geno/Grinder (SPEX SamplePrep,
Metuchen, NJ, United States) two times for 30 s at 2,000
strokes/min under liquid nitrogen. RNA was extracted using
QIAzol Lysis Reagent (Qiagen), following the miRNeasy
Mini Kit manufacturer’s protocol (Qiagen). RNA content
was measured using a Nanodrop (ThermoFisher Scientific),
and ¢cDNA was made using High-Capacity ¢cDNA Reverse
Transcription Kit (ABI, Foster City, CA, United States), following
the manufacturer’s instructions. Quantitative real-time PCR
(qQRT-PCR) analyses were done using Tubulin (F ACA CCA
TTG GGA GTC TA; R TTG TGG GGA CCA CTA CIT
TC) primers for the endogenous control. We tested the
gene expression of flavone synthase (Zm00001d029744_T001;
F CTC TTC AGA ACC TAG CGA ATC G; R ATG GAC
AAA CAT TGC AGA ACG). The PCR conditions used were
95°C for 3 min, and then 40 cycles of 95°C for 10 s,
55°C for 10 s, 72°C for 30 s, followed by cooling (Bio-
Rad CFX96 Real-Time system). The relative quantification
values were obtained by using Bio-Rad CFX manager (version
3.1). Data were analyzed with the R V3.9.0 (Agricolae and
dplyr packages) (R Core Team, 2015) by using logarithmic
normalization transformations, and then performing a multiple-
factor ANOVA, followed Tukey pairwise comparison post-
test to discriminate treatment means by honest significant
difference (HSD).

Flavonoid Extractions

Harvested samples were grounded with 0.5-mm diameter
zirconia-silica beads (BioSpec Products, Bartlesville, OK,
United States), using a TissueLyser II (Qiagen, Germantown
MD) for RNA extraction. Ground tissue was lyophilized
(VirTisFreezemobile 25EL Freeze Drying System) overnight,
and then metabolites were extracted overnight with shaking by
using a 0.01 mg/ml TBHQ in methanol solution. The mixture
was centrifuged at 15,000 rpm for 5 min, and the supernatant
was transferred to a new tube and kept at -20°C for further
analysis.

Aflatoxin Analysis

Each extract (from ~200-mg ground, lyophilized maize seed)
was redissolved in methanol (1.5 ml) and centrifuged to remove
particulate. The supernatant was analyzed using a Waters
ACQUITY UPLC system (40% methanol in water, BEH C18 1.7
pm, 2.1 mm X 50 mm column) using fluorescence detection
(Ex = 365 nm, Em = 440 nm). Samples were diluted 10-fold if
the aflatoxin signal saturated the detector. Analytical standards
(Sigma-Aldrich, St. Louis, MO, United States) were used to
identify and quantify aflatoxins: aflatoxin B1 (AFB; ) and aflatoxin
B2 (AFB,). Aflatoxin content was expressed in ng/g (ppb) fresh
weight of homogenized kernels.

Flavonoid Analysis

Each extract (from ~200-mg ground, lyophilized maize)
was redissolved in methanol (0.5 ml) and centrifuged to
remove particulate matter. Samples were analyzed on a Waters
ACQUITY UPLC system, coupled to a PDA UV detector and
a Waters Xevo G2 XS QTOF mass spectrometer controlled by
a MassLynx workstation using the following conditions: Waters
BEH C18 1.7 um, a 2.1 mm X 50 mm column, 0.5 ml/min, 1-pl
injection volume, solvent A (0.1% formic acid in water); solvent
B (0.1% formic acid in acetonitrile); 5% B (0 —1.25 min), gradient
to 75% B (1.25-4.75 min), gradient to 100% B (4.75-5.0 min),
100% B (5.0-7.5 min), and then column equilibration 5% B (7.6-
10.1 min). MSF continuum data (50-800 m/z) were collected in
a negative ion mode using collision energy alternating between
low (7 eV) and high energy (linear ramp from 15 to 40 eV).
Peaks were identified using authentic standards (naringenin,
luteolin, luteolin 7-glucoside, all purchased from Sigma-Aldrich)
and quantified using Waters UNIFI software.

RESULTS

Gene Expression Analysis From Kernel
Screening Assays Reveals Putative
Maize Defense Pathways in Response to

Fungal Infection

Our differential expression analysis showed that time after fungal
treatment had the greatest effect on gene expression in terms of
the total number of differentially expressed genes (DEGs) with
5,860 DEGs from the 7 vs. 3 days comparison and 10,804 DEGs
from the 3 days vs. 8 h comparison. Fewer differences in gene
expression were observed between maize lines (Supplementary
Table 1). Comparison of treated (inoculated with A. flavus)
vs. untreated (mock infected with buffer) samples showed
a total of 3,680 genes with significantly different expression
(Adjusted p-value < 0.05 and absolute log2 fold change > 1), of
these 3,680 genes, 1,515 were upregulated in fungal inoculated
samples (Supplementary Table 1); further gene ontology analysis
was performed to understand the types of genes with higher
expression in response to fungal treatment. To understand
the overall variation in our data, we performed a principal
component analysis (PCA) (Figure 1A) of the rlog counts from
each sample. The first principal component, which explained 39%

Frontiers in Plant Science | www.frontiersin.org

November 2021 | Volume 12 | Article 761446


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Castano-Duque et al.

Flavonoids Modulate Toxin Production

25+

PC2: 25% Variance

A A‘“‘
25- "AA.

Maize line
@ wmis2(R)
@ TzAR102 (R)
" @ va3s(s)

® ,Lhe

-25 0
PC1: 39% Variance

25 50 Time

@ 38h

500;

RDA2:10.73% Variance

@® 3d
@

Treatment
‘ Treated
A Untreated

250

-250 0
RDA1:57.12% Variance

FIGURE 1 | Gene expression profiles from KSA using (A) principal component analysis, x-axis explained 39% of variance and y-axis explained 25% of variance. PCA
was performed using rlog-transformed count data from DESeq?2. (B) Expression profiles using redundancy analysis model, x-axis explained 57.1% of variance and
y-axis 10.73% of variance. RDA was performed using rlog-transformed count data from DESeq2. PCA and RDA were performed using three corn lines and three
time points of treated (Fungus) and untreated (Buffer) samples. Corn lines are identified by color, red, MI82 (R — Resistant); blue, TZAR102 (R — Resistant); green,
Va35 (S — Susceptible). Figure shape represents treatment, circle, treated (Fungus) and triangle, untreated (Buffer). Time post treatment is represented in the size of

the shapes, smallest, 8h; medium, 3d; largest, 7d.

of the variance, showed a clear grouping of the samples according
to a time point. The second principal component explained 25%
of the variance and had a grouping of the samples according
to maize line with Va35 [S] and MI82 [R] clustered closer than
TZAR102 [R].

We performed a pathway overview of maize metabolism
during fungal infection by integrating and comparing the
gene expression of TZAR102 and Va35. We were able to
detect an overall activation post-inoculation of the L-ornithine

biosynthetic pathway (Supplementary Figure 1) in TZAR102.
One of the genes involved in this pathway, acetylornithine
deacetylase (Zm00001d01767), showed significantly increased
gene expression on TZAR102 at 7 days post infection compared
with Va35 and MI82 (Supplementary Figure 1). Acetylornithine
deacetylase is an enzyme that catalyzes the production of
L-ornithine from N-acetyl-L-ornithine, a preliminary step to
arginine biosynthesis. Arginine has the highest N:C ratio among
all amino acids and is a building block for polyamines, such
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as putrescine, spermidine, and spermine (Srivastava et al., 2007;
Neily et al., 2011). These polyamine compounds have been shown
to play a vital role in plant resistance to fungal growth (Majumdar
etal., 2019). The late activation (7 days) of polyamine precursors
that we observed could suggest a secondary, long-term defense
response in the plant.

Gene expression patterns can be affected by a combination
of variables. We examined the multivariate relationships of
infection (treated compared with untreated), time (3, 5, 7 days),
and maize line (susceptible, resistant) on gene expression by
performing a redundancy analysis (RDA). RDA allowed us
to associate the gene expression with explanatory variables
like genotype, treatment, and time by performing multivariate
regression modeling (Legendre and Legendre, 1998). We
determined that all the explanatory variables significantly
covary with gene expression, meaning that differences in
maize line, treatment, and time can significantly influence the
overall gene expression patterns (Table 1). Using the first two
components of the RDA (Percentage of variance explained by
RDA1 =57.12 and RDA2 = 10.73), we illustrated the multivariate
linear relationships among maize line, treatment, and time by
measuring the angles between explanatory variables vectors
(Figure 1B). The strength of the relationship between variables
is determined by the cosine of the right-handed projected
angle between vectors (Explanatory variables and/or response
variables) (Legendre and Legendre, 1998). Our results showed
that fungal treatment is positively correlated with TZAR 102 line
and 7 days post infection (Angle is < 90°; cos < 90° = positive
value), meaning that high positive gene expression changes tend
to be correlated with fungal treatment in TZAR 102 and 7 days.

To determine the genes that show significant changes in
expression due to covariation of maize line, treatment, and
time variables, we used the RDA loadings distributions from
the first two RDA axes. The genes selected have RDA loading
values above three standard deviations from the expression mean
(two tailed p = 0.0027) (Supplementary Table 2). Using this
p-value cut-off limit, we selected 295 genes and performed a GO
enrichment analysis that showed enrichment of pathways linked
to response to fungi and microbes (Supplementary Figure 1).
The “defense response to fungus” GO category included genes
such as, hevein-like preproproteins that tend to be fungal
growth inhibitors known as pathogenesis-related (PR) proteins
(Zm00001d048947, Zm00001d048948, Zm00001d048949, and
Zm00001d048950, Supplementary Table 3). The analysis
revealed another significant GO category, “lipid particle;

TABLE 1 | Redundancy analysis results using a linear covariate model and
analysis of variance.

Variable df* Variance F* Pr (>F)*
Genotype 2 3.95E + 09 9.4673 0.001***
Treatment 1 1.35E + 09 6.4887 0.003**
Time 2 2.64E + 10 63.1942 0.001***
Residual 48 1.00E + 10

*df, degrees of freedom; F, Fisher’s statistic value; Pr(>F), P-value associated with
the F statistic. **Significant (P < 0.05), ***Significant (P < 0.001).

that included genes linked to generation of lipid bilayers
(AC206941.2_FG002, GRMZM2G333069, GRMZM2G480954,
GRMZM2G410152, Supplementary Table 2). Genes involved in
lipid bilayer generation could play a role in transport of proteins
or metabolites that could be involved in defense responses
against fungi (An et al., 2007; Colombo et al., 2014).

The differentially expressed genes for maize-treated-vs.-
untreated comparisons were enriched for the CornCyc pathways
of eriodictyol C-glucosylation, naringenin C-glucosylation,
apigeninidin  5-O-glucoside biosynthesis, and luteolinidin
5-O-glucoside biosynthesis, and initial reactions in the
phenylpropanoid  biosynthesis pathway (Supplementary
Table 4). Examining pairwise comparisons between treated and
untreated maize lines at each time point showed that the GO
term “defense response to fungus” was highly enriched for all
maize lines at days 3 and 7, but, for the 8-h comparisons, was only
enriched for the two resistant lines MI82 and TZAR102. This
could indicate that the early activation of genes in this category
upon infection could contribute to the resistance trait. Likewise,
the GO terms for “detection of biotic stimulus” and “regulation of
response to biotic stimulus” were enriched in most comparisons
but, for the 8-h comparison, were only enriched in TZAR102.
The GO term “flavonol biosynthetic process” was highly enriched
for MI82 and TZAR102, but not for Va35. The GO term “flavone
synthase activity” was enriched for all corn lines at the 7-day
time point but was only enriched for MI82 and TZAR102 at the
3-day time point. Co-expression analysis was conducted on the
variance-stabilized mRNA counts using WGCNA (Langfelder
and Horvath, 2008). Co-expression networks were individually
created for each of the three maize lines, and the modules
identified were then examined for how well they were preserved
in the other lines. Two modules identified in TZAR102 that were
positively correlated with fungal treatment were highly preserved
in MI82 but not preserved in Va35. The two modules, light yellow
and maroon, consist of 252 and 321 genes, respectively. The
Z-score summary preservation statistic from WGCNA for the
light yellow module was 18.8 for MI82 and only 7.0 for Va35. For
the maroon module, the preservation Z-score was 13.6 for MI182
and 2.2 for Va35 (Supplementary Table 4). AZ-summary greater
than 10 is considered strong evidence for preservation, and a
score between 10 and 2 suggests moderate-to-weak evidence for
preservation (Langfelder et al., 2011).

Among the genes within the light yellow module is flavone
synthase type 1 (fnsil; Zm00001d029744), which has a high
module membership value of 0.92 and is also found within
the dmGWAS network. The maroon module also contained
two additional genes within the flavonoid biosynthesis pathway,
Zm00001d001849 and Zm00001d027534, both annotated as
having 4-coumarate-CoA ligase enzymatic activity in CornCyc
and having module membership values of 0.53 and 0.80,
respectively. Functional enrichment analysis showed that the
light yellow module is enriched in the genes in the Reactome
pathway for jasmonic acid signaling, the CornCyc pathway for
apigeninidin 5-O-glucoside biosynthesis, and the GO term for
“response to fungus.” The maroon module was enriched for the
GO term for “respiratory burst involved in defense response”
(Supplementary Table 4).
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Linkage of Genome-Wide Association
Analysis of Aflatoxin Accumulation and
Gene Expression Data Reveals a Maize
Defense Mechanism That Links Cellular

Transport and Production of Flavonoids

We analyzed previously published field phenotypic data of
aflatoxin accumulation levels from 300 maize lines cultivated
in 2009 and 2010 in three different locations of southern US
(Warburton et al,, 2015). To these data, we incorporated gene
expression data from our KSA using TZAR102 and Va35 maize
lines to determine metabolic pathways significantly correlated
with the aflatoxin accumulation trait. We used only the gene
expression from TZAR102 and Va35 because one has a resistant
background while the other one has the susceptible background,
thus using a case-control experimental design for post-GWAS
analysis can be applied (Case for resistant genotype and control
for susceptible genotype). Our GWAS showed similar results
when compared with the published GWAS by Warburton et al.
(2015) (Supplementary Figure 2). The Manhattan plots showed

several SNPs with low effect throughout the genome, which
is indicative of a polygenic trait (Daub et al, 2013; Corwin
and Kliebenstein, 2017). There was variation in SNP association
values between years 2009 and 2010, which could be due to
differences in environmental factors that were addressed by
Warburton et al. (2015) and shows the high plasticity of the
trait (van der Sijde et al., 2014). To determine which genes were
associated with resistance to aflatoxin accumulation, we used
the GWAS results to perform a generalized gene-set analysis
using Multi-marker Analysis of GenoMic Annotation (MAGMA,
Supplementary Figure 2) (de Leeuw et al., 2015). MAGMA takes
into consideration linkage disequilibrium (LD) by linking the
SNPs in 2.5-Kb windows to the corresponding genes in those
regions from the Z. mays reference genome (de Leeuw et al,
2015). MAGMA results showed similar Manhattan plots to those
obtained from GWAS (Supplementary Figure 2); thus, these
results reinforced that the trait is polygenic and there is a high
degree of variation between sites and year.

To link the gene-set MAGMA results from the different
locations and seasons, we performed a meta-analysis
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FIGURE 2 | Post-GWAS results of aflatoxin accumulation generated using Warburton et al. (2015) data and KSA gene expression data. (A) Meta-analysis of the
MAGMA results from the College Station, Lubbock and Starkville results. (B) Subnetworks with the highest score from the top 100 modules created by using dense
module network search (EW_dmGWAS) in R. (C) Density plot of the gene expression plasticity data from the rlog counts of the RNA-seq data. In the Manhattan plot,
the horizontal dotted lines are the thresholds for significant log 10 p-value/Number of markers), below chromosome labels on the x-axis is the gene density in the
chromosomal location. In the network, color represents the gene expression plasticity values.
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FIGURE 3 | Flavonoid pathway analysis. (A) Hierarchical clustering of gene expression patterns for flavonoids biosynthesis metabolic pathways detected in
TZAR102 (R-Resistant), MI82 (R-Resistant) and Va35 (S-Susceptible). (B) Square root of the least-square means of gene expression of flavone synthase from in
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4-coumarate-CoA ligase, purple is chalcone reductase, orange is naringenin-chalcone synthase, red is chalcone isomerase and green is flavanone 3-dioxygenase.
For gene expression, TZAR102 and Va35 are compared in treated and untreated environments by two-way ANOVA. Letters above square plots indicate the
HSD-Tukey test results with P < 0.05. Error bars represent standard errors of means.

(de Leeuw et al., 2015). Meta-analysis showed 12 genes with
a p-value < 7.28 x 10-06 (Figure 2) (Zm00001d016150,
Zm00001d025276, Zm00001d025277-Serine carboxypeptidase-
like51, Zm00001d034707, Zm00001d035642-Glutathione
S-transferase T1, Zm00001d035643, Zm00001d035644-ATP-
dependent DNA helicase, Zm00001d035645, Zm00001d003990-

Purple  acid  phosphatase 3,  Zm00001d009564-
Guanylate-binding family protein, Zm00001d037776, and
Zm00001d040999). Gene-set analysis performed on the

meta-analysis results showed two gene ontology terms highly
associated with the trait of interest, Set 1: GO:0005794 Golgi
apparatus (No. of genes 503, p-value 0.000496223)
and Set 2: GO:0016020 membrane (No. of genes = 5,174,
p-value = 0.00034836). Genes and proteins linked to the Golgi
apparatus tend to be involved in vesicle trafficking or cellular
communication (Skotland et al., 2017).

We linked the gene identities of the meta-analysis results
to a pre-built protein-protein interaction (PPI) network from
maize (Musungu et al., 2015). We then added gene expression
data using a case-control experimental set-up, where the case
was TZAR102 (Fungus treated) and control was Va35 (Fungus
treated) and performed a dense module search (dmGWAS
R package) (Wang et al.,, 2015; Figure 2). The module dense
algorithm generated a 100-protein subnetwork based on p-values
from MAGMA and gene expression data. Proteins in these
networks are capable of physically interacting with each other,
showed high correlation with the trait of interest, and could
have significant gene expression values. Finally, we detected
significantly activated hubs (Ideker et al., 2002) within the
100-protein subnetwork using the RNA-seq data p-values when
comparing treated with fungus against untreated (Figure 2).
The most significantly activated hub had 188 protein nodes
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with 739 connections. We used the gene expression plasticity
values (Figure 2) to determine which genes were stress response
linked (high plasticity) and which were housekeeping linked (low
plasticity) (Xiao et al., 2019). Some of the genes of interest with
high plasticity values were genes encoding for enzymes involved
in the flavonoid biosynthetic pathway (Zm00001d029744,
Zm00001d044122, Zm00001d052492, and Zm00001d011438)
(Figure 3). Flavonoids, such as flavonols, flavones, and
flavanones, are phytochemicals with a benzo-y-pyrone structure
that play a wide variety of biological roles in plants and other
organisms (Kumar and Pandey, 2013; Mierziak et al., 2014;
Hostetler et al., 2017).

To determine the dynamics of flavonoid production in
aflatoxin contamination-resistant and susceptible maize lines
during A. flavus infection, we looked at the gene expression
patterns of flavonoid metabolism genes (Figure 3 and
Supplementary Table 5). We saw an increase in expression
of genes with enzymatic activities, such as naringenin-chalcone
synthase, and chalcone isomerase4-coumarate-CoA ligase,

pointing at an increase in flavonoid production. This increase
in expression was highest at 7-day post-fungal treatment for
TZAR102, MI82, and Va35 (Figure 3). Despite the overall
increase in expression in relation with time of the flavonoid
pathway, there were genes with chalcone reductase and flavanone
3-dioxygenase enzymatic activity that showed lower expression
in TZAR102 compared to Va35 after 7 days of infection
(Figure 3). These opposing expression trends among genes in
the flavonoid pathway could indicate that different metabolite
intermediates in the pathway could accumulate to different levels
in response to A. flavus infection.

Gene expression of flavone synthase (Zm00001d029744)
from in planta experiments showed significantly higher levels
in TZAR102 treated compared with Va35 treated with fungus
(Figure 3). To determine if these gene expression patterns
affected flavonoid metabolite production and mycotoxin
accumulation in planta, we measured aflatoxin and flavonoid
levels (Figure 4 and Supplementary Figure 3). We found that the
resistant line (TZAR102) accumulates less aflatoxins (AFB; and
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AFB,) than the susceptible line (Va35), and both lines showed an
overall increase in flavonoid production concurrent with fungal
infection (Figure 4 and Supplementary Figure 3). We observed
that the naringenin fold ratio of control to infected is bigger in
TZAR102 (100.88-fold ratio, F:C) than in Va35 (2.9-fold ratio,
F:C) (Figure 3). Interestingly, luteolin and luteolin-7-glucoside
accumulate in higher levels in Va35 untreated compared with
untreated TZAR102, and their fold ratio of untreated vs. treated
is not as high as naringenin (Luteolin: 1.3 Va35 and 2.5 TZAR102;
Luteolin-7-glucoside: 1.6 Va35 and 1.8 TZAR102) (Figure 4).
This could mean that naringenin, a precursor of glycosylated
flavonoids and anthocyanins, could have an effect in modulating
aflatoxin contamination in resistant maize lines.

DISCUSSION

Our study revealed activation of several important pathways
and processes during A. flavus infection of maize, including
arginine biosynthesis, extracellular vesicle production, and
flavonoid biosynthesis. We observed gene activation leading to
arginine biosynthesis in maize lines resistant to A. flavus infection
(Supplementary Figure 1). Arginine has the highest N:C ratio
among all amino acids, and it is a building block for polyamines,
such as putrescine, spermidine, and spermine (Yousefi et al,
2019). These polyamine compounds might be playing a vital role
in plant resistance to fungal growth (Majumdar et al., 2019).
GO enrichment of RDA significant genes showed several PR
genes that have been linked to plant defenses against fungal
infection and other biotic stresses. GO categories included genes
with a hevein-like preproprotein description that tend to be

fungal growth inhibitors known as PR proteins (Supplementary
Table 3) and the GO lipid particle category that included genes
linked to generation of lipid bilayers (Supplementary Table 2).
Genes involved in lipid bilayer generation could play a role
in transport of proteins or metabolites involved in defense
responses against fungi.

Lipid bilayer particles or extracellular vesicles (EVs) released
from plant cells may play a role in communication, host-
defense responses, and defenses against pathogen. For example,
Arabidopsis plants infected with P. syringae produced high
amounts of EVs, which carried proteins involved in abiotic
and biotic stress responses (Rutter and Innes, 2017). Also, the
lipid composition of the EVs might be involved in recognition
events between two interacting organisms and/or viruses and
potential downstream responses (Skotland et al., 2017). Our gene
expression data from TZAR102, MI82, and Va35 linked with
previously published phenomic and genomic association data
(Warburton et al., 2015) showed enrichment in Golgi apparatus,
and membrane-linked pathways show an association of vesicular
trafficking with resistance to aflatoxin accumulation.

In addition to Golgi apparatus and membrane-linked
pathways, our post-GWAS assessment showed that the flavonoid
biosynthetic pathway is linked to maize responses to A. flavus
infection. Flavonoids are phytochemicals with a benzo-y-pyrone
structure, such as flavonols, flavones, and flavanones, and play
a wide variety of biological roles in plants and other organisms
(Kumar and Pandey, 2013; Hostetler et al., 2017). Flavone
synthase (FNSI) catalyzes the conversion of flavanones, such as
naringenin and eriodictyol to flavones, such as apigenin and
luteolin (Falcone Ferreyra et al., 2015). Flavonoid metabolites
produced by plants have varying effects on associated microbes.
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In Arabidopsis, DOWNY MILDEW RESISTANT 6 gene (DMR6)
is involved in susceptibility to Pseudomonas syringae, and dmr6
mutants do not produce apigenin, have high levels of salicylic
acid (SA), and are resistant to P. syringae. Arabidopsisdmr6
mutants complemented with maize FNSI regained susceptibility
to P. syringae (Falcone Ferreyra et al., 2015), meaning that there
is a link between flavones, production of SA, and susceptibility
to pathogens. Bioassays using apigenin in the media have
shown a dose-dependent reduction in growth of Colletotrichum
graminicola, which suggested a phytochemical defense against
fungi using flavones linked to the increase in production of
naringenin and apigenin in both leaves and roots of maize
infected with C. graminicola (Balmer et al., 2013).

Flavonoids and aflatoxin production have been studied
by using Aspergillus parasiticus to inoculate kernels treated
with a flavonoid mixture (0.39-mM naringenin, 0.24-mM
neohesperidin, and 0.4-mM quercetin), which showed an
85-100% decrease in aflatoxin accumulation (Pok et al,
2020). Similar studies done with A. flavus incubated with
anthocyanidins and related flavonoids showed inhibition of
aflatoxin Bl production (Norton, 1999) and inhibition of
growth (Li et al.,, 2019). TEM images of A. parasiticus treated
with each flavonoid from the mix showed fungal damage
such as, naringenin treatment-stimulated formation of lipid
vesicles; neohesperidin treatment led to degradation or rupture
of plasmalemma cell wall deformation and vesicle formation;
quercetin treatment; agglutination of fibrillar layer, formation of
dense grains in the inner wall, disruption of nuclear membranes,
and formation of vesicles (Pok et al., 2020). Combination of
the flavonoid mix led to greater degradation of membranes,
organelles, and cytoplasm content (Pok et al.,, 2020). A study
wherein Fusarium culmorum and F. graminearum were grown
in vitro with naringenin, apigenin, luteolin, kaempferol, and
quercetin showed that these fungi were capable of metabolizing
these flavonoids to their derivatives, meaning that the fungi
responded to the phytochemical defense from the plant (Bilska
et al., 2018). In the same study, mycotoxin accumulation was
significantly lowered if the fungi were treated with luteolin,
kaempferol, naringenin, and apigenin, and, in this event,
reduction could be controlled at the transcriptional level
(Bilska et al., 2018).

Interestingly, there is a cross-talk between polyamines (PAs)
and carotenoids/flavonoids in plants. Higher content of cellular
spermidine (Spd) and spermine (Spm) in plants has strongly
been correlated with increased biosynthesis of antioxidative
compounds, e.g., carotenoids (Uarrota et al., 2018). Increased
PA (Spd and Spm) content in tomato (Solanum lycopersicum
L.) fruits was achieved by expressing a yeast (Saccharomyces
cerevisiae) S-adenosylmethionine decarboxylase (ySAMdc) gene
under a fruit-specific promoter (E8), which elevated lycopene
(carotenoid) content in the transgenic fruits up to 2-fold (Mehta
et al., 2002). The transgenic fruits with higher Spd and Spm
content showed increased expression of flavonoid biosynthetic
genes and increased cellular flavonoid content (Srivastava et al,,
2007). Similar results were observed in transgenic tomato plants,
expressing an apple [Malus sylvestris (L.) Mill. var. domestica
(Borkh.) Mansf.] Spds gene under a constitutive promoter (35S).

Transgenic fruits showed significantly increased (up to 2.2-fold)
lycopene content accompanied by increased expression of several
lycopene biosynthetic genes (Neily et al., 2011).

To conclude, we combined an analysis of transcriptomic data
from aflatoxin-contamination-resistant and -susceptible maize
lines with a genome-wide association analysis to examine the
molecular mechanisms of maize resistance to A. flavus growth
and aflatoxin contamination. Our study revealed activation of
several important maize biochemical pathways and processes
during A. flavus infection, including arginine biosynthesis,
extracellular vesicle production, and flavonoid biosynthesis
(Figure 5). It has been reported that polyamines, which arise
from arginine biosynthesis, play an important role in A. flavus
infection of maize (Uarrota et al., 2018). We confirmed that
arginine is significantly correlated with defenses against aflatoxin
contamination in kernels potentially due to its role as a
precursor of polyamines. Future comprehensive omics studies of
apoplastic fluid and extracellular vesicles isolated from resistant
and susceptible maize lines will provide insight into their
role in compartmentalization of defense-related compounds,
such as polyamines and flavonoids, and how they function
in response to fungal infection. Another area for further
scientific exploration is the mode of action of several flavonoids
produced by TZAR102 and their effect on fungal phenology
and mycotoxin production. Evaluating the dynamics of flavonoid
production in multiple maize [R] and [S] lines during A. flavus
infection may lead to an effective flavonoid-based aflatoxin
mitigation strategy.
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