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Tissue culture is an important tool for asexual propagation and genetic transformation
of strawberry plants. In plant tissue culture, variation of DNA methylation is a potential
source of phenotypic variation in regenerated plants. However, the genome wide
dynamic methylation patterns of strawberry tissue culture remain unclear. In this
study, we used whole-genome bisulfite sequencing (WGBS) to study genomic DNA
methylation changes of a wild strawberry Fragaria nilgerrensis at six stages: from
explants of shoot tips to outplanting and acclimation. Global methylation levels showed
that CG sites exhibited the highest methylation level in all stages with an average
of 49.5%, followed by CHG (83.2%) and CHH (12.4%). Although CHH accounted
for the lowest proportion of total cytosine methylation, it showed the most obvious
methylation change and the most of these changes occurred in the transposable
element regions. The overall methylation levels alternately decreased and increased
during the entire tissue culture process and the distribution of DNA methylation was
non-uniform among different genetic regions. Furthermore, much more differentially
methylated regions (DMRs) were detected in dedifferentiation and redifferentiation
stages and most of them were transposable elements, suggesting these processes
involved activating or silencing of amounts of transposons. The functional enrichment of
the DMR-related genes indicated that genes involved in hormone metabolic processes,
plant development and the stress response changed methylation throughout the tissue
culture process. Finally, the quantitative real-time PCR (gRT-PCR) was conducted to
examine the association of methylation and gene expression of a set of different
methylated genes. Our findings give deeper insight into the epigenetic regulation of gene
expression during the plant tissue cultures process, which will be useful in the efficient
control of somaclonal variations and in crop improvement.
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INTRODUCTION

The strawberry is one of the most economically important
fruits in the world, belonging to the genus Fragaria L.
(Rosaceae). Fragaria nilgerrensis is a widely distributed diploid
wild strawberry in southwest China. Its white fruits with a unique
peach aroma, as well as strong resistance to drought and cold are
valuable characteristics for cultivated strawberry improvement
(Noguchi et al., 2002; Guo et al., 2018; Lu et al., 2021). Recently,
the genome sequence of F. nilgerrensis has been released and it
could serve as another ideal model system for genetic studies
of strawberry plants, and has great potential in broadening the
genetic background of cultivated strawberries (Feng et al., 2020;
Qiao et al., 2021).

The plant tissue culture technique is one of the most
important tools in modern plant science research, which
can be used for rapid asexual reproduction and genetic
transformation, as well as an important means to understand
the cell totipotency of plants (Ghosh et al, 2021). Under
the influence of artificial hormonal environments, plant
cells need to reset their genetic and epigenetic programs
to adapt to the in vitro culture environment, and such
molecular dynamic changes can also lead to stable genetic
or epigenetic variations in clone progeny, also known as
“somatic variation.” These mutations may not be conductive
to commercial production from tissue culture, but they are an
important source for the development of new varieties with
particular characteristics.

Among epigenetic factors, DNA methylation plays an
important role in regulating chromatin conformation and gene
expression during plant regeneration (Gupta et al., 2006; Ehrlich
and Lacey, 2013; Lee and Seo, 2018). It has been reported
that alteration of DNA methylation is related to developmental
switches occurring during in vitro culture, which is determined
by several factors including plant growth regulators, genetic
backgrounds, and different types of stress (Bardnek et al., 2010;
Us-Camas et al., 2014; Karim et al., 2016). Recent advances in the
field of epigenetics have revealed highly dynamic mechanisms of
global and local DNA methylation variations occurring during
cell dedifferentiation and redifferentiation processes in callus
formation (Horstman et al., 2017; Xia et al., 2017). Few studies
have focused on dynamic changes of methylation patterns
during the whole process of tissue culture, which is not only
crucial for commercial production of disease-free strawberry
plants, but also for constructing a genetic transformation
system. Understanding the epigenetic landscape and epigenetic
mechanisms that modulate gene expression at each stage of tissue
culture may be crucial for understanding variant phenotypes.
This information can be used in crop improvement programs
in a controlled way to generate better agronomic traits based
on selection for favorable epigenetic states, creation of novel
epialleles and avoided the negative consequences of variation
(Tetsu and Akemi, 2013).

Therefore, in the present study, we explored the genome-
wide methylation patterns and differences at the CG, CHG
and CHH sites of six developmental stages of tissue culture
in F. nilgerrensis. The differentially methylated regions (DMRs)

were detected between each adjacent stage and associated genes
with altered methylation were identified. Our results will help
to identify the hypervariable regions in the plant genome
during the tissue culture process, which should lead to the
efficient control of somaclonal variations and their use in crop
improvement programs.

MATERIALS AND METHODS

Plant Material and Tissue Culture

Plants of F. nilgerrensis were grown in the greenhouse in Yunnan
University and conventionally propagated by runners to ensure
all the plant materials were from the same clone. Runner tips 1-
2 cm long were taken from these plants as explants. Explants were
rinsed under running tap water for 30 min and then immersed
in 75% alcohol for 20-25 s, followed by 0.1% HgCl, for 7 min.
After that, the explants were thoroughly washed (4-5 washings)
with sterilized distilled water and then shortened to 3-5 mm
long. Finally, they were sampled or transferred to optimized
medium for strawberry micropropagation in turn as listed in
Table 1. The tissue culture was conducted in an incubation room
at 14/10 light/day photoperiod conditions (38 WE m~2 s~ !)
at temperatures of 25 £ 2°C for day and 20 £ 2°C for
night. In the callus induction stage, dark culture lasting about
10 days was first required. The tissue cultured plantlets were
transferred to pots in the greenhouse after proper hardening.
The culture medium used for each stage is shown in Table 1.
The materials collected from each stage with three biological
replicates were shock-frozen in liquid nitrogen immediately and
stored at —80°C.

Library Construction and Whole-Genome

Bisulfite Sequencing

Genomic DNA was extracted using the Hi-DNAsecure Plant
Kit (Qiagen GmbH, Hilden, Germany), according to the
manufacturer’s recommendations. Genomic DNA degradation
and contamination was monitored on agarose gels. A total
of 5.2 ug qualified genomic DNA spiked with 26 ng lambda
DNA was fragmented by sonication to 200-300 bp with a
Covaris S220 (Covaris, Woburn, MA, United States), followed by
end repair and adenylation. Cytosine-methylated barcodes were
ligated to sonicated DNA as per the manufacturer’s instructions.
Then these DNA fragments were treated twice with bisulfite
using the EZ DNA Methylation-Gold™ Kit (Zymo Research,
Irvine, CA, United States). The resulting single-strand DNA
fragments were amplified by the polymerase chain reaction
(PCR) using KAPA HiFi HotStart Uracil + ReadyMix (2X)
(Kapa Biosystems, Wilmington, MA, United States). Library
concentration was determined with a Qubit 2.0 Flurometer
(Life Technologies, CA, United States) and quantitative PCR,
and the insert size was assayed on an Agilent Bioanalyzer
2100 system (Agilent, Santa Clara, CA, United States). The
prepared library was sequenced on an Illumina Hiseq 2500.
Image analysis and base calling were performed with an Illumina
CASAVA pipeline, and finally 125 bp/150 bp paired-end reads
were generated.
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TABLE 1 | Media formulations at various stages and tissues collected for sequencing.

Stages Basal medium (pH = 5.8, with 3% sucrose and 7 g/L agar) Culture time Materials source
Explants of shoot tips / / Shoot tips
Callus induction MS + 0.2 mg/L TDZ + 0.6 mg/L 6-BA + 0.15 mg/L 2,4-D + 0.6 mg/L NAA 30 days Calli

Shoot induction MS + 1 mg/L 6-BA + 0.1 mg/L NAA 40 days Leaves
Shoot elongation MS + 0.1 mg/L NAA + 0.1 mg/L IBA 25 days Leaves
Rooting 1/2MS + 0.2 mg/L IBA 20 days Leaves
Outplanting and acclimation Peat soil:perlite:vermiculite = 3:1:1 30 days Leaves

We used FastQC (fastqc_v0.11.5) to perform quality control
of the raw reads. Then, adapter sequences and low quality
reads were removed through Trimmomatic (Trimmomatic-0.36)
software using the following parameters (SLIDINGWINDOW:
4:15; LEADING: 3, TRAILING: 3; ILLUMINACLIP: adapter.fa:
2: 30: 10; MINLEN: 36). The remaining reads that passed all the
filtering steps were counted as clean reads and all subsequent
analyses were based on these data.

Reads Mapping to the Reference

Genome

We have performed de novo genome sequencing of F. nilgerrensis
(Qiao et al., 2021). Here, we used Bismark software (version
0.16.3) (Karim et al., 2016) to align the bisulfite-treated reads
to our sequenced reference genome. The reference genome
was firstly transformed into a bisulfite-converted version (C-
to-T and G-to-A converted) and then indexed using bowtie2
(Langmead and Salzberg, 2012). Sequence reads were also
transformed into fully bisulfite-converted versions (C-to-T
and G-to-A converted) before they were aligned to similarly
converted versions of the genome in a directional manner.
Sequence reads that produced a unique best alignment from
the two alignment processes (original top and bottom strand)
were then compared to the normal genomic sequence and
the methylation state of all cytosine positions in the read
was inferred. The same reads that aligned to the same
regions of the genome were regarded as duplicated ones.
The sequencing depth and coverage were summarized using
deduplicated reads.

Genome-Wide DNA Methylation

Distributions Analysis

In order to calculate the methylation level of the sequence, we
divided the sequence into multiple bins, with a bin size of 10 kb.
The sums of methylated and unmethylated read counts in each
window were calculated. Methylation level (ML) for each C site
shows the fraction of methylated Cs (mC) and is defined by the
following equation: ML = reads (mC)/reads (mC 4 umC), where
umC are the non-methylated Cs.

Calculated ML was further corrected with the bisulfite non-
conversion rate according to previous studies (Lister et al., 2013).
The calculation was based on the percentage of methylated
cytosine in the entire genome, in each chromosome and
different regions of the genome, and in three sequence contexts
(CG, CHG, and CHH).

Detection of Differentially Methylated

Regions and Their Related Genes

Differentially methylated regions were identified using the DSS
package (Wu et al, 2015). The DSS method uses spatial
correlation (the level of methylation at sites adjacent to cytosine),
the sequencing depth of cytosine sites, and the difference between
biological repeats to detect and evaluate DMRs. According to the
distribution of DMRs through the genome, we defined the genes
related to DMRs as genes whose gene body region (from TSS to
TES) or promoter region (upstream 2 kb from the TSS) had an
overlap with the DMRs.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analyses of Differentially Methylated

Region-Related Genes

Gene Ontology (GO) enrichment analysis of genes related to
DMRs was implemented by the GOseq R package (Young et al.,
2010), in which gene length bias was corrected. GO terms with
corrected p-values less than 0.05 were considered significantly
enriched by DMR-related genes. The main feature of KEGG
(Kyoto Encyclopedia of Genes and Genomes) is to link genes with
various biochemical reactions. We used KOBAS software (Mao
et al., 2005) to test the statistical enrichment of DMR-related
genes in the KEGG pathways. Similarly corrected pathways with
p-value < 0.05 were considered to be pathways with significant
enrichment of DMR-related genes.

Quantitative Real-Time PCR Validation of
Differentially Methylated Region-Related

Genes

We randomly selected 20 differentially methylated region-
associated genes (DMGs) with significant changes in
methylation level at each stage and verified them by qRT-
PCR (Quantitative real-time PCR). Total RNA was extracted
from six stage samples using a plant RNA Kit (OMEGA
bio-tek, Guangzhou, China). Reverse transcription of total
RNA was conducted with the PrimeScript RT kit (Takara,
Dalian, China) as per the manufacturer’s protocol. Each
complementary DNA sample was assayed on the QuantStudio
7 Flex real time PCR system software (Thermo Fisher
Scientific, United States) with TB green Premix Ex Taq
II (Tli RNaseH plus) kit. Gene primers for each gene are
listed in Supplementary Table S1. The 2~22¢ method
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(Livak and Schmittgen, 2001) was employed for normalization
of the relative expression of each gene using FHACTIN as an
internal reference. Each qRT-PCR experiment consisted of three
independent biological replicates with two technical replicates
for each.

RESULTS

Sequencing Samples and General
Evaluation of Whole Genome Bisulfite

Sequencing

Different tissues were collected from six stages of the tissue
culture process: shoot tips were sampled from explants stage (P1),
calli were sampled from the callus induction stage (P2), leaves
were collected from shoot induction (P3), shoot elongation (P4),
rooting (P5) and outplanting (P6) stages, respectively (Figure 1
and Table 1). Each sample included three biological replicates
for Genome Bisulfite Sequencing. The optimized protocol of
strawberry micropropagation used in this study is shown in
Table 1, as developed previously in our lab. A total of 18 samples
from six stages of the tissue culture process were collected
and sequenced. After three types of cytosine methylation were
calculated in the three replicates of each stage, we found that
the methylation levels of four samples deviated from other
corresponding replicates. Therefore, samples P1-3, P3-1, P5-2,
P6-3 were eliminated and a total of 14 samples were used for
further analysis. All the Pearson correlation coefficients (R?)
among the replicates were >0.95 in three sequences contexts,

indicating high reproducibility between stage-specific replicates
(Supplementary Figure S1).

A total of 171.44 G raw reads were generated for 14 samples by
WGBS. After quality control, 154.38 G clean reads were obtained,
with an average of 11 G clean reads per sample; the lowest Q20
and Q30 were 96.72% and 90.25%, respectively (Supplementary
Table S2). The unique mapping rate of 14 samples ranged from
60.43-75.33%. The average coverage depth of C sites ranged
from 7.2x-13.0x (Supplementary Table S3). At the same time,
the BS conversion rate of the sequencing library was >99.294%,
indicating that the DNA methylation information on reads was
highly reliable.

DNA Methylation Profiling Varied During

Different Stages of Tissue Culture

To comprehensively understand the global DNA methylation
dynamics during the tissue culture process of F. nilgerrensis, we
generated genome-wide methylation profiles of F. nilgerrensis
for six stages. Global methylation levels showed that CG
sites exhibited the highest methylation level in all stages
with an average of 49.5%, followed by CHG contexts; CHH
contexts were the lowest, with an average of 33.2% and 12.4%,
respectively (Supplementary Table S4). These differences could
be explained by different types of methylation being regulated
by different genes (Cokus et al., 2008). Accordingly, the overall
distribution of cytosine methylation levels showed that the CG
and CHG contexts had greater proportions of higher methylation
levels but relatively smaller changes among different stages
compared with CHH contexts (Figure 2A). This result was

—
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Outplanting and acclimation (P6)

5

Callus induction (P2)

Dedifferention

Rooting (P5)

FIGURE 1 | Plant materials used in this study. Plant regeneration of F. nilgerrensis from explants of shoot tips to outplanting and acclimation.
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Redifferentiation

Shoot elongation (P4)
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also supported by the global methylation density distribution
map of dedifferentiation and redifferentiation processes (P1-P3),
which indicated that the methylation level of CHH contexts
obviously changed between different stages and most of these
changes occurred in the TE high-density regions (Figure 2B).
Consistent with the global methylation patterns, the distribution
of methylated cytosines along chromosomes was uneven, of
which the proportion of CHH methylation changed dramatically
(Supplementary Figure S2).

The distribution of DNA methylation levels among genetic
regions and repeats was also significantly different, e.g., the
DNA methylation levels in all three contexts were much higher
in repeats, promoters and introns than in the other regions
(5'UTR, exons, 3'UTR) in the six stages (Figure 3A). Heat
map analysis produced a similar pattern, which showed different
methylation levels in different gene components (Figure 3B). We
also found that the methylation levels of P1, P3, and P5 were
higher than P2, P4, and P6 stages in each sequence context of
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genetic regions and repeats, among which P2 (callus induction)
exhibited the lowest methylation levels in all three contexts
(Figure 3A and Supplementary Table S4). This suggested that
the dynamically changed cytosine methylation exhibited in the
in vitro culture of F. nilgerrensis may play an important role in
regulating gene expression at different stages, leading to varied
phenotypic features.

Dynamic Pattern of Differentially
Methylated Regions Changes Among the
Six Stages

To explore the relationship between DNA methylation and
in vitro regeneration, we identified DMRs between each adjacent
stage. The results showed that many more DMRs were detected in
P2 vs. P1 (dedifferentiation) and P3 vs. P2 (redifferentiation) than
with other comparisons, suggesting epigenetic regulation plays
an important role in reprogramming of gene expression in cell
dedifferentiation and redifferentiation. Furthermore, during the
tissue culture process, either hypo- or hyper-DMRs alternately
dominant (Figure 4A).

Consistent with results from the genome-wide methylation
profiles map, the CHH sites, where methylation levels altered
dramatically, accounted for a larger proportion of DMRs in
the first three comparisons (Figure 4B), but more DMRs were
detected in CG and CHG sites in the last two comparisons,
including shoot elongation, rooting, as well as outplanting
and acclimation (Figure 4B). Further analysis of the CHH

methylation distribution on the genetic components indicated
that most of them occurred in repeats (most are transposons, TE)
and were hypo- and hypermethylated alternatively (Figure 4C)
among different stages. Different from CHH-DMRs, a large
number of CG-DMRs were distributed in exons and promoters,
and a large number of CHG-DMRs occupied either repeats or
exons at a different developmental switch (Figure 4C).

Differentially Methylated
Region-Associated Genes and

Functional Enrichment Analysis
Differentially methylated region-associated genes were analyzed
based on DMRs that overlapped gene functional regions (such as
promoters, UTRs, exons, and introns) with at least 1 bp (Chen
et al., 2020). We analyzed the distribution of DMGs components
and TEs for the different stages. Interestingly, the changing
trend of TE, which account for the highest proportion of
DMRs and which decreased dramatically after P3 vs. P2, showed
an opposite direction to other genetic components (exons,
promoters, and UTRs) (Figure 5A). That was in accordance with
the observation mentioned above that TEs were mostly affected
during dedifferentiation and redifferentiation at three contexts.
The DMGs detected in each comparison between adjacent
stages ranged from 7317 to 11246, and 2515 DMGs were shared
in all five comparisons (Figure 5B), suggesting the methylation
level of these genes continuously oscillated during different
stages of the tissue culture process. To explore the function
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of these DMGs, GO and KEGG enrichment analyses were
conducted. The results indicated that the GO terms involved
in hormone metabolic processes, plant development and the
response to various environmental factors (including bacteria,
far red light, hormone, and hypoxia) were enriched throughout

the tissue culture process (Figure 5C and Supplementary
Table S5). It was noteworthy that some specific GO terms were
also enriched at different stages. DNA methylation-dependent
heterochromatin assembly (GO:0006346), embryo development
(GO:0009790) and response to wounding (GO:0009611),
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shoot system morphogenesis (GO:0010016) were enriched in
P1-P3, while regionalization (G0O:0003002), phenylpropanoid
metabolic processes (GO:0009698), leaf and root development
(GO:0048366, GO:0022622), as well as multicellular organism
reproduction (GO:0032504) were enriched in the P4-P6
stages (Figure 5C).

Correlation Between DNA Methylation

and Expression in a Set of Differentially
Methylated Region-Associated Genes
Finally, 25 genes, whose methylation levels changed significantly
at each stage were listed and expression of 20 genes randomly
selected from them were verified by qRT-PCR (Table 2 and
Figure 6). Consistent with DNA methylation changes, expression

levels of these genes also oscillated during in vitro culture,
but they only showed relationships with DNA methylation
in the first three stages. For example, it is obvious that
the most of the promoter hypermethylated genes exhibited
reduced expression, including WIN1, WOX13, CDK, CKX, RAR,
LEC2, bHLH68, ILRI, SAU32, KNAT3, and HPSEI, while three
gene bodies (exons and UTRs) hypermethylated genes had an
increasing expression trend, including TCP2, CLV1, and CDKF.
No significant expression changes were found in genes after the
P4 stage, such as CDK and CKX, which was consistent with
no obvious methylation changes of these genes at these stages.
Our findings were roughly consistent with previous reports, that
promoter methylation appeared to have a repressive effect on
expression, while gene body methylation had a positive effect
on expression (Li et al., 2012). Notice that in most of these
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genes, no correlation was found between DNA methylation and
gene expression after the P3 phase, indicating only a partial role
of DNA methylation in regulation of gene expression during
latter three stages.

DISCUSSION

Epigenetic mechanisms are highly dynamic events that modulate
gene expression of plant developmental processes and respond to
environmental abiotic stresses (Orowska, 2021). Analysis of the
epigenetic landscape of plant tissue culture processes will help
to develop methods for reducing or amplifying the mutagenic
and epigenetic effects in tissue culture. We herein investigated
the genome-wide methylation patterns and differences at the CG,
CHG and CHH sites of six developmental stages of tissue culture
in F. nilgerrensis.

Global DNA Methylation and
Differentially Methylated Regions
Detected in Different Stages of Tissue

Culture

Among the three contexts, the CG context maintained the highest
proportion of total cytosine methylation during the tissue culture
process of F. nilgerrensis, followed by CHG methylation; the
lowest proportion was CHH methylation, mostly distributed in
TEs. That is consistent with the previous study in angiosperms
that showed CG methylation was the predominant context of
DNA methylation, which contributed to more than 50% of
total cytosine methylation (Niederhuth et al., 2016). Although
CHH methylations accounted for the lowest proportion of
total cytosine methylation, they showed the most fluctuating
methylation changes among different stages.

Many more DMRs were detected in P2 vs. P1 and in P3
vs. P2, responding to the dedifferentiation and redifferentiation
process, respectively, and most of these DMRs were distributed
in TEs. That was consistent with previous reports that DNA
hypomethylation at the callus stage plays a central role in
controlling the activation of the transcription process and the
transposition of retrotransposons (Cheng et al, 2006; Fukai
et al, 2010). These TE regions were re-methylated in the
regenerated plants again for the inhibition of active transposons,
which would influence the expression of adjacent genes (Kubis
et al., 2003; Zakrzewski et al., 2017). It is noteworthy that the
changes of TE proportion and that of other genetic components
(exons, promoters and UTRs) in DMRs was opposite after
the P3 stage. This indicated that the dedifferentiation and
redifferentiation process in the in vitro culture systems involved
activating or silencing of amounts of transposons, while in
other developmental stages, expression of hundreds of genes
was epigenetically regulated to control the development of many
different cell types.

We found that throughout the tissue culture process of
F. nilgerrensis, the global pattern of DNA methylation showed
dynamic and alternated hypo- and hyper-methylation between
each adjacent stage. The dynamics of DNA methylation have

already been reported to be an important way to actively
reprogram, which plays critical roles in transposon silencing,
genome stability and gene expression regulation during cell
fate transition in both plants and animals (Feng et al., 2010;
Zhang et al, 2010). In plant tissue culture, genome wide
hypo- and hypermethylation were predominantly observed
during the process of dedifferentiation (callus induction) and
redifferentiation (shoots induction), respectively, in a variety
of plant species (Neelakandan and Wang, 2012; Ghosh, 2016;
Hesami et al., 2020; Lin et al., 2021), that was in accordance with
our findings. There is little information concerning alterations
in DNA methylation following consecutive stages of tissue
culture from explants to outplanting. In Populus trichocarpa,
the methylomes of explants, calli and regenerated internodes
were compared, and the results showed that gene body and
transposon 5mC were increased in callus but decreased in
regenerated internodes, while promoters 5mC continued to
decline among tissues (Vining et al., 2013). Our results showed
that methylation levels of all the genetic regions were decreased
and increased alternately at the first three stages, roughly
corresponding to their three tissues. Furthermore, this trend of
alternated hypo- and hypermethylation was continued in the
following three stages. It has been reported that different types
and concentrations of hormones, together with various stresses
and ages of explants would affect the growth and development of
culture materials, leading to differences in phenotypes, changing
the trend of DNA methylation and induce cell clonal mutations
(Law and Jacobsen, 2010; Tiwari et al., 2013). Therefore, the
dynamic changes of DNA methylation during in vitro culture
of F. nilgerrensis could be explained by different factors in the
microenvironment, such as different types and concentrations
of hormones, stages of culture, osmotic stress, light stress, and
oxidative stress. In addition, the decreased DMRs in the last three
stages indicated that DNA methylation was more stable in the
plant tissues with high levels of cell differentiation, suggesting
that stage of culture is an important factor affecting DNA
methylation levels.

The Genes Affected by DNA Methylation

in Tissue Culture
Many genes with differential DNA methylation were detected
at each stage of tissue culture in F. nilgerrensis. GO and KEGG
analysis of these genes showed that genes involved in hormone
metabolic processes, plant development and response to various
environmental factors were enriched throughout the tissue
culture process. That corresponds to the different stresses in the
microenvironment, including different types and concentrations
of hormones, osmotic stress, light stress, and oxidative stress.
For example, the IQM3 (IQ domain-containing protein) was
involved in plant responses to adversity stress, and the expression
of the gene is closely related to seed germination (Zhou et al.,
2010); RPS4 was reported as a member of the TIR-NBS-LRR
family, which is involved in resistance to bacterial pathogens
(Gassmann et al., 2010).

At each stage there were specific enriched GO terms
which contained genes playing a crucial role in adaptation.
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TABLE 2 | List of important genes of methylation differences at different stages of tissue culture of F. nilgerrensis.

Stage Gene name Properties Description Methy. Diff. Methy.
contexts methy. region
P2 vs. P1 WINT AP2/ERF transcription factors Wound inducing protein CG -0.32 Promoter
(hypo)
WOX13 Wauschel-related homeobox Somatic embryogenesis CG —0.63 Promoter
AGL Agamous-like MADS-box protein Promote the formation of secondary somatic CG —-0.26 Intron
embryos
CDK Cyclin-dependent kinase It can promote the formation of callus when it is CHG -0.27 Promoter
rich in auxin
CKX Cytokinin dehydrogenase Cell cycle reentry and progression exhibition CG -0.4 Promoter
RAP Late embryogenesis abundant protein Late embryonic development protein CHG -0.6 Promoter
TCP2 Transcription factor Eliminate blade characteristics CG -0.32 Exon
LEC2 Domain-containing transcription factor Embryo regaining CG —0.43 Promoter
bHLHE8 Transcription factor bHLH68 Adjust homeostasis and drought resistance CHG -0.3 Promoter
P3 vs. P2 LEC2 Domain-containing transcription factor Embryo regaining CG 0.45 Promoter
(hyper)
KLCR1 Kinesin light chain-related During abiotic stress tune CHG 0.32 Promoter
RAP Late embryogenesis abundant protein Late embryonic development protein CHG 0.53 Promoter
CKX Cytokinin dehydrogenase Cell cycle reentry and progression exhibition CG 0.35 Promoter
ILR1 IAA-amino acid hydrolase ILR1-like 4 Auxin metabolic process CHG 0.35 Promoter
P4 vs. P3 SAU32 Auxin-responsive protein SAUR32 Auxin reactive protein CG -0.72 Promoter
(hypo)
TIP11 Aquaporin TIP1-1 Participate in drought stress CG —0.47 Promoter
CLV1 Receptor protein kinase CLAVATA1 Maintain the homeostasis of stem cells state CG -0.38 Exon
P5 vs. P4 KNAT3 Homeobox protein knotted-1-like 3 Heterologous expression promotion somatic CG 0.38 Promoter
(hyper) embryogenesis
GAOX Gibberellin 20 oxidase Overexpression promotes the production of CG 0.25 Exon
somatic embryos
CDKF Cyclin-dependent kinase Cell cycle regulator CG 0.31 Exon
RPS4 RTO4_ARATH ribosomal protein S4 Related to resistance to bacterial pathogens CG -0.37 Promoter
HPSE1 Heparanase-like protein 1 Binding growth factor and cytokine regulation CHG —0.55 Promoter
binding protein white
P6 vs. P5 SPHK Sphingosine kinase Involved in signal transduction in plant cells CG —0.62 Exon
(hypo) guide
PUB32 U-box domain-containing protein 32 Involved in ubiquitination and protein qualitative CG —-0.33 Promoter
interaction
QM3 ARATH IQ domain-containing protein Young seedlings are closely related to CG -0.29 Promoter

cotyledon expansion

During callus induction, many genes were hypomethylated
in F. nilgerrensis, including the key genes WIN (Wound-
induced protein) and WOX (WUSCHEL-related Homeobox)
for callus formation. It was reported that WIN could induce
dedifferentiation and proliferation of cells, and WOX could
react rapidly to a wound, induce auxin maximization and
alter cell fate (Lee and Seo, 2018). During shoot induction,
many hypomethylated genes restored methylation, such as
CKX (Cytokinin dehydrogenase 7) and ILRI (IAA-amino acid
hydrolase ILR1-like 4), both of which are involved in hormone
metabolism. It was reported that cytokinin could promote cell
proliferation and shoot induction in the callus (Cortleven et al.,
2019), and in A. thaliana tissue culture, the absorption of IAA by
ILR family mutants is lower than that of the wild type, resulting in
shorter hypocotyls and fewer lateral roots (Rampey et al., 2004).
Therefore, methylation changes of these genes may reflect crucial
roles for regulating the dynamic balance of cytokinin and auxin

in F. nilgerrensis for shoot induction. For the latter three stages,
the key candidate genes with changed methylation were mainly
involved in maintaining the steady-state of the stem cell (CLV1)
(Deyoung et al., 20105 Stahl et al., 2013), regulating the cell cycle
(CDKF) (Shimotohno et al., 2004; Takatsuka et al., 2009), and
participating in ubiquitination and the qualitative interaction of
proteins (PUB32) (Azevedo et al., 2001; Trujillo, 2018). These
genes were closely associated with plant regeneration for stress
resistance and development.

It was speculated that DNA methylation affects gene
expression by enhancing the binding of certain transcription
activators or inhibiting the binding of certain transcription
repressors (Zhang et al., 2018). Based on the results of qRT-PCR,
we found that they did not exhibit consistent relationships
between different genetic regions and different stages. In the first
three stages, a negative correlation between DNA methylation
and gene expression was found in the promoter, while it
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seemed that a positive correlation exist in the gene bodies.
However, no correlation was detected between methylation and
gene expression in the latter three stages. Obviously, several
other genetic and epigenetic factors should also be involved
in regulating shoot elongation, rooting and outplanting in
F. nilgerrensis. Our results suggest that the widely accepted belief
that hypermethylation leads to repression and hypomethylation
leads to activation of genes is an oversimplification, and that this
generalization is applicable only in a small fraction of DMGs
(Dafni et al., 2018).

In conclusion, we accurately monitored the methylation
patterns of consecutive steps of tissue culture by measuring
the whole genome DNA methylation levels of F. nilgerrensis.
We found that the majority of DMRs were located in the TE
high-density regions in the dedifferentiation and redifferentiation
stages, whereas the proportion of gene-body DMRs gradually
increased in the later stages of tissue culture. In addition, we
also obtained a series of candidate genes which are closely

associated with plant regeneration. This information gives a
deeper insight into the relevance of DNA methylation and
somatic clonal variation, which can be used to facilitate
molecular breeding.
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