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Editorial on the Research Topic

Multiple Herbicide-Resistant Weeds and Non-target Site Resistance Mechanisms: A Global

Challenge for Food Production

EVOLUTION OF MULTIPLE SURVIVAL MECHANISMS

The acquired inheritable trait of plants to survive and reproduce under herbicide exposure is
defined as resistance. Herbicide resistance is an extraordinary example of adaptive evolution
in weed species infesting agroecosystems with clear detrimental consequences on agriculture
sustainability around the globe (Palumbi, 2001; Llewellyn et al., 2016). Multiple herbicide resistance
is a compelling evolutionary process in which distinct survival mechanisms are present in
a population or are combined within single plants, each endowing resistance to dissimilar
site of action herbicides (Hall et al., 1994; Gaines et al., 2020). These multiple mechanisms
may involve either target site (TSR) or non-target site resistance (NTSR) mechanisms or any
combination endowing multiple resistance. Multiple resistance can evolve through unique events
that sequentially select for resistance alleles within single plants and/or genetic exchange of
independently evolved resistance mutations through pollen outcrossing among plants within or
between populations. Regardless of the driving factor, the ultimate result is the stack of various
distinct survival mechanisms at the plant and/or population level endowing broad resistance to
multiple herbicides of dissimilar chemistries.

Genetic variability and reproductive biology of weed species are the most important factors that
define the likelihood of multiple resistance evolution. Lolium rigidum, Alopecurus myosuroides,
Raphanus raphanistrum, and Amaranthus spp. are among the weed species with the most
remarkable ability to evolve multiple resistance through eco-evolution of TSR and NTSR
mechanisms (Hall et al., 1997; Cocker et al., 1999; Walsh et al., 2004; Owen et al., 2014,
2015; Schultz et al., 2015; Han et al., 2016; Tétard-Jones et al., 2018). For instance, resistance
due to reduced glyphosate and paraquat translocation co-evolving with an ACCase target site
mutation has been identified in a single L. rigidum population (Yu et al., 2007), whereas
other patterns of multiple resistance in this species reflect the presence of enhanced CYP-450
herbicide metabolism coexisting with ACCase, ALS, α-tubulin, and/or EPSPS point mutations
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(Burnet et al., 1994a,b; Tardif and Powles, 1994; Neve et al.,
2004; Han et al., 2016, 2021; Chen et al., 2018, 2020a). Another
striking example of multiple resistance is found inA. tuberculatus
populations where PPO, ALS, and EPSPS target site mutations
have been identified co-evolving with enhanced metabolism of
PSII and HPPD inhibiting herbicides (Schultz et al., 2015).

Novel resistance mechanisms in weeds have been identified
recently although some were thought unlikely to evolve.
For instance, glyphosate resistance is possible through
aldoketoreductase (AKR)-based metabolism (Pan et al., 2019),
up-regulation of an ABC membrane transporter pumping out
glyphosate outside the cell (Pan et al., 2021) and programmed cell
death causing rapid necrosis (Van Horn et al., 2018). Likewise,
2,4-D resistance due to either CYP-450 based metabolism
(Giacomini et al., 2020), a double point mutation (Leclere et al.,
2018) or 9-codon deletion in an auxin transcriptional repressor
(Figueiredo et al., 2021), or rapid necrosis (De Queiroz et al.,
2020) have also been reported. These recent findings highlight
that herbicide selection for many survival mechanisms will
occur and increase the chances for plants to harbor multiple
resistance mechanisms. Multiple herbicide resistance highlights
the concurrent dynamic spread of multiple resistance alleles in
weeds which exposes a serious threat to productivity of current
cropping systems.

RECENT ADVANCES IN NTSR

MECHANISMS

Mechanisms that can contribute to NTSR are complex and
involve several different gene types and families. This molecular
and genetic complexity makes the identification of particular
genes involved in NTSR difficult. Recent advances in this area
have been the identification of putative NTSR genes contributing
to enhanced herbicide metabolism (EHM).

The latest finding has been the elucidation for the first time
that up-regulation of the AKR enzyme contributes to glyphosate
resistance in Echinochloa colona, by degrading glyphosate to its
metabolite, aminomethylphosphonic acid (AMPA; Pan et al.,
2019). This discovery further supports results published in this
Research Topic, showing glyphosate metabolism in an E. crus-
galli population fromPortugal (Vázquez-García, Rojano-Delgado
et al.). The identification of CYP-450 genes (phase I) that can
degrade herbicides from different sites of action (SoA) has been
carried out recently. CYP81A subfamily has been shown to
metabolize herbicides from at least five chemically unrelated
groups, both in L. rigidum and E. phyllopogon (Dimaano
et al., 2020; Han et al., 2021). Unraveling which SoA and
chemical herbicide families individual CYPs can metabolize, and
their identification in different R species could help predicting
metabolic-based cross-resistance patterns and thus assist in
chemical options for weed management practices.

CYP-450 has been shown to endow herbicide resistance in
broadleaf weed species too, as reported for Glebionis coronia to
ALS inhibitors in this Research Topic (Hada et al.). It is worth
mentioning studies confirming that CYP-450 is involved in 2,4-
D metabolism in A. tuberculatus (Figueiredo et al., 2018) and

Papaver rhoeas (Torra et al., 2021). Moreover, in P. rhoeas, the
same CYP-450 has been shown to confer cross-resistance to both
2,4-D and imazamox in several R populations (Torra et al., 2021).

Phase II herbicide metabolism mainly involves conjugation
to GSH mediated by GSH S-transferases (GSTs). Metabolic
resistance to VLCFA inhibiting herbicides such as flufenacet
and pyroxasulfone in Alopecurus myosuroides and L. rigidum
populations is possible due to enhanced GST-mediated
metabolism via differentially expressed GSTs (Dücker et al.,
2019, 2020; Goggin et al., 2021). In this Research Topic,
empirical evidence of herbicide metabolism via CYP-450 is
provided in three articles (Yanniccari, Gigón et al.; Chen et al.;
Hada et al.), of GST in two (Wang et al.; Rangani et al.), and of
both CYP-450 and GST in five studies (Scarabel et al.; Shyam et
al.; Suzukawa et al.; Franco-Ortega et al.; Torra et al.).

All types of resistance mechanisms can get stacked in R
plants, both TSR and NTSR, but also different genes conferring
EHM. Several studies have reported over-expression of many
genes in NTSR plants compared to S ones, also including
those encoding for degrading enzymes such as CYP-450 and
GST (Gaines et al., 2020). However, this does not necessarily
imply a process of recurrent selection and the concomitant slow
accumulation of metabolic resistance genes in a R population.
There is evidence that differentially expressed genes responsible
for EHM could be under genomic co-expression clusters or
across long chromosomal intervals (Giacomini et al., 2020).
One major implication of this clustering is the likelihood
of a shared mechanism of gene regulation for these regions
with NTSR genes. Therefore, potentially, a single gene, that
is, a single resistance mechanism, could be responsible of the
reported over-expression of several genes involved in EHM
and NTSR.

In this Research Topic, Franco-Ortega et al. suggested that
plant responses to biotic and abiotic stressors are integrally linked
to NTSR-based herbicide resistance mechanisms. Regulation
of gene expression involved in stress-response and NTSR
is probably a complex process but may include herbicide-
responsive genes. Recently, HPPD-inhibiting herbicide
responsive genes have been found in A. tuberculatus, with
little overlap in gene expression patterns between R and
S genotypes bringing out dynamic differences in response
to herbicide treatment (Kohlhase et al., 2019). Similarly, a
contributing article in the present Research Topic, points out
that S-metolachlor (VLCFA inhibitor) can further increase the
expression of two GSTs in R plants (Rangani et al.).

Differential herbicide translocation between S and R plants
constitutes another set of NTSR mechanisms. Membrane
carrier proteins (ABC family) are already being unveiled
and suggested to be involved in phase III of EHM (Gaines
et al., 2020). Although reduced glyphosate translocation was
described as a resistance mechanism long ago, only recently
the first glyphosate cell membrane carrier has been identified
(ABCC-type transporter) conferring glyphosate resistance
in E. colona (Pan et al., 2021). Active root exudation as a
NTSR mechanism has been recently reviewed by Ghanizadeh
and Harrington (2020). This mechanism could contribute to
imazamox resistance in Euphorbia heterophylla (Rojano-Delgado
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et al., 2019) and MCPA resistance in Raphanus raphanistrum
(Jugulam et al., 2013).

Rapid Necrosis: An Intriguing Mechanism

of Herbicide Resistance
A fast and localized effect of glyphosate and 2,4-D has been
identified in Ambrosia trifida (Brabham et al., 2011) and Conyza
sumatrensis (De Queiroz et al., 2020). This phenomenon has
been called rapid necrosis (RN), and was primarily proposed
as Phoenix resistance (Gressel, 2009) as apparent “dead” plants
were able to regrow a few days after herbicide treatment. The
physiological basis of this surviving mechanism is unknown and
thus, the classification of RN as TSR or NTSR is difficult. The RN
caused by 2,4-D may be related to defective Aux/IAA repressors,
TIR1/AFB receptors and ARF transcription factors and in that
case would be classified as TSR since these proteins are directly
related to the 2,4-D action. Exogenous application of aromatic
amino acids decreased RN in A. trifida caused by glyphosate
(Moretti et al., 2018), indicating a potential TSR mechanism
of resistance.

In both 2,4-D and glyphosate cases, a potential reduced
herbicide translocation resistance mechanism could be related
to ABC transporters (Pan et al., 2021), however, alterations in
translocation and cell exclusion resulting in 2,4-D and glyphosate
resistance were not identified with the RN phenotype. Some
evidence suggests that programmed cell death may be caused
not only by pathogens as originally discovered but also triggered
by other biotic and abiotic stresses such as herbicides (Burke
et al., 2020). Several studies have reported the influence of
environmental effects on the occurrence and variability of RN
(Harre et al., 2018; De Queiroz et al., 2020), which highlight
the difficulties of studying RN under the variable conditions
found in the field and experimental conditions. Distinguishing
the biochemical processes that cause RN from those that are the
consequence of RN is needed to better understand this intriguing
herbicide resistance mechanism.

Contributions in the Research Topic
Contributions in this Research Topic reported both TSR
and NTSR mechanisms. Eight out of 13 articles reported
mechanisms of TSR nature (all substitutional mutations), which
in some cases can confer cross-resistance to different herbicide
chemistries within the same SoA (Scarabel et al.; Vázquez-García,
Alcántara-De La Cruz et al.; Yanniccari, Gigón et al.; Hada et al.;
Torra et al.). Among these contributions, we shall highlight
those reporting multiple-resistance through the accumulation
of several substitutional point mutations in different herbicide
target enzymes involving ALS, ACCase and EPSPS inhibitors
(Scarabel et al.; Vázquez-García, Alcántara-De La Cruz et al.).

In relation to NTSR mechanisms, three contributions
reported about herbicide differential absorption and
translocation (Suzukawa et al.; Vázquez-García, Rojano-Delgado
et al.; Yanniccari, Vázquez-García et al.), whereas most of
them (11 out 13) documented cross-resistance due to some
level of EHM. It is also remarkable that seven contributions
demonstrated the co-evolution of TSR and NTSR mechanisms at
both plant and population level.

Resistance to ALS, ACCase, and EPSPS inhibiting herbicides
are themost reported cases in this Research Topic, with 8, 7, and 5
contributions, respectively, which agrees with the SoA herbicides
most related to herbicide resistance worldwide (Heap, 2021).
Resistance to pre-emergence herbicides in different cropping
systems is reported, as multiple resistance in combination to
the three previously mentioned post-emergence SoA herbicides.
Resistance to microtubule assembly (Suzukawa et al.; Chen et
al.; Franco-Ortega et al.), VLCFA (Suzukawa et al.; Rangani
et al.; Torra et al.), PSII (Shyam et al.; Franco-Ortega et al.;
Torra et al.), synthetic auxins (Shyam et al.; Suzukawa et al.;
Franco-Ortega et al.; Torra et al.), and both PPO and HPPD
in a single six-way-resistant Palmer amaranth (Amaranthus
palmeri) population (Shyam et al.) are contributions in this
Special Issue.

Ten out of 13 contributions reported on herbicide resistance
in grass weed species, and three in broadleaf weeds. Lolium ssp.
is the most reported genus in the Research Topic (six articles),
followed by A. myosuroides and Bromus ssp. (2), and E. crus-
galli and Beckmannia syzigachne (1). Among dicots, two articles
reported on the global invasive weed species A. palmeri (Shyam
et al.; Rangani et al.) and one contribution onGlebionis coronaria
(Hada et al.).

CURRENT RESEARCH GAPS AND

PROSPECTS

(1) Multiple herbicide resistance may result from co-evolution
of both NTRS and TSR mechanisms (Vila-Aiub et al.,
2005; Powles and Yu, 2010; Bostamam et al., 2012;
Gherekhloo et al., 2017; Peterson et al., 2018; Cao et al.,
2021). An intriguing question is the evolutionary and
ecological consequences of the interaction between NTSR
and TSR mechanisms in protecting single plants from
herbicide damage (Raymond et al., 1989). For instance,
point resistance mutations co-existing with up-regulation
of herbicide metabolism (EHM by CYP-450 or GST), both
endowing resistance to herbicides targeting the same SoA
are ubiquitous in resistant weeds (Tardif and Powles, 1994;
Chen et al., 2020a,b). Do these resistance mechanisms
combine their effects on plant protection in an additive
or multiplicative mode? Would it be possible for a
single mechanism to endow the maximum protection
level making the addition of a second mechanism an
ecological redundancy?

(2) Improved understanding of the biology of plant systems
will benefit the understanding of gene regulation of
NTSR and the effects of environmental factors on the
evolution of herbicide resistance. Further studies related
to epigenetic regulation caused by direct or indirect
herbicide effects will further increase our understanding
of herbicide resistance. The NTSR mechanisms associated
with EHM are dependent on a complex gene regulation
and we are currently just discovering the final players of
a large network. Advances on CYP-450 and GST gene
identification as well as their regulation and crystallographic
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information will reveal a fascinating environmental-plant-
herbicide interaction system.

(3) Current recommendations for pesticide resistance
prevention are based on rotation and mixing of different
SoA pesticides (Bourguet et al., 2013; Baym et al., 2016).
However, rotation and/or mixing of herbicides resulting
in a similar selection pressure for a particular resistance
mechanism (e.g., EHM) will increase the risk of resistance
evolution (Comont et al., 2020). The advances in the
knowledge of NTSR mechanisms will be necessary for
making resistance management decisions involving the
use of herbicides targeting different metabolic networks,
assuming it is possible to avoid development of some of
these resistance mechanisms by modifying management.
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