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Anthracnose of papaya (Carica papaya L.) caused by the fungus Colletotrichum spp. is
one of the most economically important postharvest diseases. Coating with chitosan
(CS) and Ruta graveolens essential oil (REO) might represent a novel eco-friendly
method to prevent postharvest anthracnose infection. These compounds show both
antimicrobial and eliciting activities, although the molecular mechanisms in papaya
have not been investigated to date. In this study, the effectiveness of CS and REO
alone and combined (CS-REO) on postharvest anthracnose of papaya fruit during
storage were investigated, along with the expression of selected genes involved in plant
defense mechanisms. Anthracnose incidence was reduced with CS, REO, and CS-REO
emulsions after 9 days storage at 25◦C, by 8, 21, and 37%, respectively, with disease
severity reduced by 22, 29, and 44%, respectively. Thus, McKinney’s decay index was
reduced by 22, 30, and 44%, respectively. A protocol based on reverse transcription
quantitative real-time PCR (RT-qPCR) was validated for 17 papaya target genes linked to
signaling pathways that regulate plant defense, pathogenesis-related protein, cell wall-
degrading enzymes, oxidative stress, abiotic stress, and the phenylpropanoid pathway.
CS induced gene upregulation mainly at 6 h posttreatment (hpt) and 48 hpt, while
REO induced the highest upregulation at 0.5 hpt, which then decreased over time.
Furthermore, CS-REO treatment delayed gene upregulation by REO alone, from 0.5 to
6 hpt, and kept that longer over time. This study suggests that CS stabilizes the volatile
and/or hydrophobic substances of highly reactive essential oils. The additive effects of
CS and REO were able to reduce postharvest decay and affect gene expression in
papaya fruit.
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INTRODUCTION

Papaya (Carica papaya) is a fruit cultivated in tropical and
subtropical regions but appreciated worldwide. It is known for
its high nutritional and economic potential (Parven et al., 2020).
Papaya fruit is rich in vitamins A and C, and in gallic acid,
alkaloids, flavonoids, other phenolic compounds, and papain,
an enzyme with extensive uses in the pharmaceutical, medical,
and food industries (Brishti et al., 2013; Jarisarapurin et al.,
2019). However, being a climacteric fruit, it is subject to intense
metabolic activity, fast maturation, high susceptibility to fungal
diseases, and short shelf life (Batista et al., 2020).

The most common fungal disease of papaya fruit is
anthracnose, which is caused by Colletotrichum spp. and can
result in 30–50% postharvest losses (Gunathilake et al., 2018).
Several technologies have been used to extend the postharvest
shelf life of fruit, including fungicides, low-temperature storage,
thermal processing, diverse packaging conditions, and preserving
compounds obtained from natural sources that are “generally
recognized as safe” (Droby and Wisniewski, 2018). Exports
of papaya fruit have been projected to grow at 1.7% per
year over the medium term by the United Nations Food
and Agriculture Organization, to potentially reach 3,18,000 t
of fruit by 2028 (Food and Agricultural Organization of the
United Nations, 2020). This, thus, indicates the opportunity for
significant trade growth.

Chitosan (CS) is a natural biocompatible polysaccharide that
is known to be an effective eco-friendly alternative to synthetic
fungicides (Mutjaba et al., 2019; Rajestary et al., 2021). In recent
years, CS has been used as a natural fungicide and plant defense
booster based on its antimicrobial, film-forming, and eliciting
defense activities (Feliziani et al., 2015; Romanazzi et al., 2018;
Duan et al., 2019). Because of its film-forming properties, it can
be used as a coating for many fruits and vegetables, to create
a modified atmosphere around the product that prolongs the
shelf life and retains the physicochemical and sensory properties
(Valencia-Chamorro et al., 2011; Romanazzi et al., 2018). CS can
elicit defense mechanisms of papaya (Ali et al., 2012), peach (Ma
et al., 2013), banana (Hernández-Ibáñez et al., 2013), strawberry
(Landi et al., 2014, 2017), orange (Coqueiro et al., 2015), avocado
(Obianom et al., 2019), and grapes (Zhang Z. et al., 2020).

The physicochemical properties of CS relate to its hydrophilic
nature, and these can be reinforced with the introduction of
hydrophobic compounds, such as some essential oils (EOs). EOs
such as those obtained from Cymbopogon citratus, Origanum
vulgare, and Thymus capitatus, among others, have shown
encouraging benefits when used as postharvest strategies for food
preservation (Pisoschi et al., 2018; Sivakumar and Romanazzi,
2019). However, EOs are highly volatile, and thus their
persistence on products when applied can be low (Alonso-
Gato et al., 2021). This inconvenience could be reduced by
encapsulating such EOs in polymers such as CS to potentially
use them as alternatives to traditional fungicides (Rodríguez
et al., 2016). In recent years, the use of CS-based composite
coatings that incorporate EOs has been proposed as postharvest
treatments for fruit (Yuan et al., 2016; Grande-Tovar et al., 2018).
In most cases, these studies have confirmed the conservation

of fruit physicochemical properties, inhibition of pathogenic
microorganisms, and the extension of shelf life of fruit
(Munhuweyi et al., 2017; Lima Oliveira et al., 2018). More
recently, it was reported that an emulsion formed from 2% CS
combined with different concentrations of Ruta graveolens (rue)
EO (REO) has efficacy as a coating of postharvest fruit, with
extended shelf life seen for guava (Grande Tovar et al., 2019),
gooseberry (González-Locarno et al., 2020), tomato (Peralta-
Ruiz et al., 2020b), pear (Peralta-Ruiz et al., 2021), and papaya
(Peralta-Ruiz et al., 2020a). However, to our knowledge, the
mechanisms associated with the protective effect induced by
REO and CS-REO treatments in fruit are not well understood.
It is well known that plant immune regulation is a defensive
strategy of plants for protection against pathogen invasion,
in addition, some substances can induce plant autoimmunity
regulation mechanisms. In this context as mentioned above, CS
is well known as an elicitor of plant defense responses, while the
defense mechanism induced by REO and CS-REO combination
was not investigated. Thus, the objectives of this study were to
determine if the treatments of the papaya fruit with 0.5% CS,
0.5% REO, and 0.5% CS-REO combination were able to induce
resistance and/or the activation of plant defense mechanisms,
testing the early gene expression of key genes involved in
plant response against biotic and abiotic stress. Furthermore,
the effectiveness of postharvest control of anthracnose following
treatments was analyzed.

MATERIALS AND METHODS

Fruit Samples
Papaya fruits cultivated in Brazil were obtained from a local
market in Ancona (Marche region, Italy) at the third maturation
stage according to the maturity scale proposed by Santamaría
et al. (2009). Fruits with signs of mechanical damage, incorrect
maturity, physical damage, or disease were discarded, and the
remaining fruits were standardized according to size, shape, and
visual uniformity of color. They were then surface disinfected
for 1 min with sodium hypochlorite solution (200 mg L−1), and
rinsed with distilled water (Lima Oliveira et al., 2018).

Preparation of the Emulsion
A commercial CS-hydrochloride-based formulation (Chitosano;
Agrilaete, Italy) was prepared according to the instructions on the
product label; the powder product was added to distilled water
and dissolved by stirring overnight on a magnetic stirrer. The
REO was obtained from Kräuter SAS (Bogotá, Colombia).

To prepare the CS and/or REO emulsions, the methodology
reported by Peralta-Ruiz et al. (2020a) was followed, with some
modifications. Here, 0.75 ml glycerol per g CS was initially added
to 0.5% (w/v) CS as a plasticizer, followed by thorough agitation
of the solution. Triton X-100 (Sigma-Aldrich, Germany) was
used as an emulsifier, by incorporation at 1% (v/v) vs. REO.
Finally, the REO was added directly into the CS hydrochloride
dispersion under agitation, to obtain an emulsion with a final
concentration of 0.5% (v/v) REO. The REO alone emulsion was
prepared following the same procedure above but without CS.
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Postharvest Treatments
Papaya fruits without apparently visual damage were randomly
divided into four groups and treated with the emulsions using
a concentration of REO of 0.5%. This concentration was used
because in previous work we observed that this amount had a
sublethal effect on Colletotrichum gloeosporioides (Peralta-Ruiz
et al., 2020a). Three replicates of 20 fruits were used for each
treatment and the control. The papayas were carefully coated
with the emulsion following the relevant treatment (0.5% CS,
0.5% REO, and 0.5% CS-REO) by their complete immersion for
2 min, to the control samples was used water. The concentrations
of CS were selected because, in a preliminary experiment, we
observed a significant reduction of C. gloeosporioides. The fruits
were then air-dried and kept in plastic boxes at 25± 1◦C and 62%
relative humidity for 9 days.

Decay Evaluation
To determine the numbers of decayed fruit after the storage
period (9 days), we used the relative decay measurement (number
of decayed fruit/number of total fruit) for each treatment. Decay
severity (DS) was also calculated according to the methodology
proposed by Romanazzi et al. (2013), following an empirical 0–5
rating scale according to the fruit surface infected: 0, healthy fruit;
1, 1–20% infected; 2, 21–40% infected; 3, 41–60% infected; 4, 61–
80% infected; 5, ≥81% infected. McKinney’s disease index (MI)
was calculated according to Eq. (1) (McKinney, 1923):

MI =
[

1n+ 2n+ 3n+ 4n+ 5n
N × D

]
× 100 (1)

Where n is the number of fruit classified in each category of
DS, N is the total number of fruit examined (i.e., healthy and
infected), and D is the highest category of DS that occurred on
the empirical scale used.

The in situ effects of the CS-REO combination were
determined using Abbott’s equation for synergy calculation,
following the method reported by Rahman et al. (2014),
with some modifications. First, the protection index (PI) was
calculated for the DS for each treatment, according to Eq. (2):

PI =
(DScontrol − DStreatment)

DScontrol
× 100 (2)

Then, the expected efficacy (Eexp) was calculated according to
Eq. (3):

Eexp = PICS+PIREO −
(
PICS × PREO

100

)
(3)

The synergistic effects (Abbott index; AI) were calculated
according to Eq. (4):

AI =
Eobs
Eexp

(4)

Where Eobs is the PI determined for the 0.5% CS-REO
treatment. A synergistic effect was assigned for AI ≥ 1.5, an

additive effect for 0.5 ≤ AI < 1.5, and an antagonistic effect for
AI < 0.5 (Peralta-Ruiz et al., 2020a).

Gene Expression Analysis
To assess the ability of treatments to induce defense response
on the papaya fruit, the relative gene expression by reverse
transcription quantitative real-time PCR (RT-qPCR) method was
performed according to Minimum Information for Publication
of Quantitative Real-Time PCR Experiments (MIQE) guidelines
(Bustin et al., 2009).

Sample Treatment
The gene expression study for the papaya fruit was performed
according to the four different treatments (control-water, 0.5%
CS, 0.5% REO, and 0.5% CS-REO), previously described. After
the treatments, the fruits were arranged in plastic boxes and
stored for 0.5, 6, 24, 48, and 72 h, at 25◦C and 95–98%
relative humidity. At each time, three fruits per treatment were
peeled to a thickness of ∼5 mm using a potato peeler, thus,
removing the epicarp (outer skin) and some of the mesocarp
(edible part). The fruit tissue samples for each treatment
(30 g) were frozen in liquid nitrogen and stored in plastic
bags at −80◦C until RNA extraction. The experiments were
repeated at least twice.

RNA Extraction
High-quality total RNA was obtained from the fruit following
the methodology of Landi et al. (2014). Briefly, 30 g papaya
fruit tissue was ground in liquid nitrogen, and 400 mg of
the resulting fruit powder was randomly collected for RNA
extraction. Extraction buffer was added [1 ml; 100 mM Tris–
HCl, pH 8.0, 25 mM ethylenediaminetetraacetic acid disodium
salt (EDTA), pH 8.0, 2% (w/v) hexadecyltrimethylammonium
bromide (CTAB) (Sigma), 2% (v/v) β-mercaptoethanol, 2.5 M
NaCl, 2% (w/v) soluble polyvinylpyrrolidone-40 (PVP-40)], and
the samples were incubated at 65◦C for 40 min. The supernatants
were then transferred to new tubes with an equal volume of
chloroform/isoamyl alcohol (24:1) and mixed and centrifuged
at 10,000 × g for 8 min at 4◦C. This last step was repeated
two more times. The total RNA was precipitated in 0.25 vol.
10 M LiCl, and kept overnight at 4◦C. The samples were then
centrifuged at 10,000 × g for 30 min at 4◦C, washed in 70%
ethanol, dried, and resuspended in 50 µl double-distilled diethyl
pyrocarbonate water. The RNA quality was determined based on
an absorbance ratio of 1.80 to 2.00 at 260/280 nm, and 1.5 to
2.0 at 260/230 nm, using a spectrometer (BioPhotometer plus;
Eppendorf Inc., Westbury, NY, United States).

Reverse Transcription
First-strand cDNA was synthesized using iScript TM
cDNA synthesis kits (Bio-Rad Laboratories, Hercules, CA,
United States) from 40 ng RNA, according to the instructions of
the manufacturer. From the RNA of each biological replicate, the
cDNA synthesis was performed twice, with the products (20 µl
each) mixed and diluted (1/10) according to preliminary tests,
with an aim to have an adequate quantity of cDNA to analyze all
the selected genes.
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Primer and Reference Gene Selection
Primers were designed using Primer3 software 71, according
to 17 key target genes that code for enzymes linked to
signaling pathways that regulate plant defense, pathogenesis-
related (PR) protein, cell wall-degrading enzymes, control
of redox, abiotic stress, and secondary metabolism of the
phenylpropanoid pathway. To screen the most stable reference
genes, four housekeeping genes, 18S ribosomal RNA (18S-
RNA), α-tubulin (tub), elongation factor 1 (tuf ), and histone
H1 (H1), were selected. The genes were identified from the
specific sequence of C. papaya deposited in National Center
for Biotechnology Information (NCBI) GenBank. The main
functions of the genes and the related coding enzymes analyzed
in this study are reported in Table 1. The primer pairs
were chosen and validated in silico using primer BLAST
specific analysis2, and then according to the melting profiles
obtained by RT-qPCR, as described later. The stabilities of
candidate reference genes were evaluated using algorithms:
geNorm module of qbase + (Biogazelle) (Vandesompele et al.,
2002). These algorithms rank the reference genes based on the
stability value (M-value). A lower M-value corresponds to a
more stable gene. The recommended stability for homogenous
samples is M-value < 0.5 [coefficient of variation, (CV) < 0.25];
and for heterogeneous samples is M-value < 1 (CV < 0.5)
(Bustin et al., 2009).

Quantitative Real-Time PCR
The RT-qPCR reactions were carried out in triplicate in a total
volume of 12 µl each, which contained 5.6 µl diluted cDNA,
0.20 µM of each primer, and 6 µl SsoAdvanced Universal
SYBR Green Supermix, using a real-time detection system (CFX
Connect; Bio-Rad Laboratories). The cycling conditions were as
follows: 4 min denaturation at 95◦C, followed by 40 cycles at 95◦C
for 20 s, and 60◦C for 40 s. Melting curve analysis was performed
over the range of 65–98◦C. All of the assays included no-RT and
no-template controls to determine the nonspecific amplification.
The RT-qPCR efficiency (E) of each primer pair was determined
using standard curves generated according to E = 10 – 1/slope.
The diluted cDNAs from samples (10 µl each) were mixed, and
then four serial dilutions 1:5, (initial dilution, 0.2, 0.04, 0.008)
were obtained. For each primer pair, the standard curve was
generated from two technical replicates.

Statistical Analysis
For disease incidence, each experiment was repeated at least
twice, using a completely randomized block design. The
normality of the data was tested using Shapiro–Wilk tests, and
the homogeneity of the variances was tested using Levene’s
test, using STATISTICA ver. 13.0 (TIBCO Inc., Palo Alto, CA,
United States). Appropriate transformations were determined
using the Skewness coefficient. The arcsine of the square root of
the proportion was applied to the disease incidence data.

Relative changes in gene expression data were determined
using the 2−11Ct method (Livak and Schmittgen, 2001),

1https://bio.tools/primer3
2http://www.ncbi.nlm.nih.gov/Blast.cgi

normalized using the reference genes selected in this study, and
compared to the untreated control at 0.5 hpt. Each gene was
analyzed with three technical replicates for each of the two
biological replicates (n = 6). To evaluate both the effects of the
coatings on the papaya fruit and the gene expression variations
in response to the treatments, the data from each sampling point
were shown as means± SD and were statistically evaluated using
ANOVA, followed by individual comparisons using Duncan’s
multiple range tests, with significance set at p ≤ 0.05. For each
treatment at each time point, the relative fold-changes were
calculated to relevant controls and shown in the heatmap3.

RESULTS

Fruit Decay
The effects of the treatments with emulsions of 0.5% CS, 0.5%
REO, and their combination, CS-REO, on the incidence and
severity of the papaya fruit decay over 9 days of storage at
25◦C are reported in Table 2 and illustrated in Figure 1. The
incidence of decay with 0.5% CS was not statistically different
from that of the control fruit. In contrast, for both REO and CS-
REO treatments, the decay incidence compared to the control
was reduced by 21 and 37%, respectively. The severity of the
postharvest decay was reduced compared to the control for all
of the treatments; for CS by 22%, for REO by 29%, and CS-
REO by 44%. The greatest reduction in the McKinney’s index
was seen for the combined treatment (CS-REO; 50%). The AI
for this combined treatment showed an additive effect between
these 0.5% CS and 0.5% REO emulsions when applied together to
the papaya fruits.

Gene Expression Analysis
For this study, RT-qPCR was set up to analyze the papaya fruits
treated with 0.5% CS, 0.5% REO, separately and combined.
The melt peak analysis demonstrated a single homogenous
peak for all of the primer sets (data not shown), which
confirmed the specificity of the amplicons produced in the RT-
qPCR for each of the 21 target and reference genes examined
(Table 3). No amplification was seen in any of the control (water
treatment) assays, which confirmed that the samples were free
of contamination with genomic DNA or RNA, or the cDNA
template (data not shown). Standard curves using a mix of cDNA
samples from the papaya fruit were constructed using four points
of five-fold serial dilutions of cDNA, which yielded efficiencies
that ranged from 90 to 110% (Bustin et al., 2009; Table 3).

The four putative candidate reference genes 18S-RNA, tub,
tuf, and H1 were validated according to the geNorm method,
and they showed different stability values. The lowest M-values,
which correspond to the most stable genes, across all of
the treatments tested in this study were seen for the tub
(0.3357 ± 0.046; CV, 0.1352 ± 0.098) and H1 (0.3775 ± 0.073;
CV, 0.1881± 0.078). This indicated that these two reference genes
were suitable for the RT-qPCR investigation into these treated
papaya fruits. In contrast, 18S-RNA and tuf showed greater

3http://www.heatmapper.ca/expression/
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TABLE 1 | Genes selected for gene expression.

Gene name Abbreviated NCBI code Function

Salicylic acid binding protein 2 SABP2 XM_022039404.1 Required to convert methyl salicylate to salicylic acid; part of signal transduction
pathways that activate systemic acquired resistance in systemic tissue (Park et al.,
2009)

Suppressor of npr1-1,
constitutive 1

SNC1 XM_022056966.1 Disease resistance protein involved in salicylic acid dependent defense response
pathway. Triggers a defense system that promotes programmed cell death (Zhu et al.,
2010)

Pathogenesis related protein 1 PR-1 XM_022048043.1 Involved in defense reactions of plants against pathogens. Long been used as marker
for salicylic-acid-mediated disease resistance (Gao et al., 2015)

Jasmonate
O-methyltransferase

JMT XM_022037106.1 Catalyzes methylation of jasmonate into methyl jasmonate. Acts as cellular regulator in
different processes and defense responses (Seo et al., 2001)

Linoleate 13S-lipoxygenase
2-1, chloroplastic

LOX2 XM_022052808.1 Involved in diverse aspects of plant physiology, including pest resistance and
senescence. Involved in bulk production of jasmonate upon wounding (Bannenberg
et al., 2009)

Ethylene receptor, transcript
variant X2

ETR2 XM_022038539.1 Related to bacterial two-component regulators. Acts as negative regulator of ethylene
signaling (O’Malley et al., 2005)

Ethylene responsive
transcription factor RAP2-13

RAP2-13 XM_022041977.1 Probably acts as transcriptional activator. Binds to pathogenesis related promoter
element. Maybe involved in regulation of gene expression by stress factors (Paul et al.,
2016)

Peroxidase 10 PRX10 XM_022052459.1 Removal of H2O2, oxidation of toxic reductants, biosynthesis and degradation of lignin,
auxin catabolism, response to oxidative stresses, wounding, and pathogen attack
(Rhee et al., 2001)

Pathogenesis related protein 5 PR-5 XM_022040713.1 Involved in response to pathogens (El-Kereamy et al., 2011)

Chitinase 2 Cht2 XM_022055626.1 Encodes chitinase-like protein expressed predominantly in stems (Hossain et al., 2010)

Endo-1,3;1,4-beta-D-
glucanase

GLUC XM_022049329.1 Role in control of plant growth. Mediates specific degradation of cell wall (Thomas et al.,
2000)

Polygalacturonase PG XM_022056889.1 Important pectolytic glucanase, primarily implicated in softening of fruit during ripening
(García et al., 2009)

NAC domain protein NAC XM_022052621.1 Transcription factors highly responsive to abiotic stresses. NACs have roles in
maintaining water status under drought or salt conditions (Lv et al., 2016)

Heat shock cognate 70 kDa
protein 2

HSP70 XM_022054737.1 In cooperation with other chaperones, key components that facilitate folding of de novo
synthesized proteins; also responsible for degradation of damaged proteins under
stress (Ahn et al., 2005)

Anthocyanidin
3-O-glucosyltransferase

UFGT XM_022051791.1 Participates in flavonoid biosynthesis; involved on defense against pathogen attack (Hu
et al., 2011)

Flavonol synthase FLS XM_022056718.1 Participates in flavonoid biosynthesis; involved in defense against pathogen attack
(Hammerbacher et al., 2019)

Phenylalanine ammonia-lyase PAL XM_022032339.1 Key enzyme in phenol synthesis pathway; considered primary inducible response in
plants against several biotic and abiotic stresses (Kim and Hwang, 2014)

Elongation factor 1 Tuf XM_022042067.1 Responsible for enzymatic delivery of aminoacyl tRNAs to ribosomes, (Sasikumar et al.,
2012)

α-tubulin Tub XM_022035406.1 Polymerizes into long chains or filaments that form microtubules; hollow fibers that
serve as skeletal system for living cells (Janke and Magiera, 2020)

Histone H1 H1 XM_022052470.1 Dominant role in establishing compaction state of nucleosomes and influencing
conformation (Woodcock et al., 2006)

18S ribosomal RNA 18S-RNA U42514.1 Active center of protein synthesis in 40S ribosomal subunit (Poltronieri and Hong, 2015)

The main functions of the gene products are also given. Bold, reference genes.

TABLE 2 | Effects of the chitosan (CS), Ruta graveolens essential oil (REO), and CS-REO treatments on the incidence and severity of the papaya fruit decay after 9 days
of storage at 25 ± 1◦C.

Treatment Disease incidence (%) Disease severity (1–5) McKinney’s index (%) Protection Index (%) Abbott Index

Control (water) 95.0 ± 10.0 a 4.5 ± 0.38 a 90 ± 7.7 a – –

0.5 % CS 84.5 ± 11.9 ab 3.5 ± 0.11 b 70 ± 2.3 b 21.8 ± 5.6 b –

0.5 % REO 75.4 ± 11.1 b 3.2 ± 0.25 b 63 ± 5.0 b 29.4 ± 8.6 b –

0.5 % CS+REO 60.0 ± 0.0 c 2.5 ± 0.11 c 50 ± 2.3 c 44.3 ± 2.5 a 1.0

Data are means ± SD.
Different letters within columns indicate significant differences between treatments (p ≤ 0.05; Duncan’s multiple range tests).
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FIGURE 1 | Representative images of incidence of postharvest decay in
papaya fruit following 9 days of storage at 25◦C ± 1◦C after the treatments
with water (A; control), 0.5% chitosan (CS) (B), 0.5% Ruta graveolens
essential oil (REO) (C), and their combination 0.5% chitosan, 0.5% Ruta
graveolens essential oil (CS-REO) (D).

instabilities according to the M-values (0.7264 ± 0.124; CV,
0.4012± 0.072; 0.6354± 0.12; CV, 0.5147± 0.101; respectively).

The gene expression data were discussed according to their
relative fold-changes compared to relevant controls.

Genes Involved in Signaling Pathways That Regulate
Plant Defense
SABP2 is involved in the salicylic acid (SA) pathway. Its levels
of expression in the fruit treated with CS showed moderate
upregulation at 6 hpt and 24 hpt, of ∼2-fold, compared to
the relevant control. However, its greatest upregulation was at
48 hpt, at 9.9-fold. After REO treatment, SABP2 expression
increased more rapidly, to initially peak at 0.5 hpt at 19.9-fold,
and then increased again to 6.3-fold at 24 hpt. Then for CS-
REO, SABP2 showed increased expression at 6, 24, and 48 hpt
of 9.2-fold, 5.9-fold, and 8.7-fold, respectively, with respect to the
control (Figures 2, 3). Expression of the SNC1 gene suppressor
of NPR1 was correlated with SABP2 expression. Indeed, after
CS treatment, SNC1 expression increased at 48 hpt to 4.5-fold,
while after REO treatment, it was upregulated at 0.5 hpt by 14.9-
fold and at 24 hpt by 3.8-fold. Finally, after CS-REO treatment,
SNC1 showed increased expression at 6, 24, and 48 hpt, of
approximately 5-fold to 7.5-fold (Figures 2, 3). The JMT gene
is a part of the jasmonate pathway, and its expression levels in
the papaya fruits were not affected by CS treatment, while REO
increased JMT expression at 0.5 hpt by 9.4-fold, and at 24 hpt by
2.9-fold. JMT was upregulated with the CS-REO treatment at 24
and 48 hpt, by 5.6-fold for both (Figures 2, 3). Like for JMT, the
LOX2 gene participates in jasmonate synthesis, and its expression
was also not affected by CS. Instead, after REO treatment, this
transcript was upregulated at 0.5 hpt by 5.5-fold, followed by
downregulation at 6 hpt of −2.8-fold. The CS-REO treatment

upregulated JMT at 6 and 24 hpt, by 1.7-fold and 4-fold,
respectively (Figures 2, 3). For the genes involved in ethylene
(ET) transcription, the expression of both ETR-2 and RAP2-
13 was upregulated after CS treatment mainly at 6 and 48 hpt:
for ET-2, by 5.2-fold and 4.5-fold, respectively, and for RAP2-
13, by 2.6-fold and 3.6-fold, respectively (Figures 2, 3). After
REO treatment, ETR-2 and RAP2-13 showed similar expression
profiles, with strong upregulation at 0.5 hpt, of 10.7-fold and 12.6-
fold, respectively (Figures 2, 3). Then, ETR-2 was upregulated
at 6 and 24 hpt by 2-fold and at 72 hpt by 6-fold, while at
24 hpt, RAP2-13 was upregulated by 2.7-fold (Figures 2, 3).
For CS-REO treatment, there was upregulation of ETR-2 at 0.5,
6, and 48 hpt of 12-fold, 16-fold, and 8.8-fold, respectively,
while RAP2-13 expression was upregulated at 0.5 hpt by 2.4-
fold, at 6 hpt by 12.6-fold, and at 24 and 72 hpt by about 3-fold
(Figures 2, 3).

Genes Involved in Oxidative Stress
The CS treatment upregulated PRX10 expression at 48 hpt by
19.4-fold, while REO treatment showed upregulation at 0.5, 24,
and 48 hpt by 5.6-fold, 2.4-fold, and 2.6-fold. The CS-REO
combination promoted a moderate increase in PRX10 expression
at 0.5 hpt, of 1.8-fold, while greater upregulation was seen
at 6 hpt and 48 hpt, of 6.8-fold and 18.6-fold, respectively
(Figures 2, 3).

Genes for PR Proteins
For the PR-1 gene, its expression increased after both CS and CS-
REO treatments, mainly at 0.5, 6, and 24 hpt, at 6.1-fold, 8.1-fold,
3.4-fold, and 4.6-fold, 9.1-fold, and 3.2-fold, respectively. The PR-
1 gene up-regulation was observed also at 72 hpt by 2.4-fold by
CS-REO. After the REO treatments, PR-1 expression increased
mainly at 6 hpt, by 9-fold, and at 72 hpt, by 2.4-fold (Figures 2, 3).
The PR-5 gene was upregulated only after REO treatment, and
at 0.5, 24, and 48 hpt, by 2.9-fold, 2.1-fold, and 4.1-fold. The
downregulation was observed at 48 hpt by 3.5-fold by CS, were
no changes in PR-5 gene expression with CS-REO treatments
(Figures 2, 3).

Genes for Cell Wall-Degrading Enzymes
The expression of Cht2 was upregulated after CS treatment at
6 and 48 hpt, by 2.8-fold and 5-fold, respectively; conversely,
after REO treatment, the gene was upregulated at 0.5 and 6 hpt,
by 20.7-fold and 5.8-fold, respectively. The CS-REO treatment
combination increased Cht2 expression at 6, 24, and 72 hpt, by
12.8-fold, 7.21-fold, and 2.5-fold (Figures 3, 4).

Similar to Cht2, after CS treatment, GLUC expression
increased at 6 and 48 hpt, 2.4-fold, and 3.5-fold, respectively.
The REO treatment upregulated GLUC at 0.5, 6, and 48 hpt
by 4.6-fold, 3.3-fold, and 1.8-fold, respectively, while CS-REO
upregulated GLUC mainly at 6 hpt, by 10-fold (Figures 3, 4).

The PG gene was upregulated after all of the treatments at all of
the time points by >3.8-fold, except for REO at 0.5 hpt. However,
the greatest PG expression after CS was at 0.5 hpt, at 7.7-fold,
while for both REO and CS-REO treatments, high PR expression
was also seen at 6 hpt, at 16.9-fold, and 19.5-fold, respectively
(Figures 3, 4).
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TABLE 3 | Primer pairs were selected for gene expression analysis and related PCR amplification efficiencies data.

Gene code Primers (5′forward/5′reverse) Amplicon size (bp) Melt curve peak (◦C) PCR efficiency (%) R2 for standard
curve

SABP2 5′gataggcccggttggtattt/5′aagggcatcatgagatttgg 172 80.0 101.8 0.997

SNC1 5′ctgattccgtgcttgttgaa/5′taccccaaattcccaccata 171 79.5 106.7 0.983

PR-1 5′tctcacttgggacaccactg/5′atgcccacaaacttttccag 220 88.5 99.6 0.997

JMT 5′attgcagacctgggttgttc/5′ggaacctgcaattccagaaa 234 82.5 107.2 0.998

LOX2 5′ctccgtgcatgctgtttcta/5′tcaacgctaacaagctccaa 207 84.5 98.9 0.998

ETR2 5′cgcttgaaagaggaagcact/5′aaactgcacaaggacccatc 211 82.0 97.1 0.984

RAP2-13 5′ccaagaaccgtacccgtcta/5′cagacctttgcttcccagag 249 87.0 107.1 1.000

PRX10 5′cagcaaacaaagatggagca/5′gatcgggacacgttttctgt 249 85.0 102.1 0.998

PR-5 5′ctcagagcacggagaaggac/5′tactcggccgtgttaaaagc 214 89.0 107.7 1.000

Cht2 5′gatcctgacagtggcaatca/5′ccacaggcgtgttacgttta 227 81.0 107.8 0.991

GLUC 5′tctctcatttccctcgcatt/5′cgacgacgtaggtgtcaaga 261 83.5 108.7 0.998

PG 5′tggtggtgcgtatagatgga/5′tgttccgggagttgagaaac 213 85.5 98.54 1.000

NAC 5′ggatcgggtatgaagagcaa/5′atttggggctcttcctttgt 280 84.5 106.1 0.997

HSP70 5′gagaagtgcttgagggatgc/5′gtacagcagcaccataggc 176 84.0 102.8 0.997

UFGT 5′gatgaatcgcagctgaaaca/5′agatcgaattccacccacag 244 88.0 97.6 0.995

FLS 5′tgatagccgatgagctgttg/5′acaccgagaaccaaatcagg 189 81.5 103.6 0.998

PAL 5′tgttgcagggctattcagga/5′ccaccatcgattccagcaag 238 82.0 101.3 0.997

tuf 5′ctggaaagtcgaccaccact/5′aggggcatcaataacagtgc 227 84.0 102.0 0.996

tub 5′gagcacactgatgtggcagt/5′ggaacaaggttggtctggaa 197 80.5 104.5 0.987

H1 5′acatggaagggaagcacaag/5′cgacttcttcgaggtcttgg 179 83.5 102.7 0.986

18S-RNA 5′agaaacggctaccacatcca/5′acccaaggtccaactacgag 247 83.5 102.8 0.997

PCR amplicon size, amplification efficiencies, and regression coefficients for the standard curves are reported for each primer pair. Bold, reference genes.

Genes Involved in Abiotic Stress
After CS treatment, the NAC gene was downregulated at 6, 24,
and 72 hpt, at −1.6-fold, −1.7-fold, and −7.7-fold, respectively
(Figures 3, 4). Instead, REO treatment strongly increased NAC
expression at 0.5 hpt at 26.8-fold, followed by downregulation at
6 and 72 hpt at−6.25-fold and−4-fold (Figures 3, 4). In contrast,
CS-REO affected NAC expression only at 48 hpt, when it was
upregulated by 3.4-fold (Figures 3, 4).

The HSP70 expression after CS treatment was upregulated at
6, 48, and 72 hpt by 5.2-fold, 3.3-fold, and 2.4-fold, respectively,
while, after REO treatment, this occurred at 0.5 and 72 hpt,
by 24.2-fold and 7.9-fold, respectively. With CS-REO treatment,
HSP70 was upregulated at 6, 48, and 72 hpt by 2.5-fold to 3.3-fold
(Figures 3, 4).

Genes Involved in the Phenylpropanoid Pathway
The PAL, FLS, and UFGT genes are all linked to the
phenylpropanoid pathway, and they showed similar gene
expression patterns.

In more detail, CS treatment increased PAL expression at
6 and 48 hpt by 2.1-fold and 13.7-fold, while REO treatment
upregulated PAL at 0.5 and 24 hpt by 11.4-fold and 6.9-fold. Then
after treatment with the CS-REO combination, this increased
PAL at 6, 24, 48, and 72 hpt by 8.7-fold, 8.3-fold, 10.7-fold, and
3.5-fold, respectively.

The FLS gene was upregulated by CS at 6 and 48 hpt, at
3.3-fold and 6.4-fold, by REO at 0.5 and 24 hpt, at 3.7-fold
and 5.8-fold, and by CS-REO at 6, 24, and 48 hpt, at 6.5-fold,
5.0-fold, and 6.2-fold.

Finally, the UFGT gene was upregulated by CS at 6, 24, and
48 hpt by 4.4-fold, 1.9-fold, and 6.3-fold, and by REO at 0.5
and 24 hpt by 9.8-fold and 5.6-fold. The CS-REO treatment
upregulated UFGT at 6, 24, and 72 hpt by 9.0-fold, 3.4-fold, and
2.4-fold (Figures 3, 4).

DISCUSSION

In this study, we evaluated the effectiveness against postharvest
anthracnose in papaya fruit of commercial formulations of
CS and REO, both individually and combined. Furthermore,
we also investigated the effects of these treatments on the
activation of the transcription of key genes involved in plant
defense mechanisms. In these fruits under postharvest storage
at room temperature, and compared to the CS and REO
treatments, the CS-REO combination indeed showed the greatest
control of fungal decay and severity, as also for the McKinney’s
Index. Similar results were observed in previous studies on
papaya artificially inoculated with C. gloeosporioides, where
the fruit treated with CS- 0.5% REO showed an incidence
decay of 60% and a lower severity lesion (Peralta-Ruiz et al.,
2020a). According to the AI, CS-REO showed an additive
effect from CS and REO alone, as also indicated by Peralta-
Ruiz et al. (2020a). Our findings agree with several previous
studies that have reported on synergistic or additive effects
of CS and EOs in combination for fruit preservation (Yuan
et al., 2016; Lima Oliveira et al., 2018; de Oliveira et al., 2020;
Elshamy et al., 2021).
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FIGURE 2 | Quantification of relative gene expression of nine of the defense genes examined (as indicated; see also Table 1) in papaya fruit following treatments
with water (control), 0.5% CS, 0.5% REO, and their combination (CS-REO). Each experimental replicate represents three technical replicates (n = 6). Gene
expression given was relative to control at 0.5 h posttreatment, also indicated with a red asterisk, according to the 2−11Ct method (Livak and Schmittgen, 2001).
Data are the means ± SD. Columns with different letters are significantly different (P ≤ 0.05; Duncan’s multiple range tests).

The antifungal properties of CS are usually related to the
interactions of its positive amino groups with the fungal
membrane, which can induce changes to the permeability of
the plasma membrane (Grande-Tovar et al., 2018). Also, the
barrier effect of CS inhibits the germination of fungal spores
and reduces the fungal decay on fruit (Romanazzi et al., 2018;
Rajestary et al., 2021). This can preserve the physicochemical
properties of the fruit for longer, thus also prolonging the shelf
life (Nair et al., 2020).

In the present study, the effects of CS were reinforced by
the addition of REO, which has been observed for other EOs
(Sivakumar and Bautista-Baños, 2014; Huang et al., 2021),
through their antimicrobial, antifungal, and antioxidant activities

(Grande Tovar et al., 2019; González-Locarno et al., 2020;
Peralta-Ruiz et al., 2020a; Zhang D. et al., 2020). It has been
reported that the mode of action of such EOs is based on
the cytotoxic effects including the induction of cell death by
activation of apoptosis and/or necrosis processes (Nazzaro et al.,
2017; Sharifi-Rad et al., 2017). Indeed, recent studies have
reported that the fungal membrane of C. gloeosporioides was
compromised after 1 h with 1% REO (Peralta-Ruiz et al.,
2020a) and that under similar treatment, Candida yeast showed
irreversible cell membrane damage with increased intracellular
leakage of macromolecules (Donadu et al., 2021). In addition to
the antimicrobial actions, several studies have shown activities
as resistance inducers and/or activators of plant defense
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FIGURE 3 | Gene expression heatmap. Hierarchical clustering according to Pearson’s correlation similarities and average linkage of the defense genes examined (as
indicated; refer to Table 1) in papaya fruit following treatments with 0.5% CS, 0.5% REO, and their combination (CS-REO). For each gene, the maximum (green
color) and minimum (red color) fold-changes are compared to the control (water) treatment at 0.5, 6, 24, 48, and 72 h posttreatment (A). The average fold-change
values compared to the control (water) treatment at 0.5, 6, 24, 48, and 72 h posttreatment, used for hierarchical clustering, were shown. In bold, the data
significantly different (P ≤ 0.05; Duncan’s multiple range tests), compared to relevant controls were indicated (B).

mechanisms for both CS (Ali et al., 2012; Landi et al., 2014, 2017;
Coqueiro et al., 2015; Obianom et al., 2019) and EOs (Banani
et al., 2018; Hou et al., 2020).

In the present study, we investigated for the first time, the
expression of a range of plant defense genes induced by CS and
REO and their combination in the papaya fruit. We selected genes
that are involved in key metabolic pathways of plant defense
responses to provide basic information on the main mechanisms
involved in these actions of such CS–EOs combinations.

We first validated a useful protocol for this gene expression
study in papaya fruit using RT-qPCR. This technique has

been widely used to evaluate gene expression because of its
speed and sensitivity. However, reliable quantification of gene
expression mainly depends on accurate normalization. For this
reason, the selection and validation of the reference genes were
among the most crucial steps in the setting up of this RT-
qPCR (Vandesompele et al., 2002; Bustin et al., 2009; Köhsler
et al., 2020). This indicated two new suitable genes for gene
expression studies in papaya fruit: H1 and tub. In this papaya
fruit investigation, and independent of the treatments used in
this study, these genes showed greater stability than 18S rRNA,
as suggested by Zhu et al. (2012), and the tuf gene.
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FIGURE 4 | Quantification of relative gene expression of the remaining eight of the defense genes examined (as indicated; refer to Table 1) in papaya fruit following
treatments with water (control), 0.5% CS, 0.5% REO, and their combination (CS-REO). Each experimental replicate represents three technical replicates (n = 6).
Gene expression given was relative to control at 0.5 h posttreatment, also indicated with a red asterisk, according to the 2−11Ct method (Livak and Schmittgen,
2001). Data are the means ± SD. Columns with different letters are significantly different (P ≤ 0.05; Duncan’s multiple range tests).

Based on this transcript analysis, this study showed that both
the 0.5% CS and 0.5% REO treatments affected gene expression
in the papaya fruits. However, according to the transcription of
the individual genes analyzed in this study, some differences were
seen. The jasmonic acid (JA)-responsive genes of JMT and LOX2
(Nakamura et al., 2011) were not affected in these papaya fruits
by CS treatment, while they were involved in REO and CS-REO
treatments. On the other hand, both CS and REO modulated the
expression of genes linked to the SA pathway (i.e., SABP2, PR-1,
and SNC1) and ET pathway (i.e., ET-2 and RAP2-13). Also, the
PR-5 gene, which is linked to the SA pathway (Fu et al., 2012; Ali
et al., 2018), was upregulated by REO treatment.

Many studies have indicated that the SA-mediated
defense signaling pathway is important for activation of
pathogen-associated molecular patterns that trigger immunity
and for effector-triggered immunity, as well as for systemic
acquired resistance (Jones and Dangl, 2006; Walters and
Fountaine, 2009; Spoel and Dong, 2012). As well as the SA-
mediated defense signaling pathways are indicated as linked

to biotrophic pathogen infection, the jasmonate/ET pathways
are indicated as involved with regulators of stress responses
against necrotrophic fungi (Wasternack and Hause, 2013), and
induction of volatile compounds in response to insect herbivores
(Rodriguez-Saona et al., 2013) and during abiotic stress (Wang
et al., 2020). However, investigations carried out in recent years
have shown the complexity of the plant regulatory network
against stress. Indeed, cross talk between the SA-dependent,
JA-dependent, and ET-dependent signaling pathways is believed
to be involved in the fine-tuning of the defense reaction, to lead
to the activation of an optimal mix of defense responses to resist
any particular pathogen (Pieterse et al., 2009; Jia et al., 2018).
In support of this, a previous study showed that oregano EO
can trigger the plant’s innate immune system that involves SA,
JA, and ET synthesis and signaling, with the activation of PR
proteins and phytoalexin synthesis (Rienth et al., 2019).

However, overall, our study showed that both CS and REO,
and their combination CS-REO, can trigger signaling defense
mechanisms to induce genes involved in phenylpropanoid
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biosynthesis and in cell wall metabolism, which demonstrates
key roles for both secondary metabolite and cell wall genes in
postharvest defense pathways (Landi et al., 2014, 2017; Xoca-
Orozco et al., 2019; Zhang et al., 2020).

The present study underlines the involvement of genes linked
to heat stress tolerance and cellular apoptotic change, in terms
of NAC and HSP70 strongly upregulated in the early phase after
REO treatment, while mainly for NAC gene, downregulation and
/or unaffected gene expression was observed according to the
other treatments. Part of the core of the data presented here
is the difference detected between the CS and REO treatments
according to activation times. The CS treatment affected gene
expression mainly after 24 and 48 hpt, while the REO treatment
strongly upregulated the gene transcripts earlier, at 0.5 hpt, then
generally the gene expression drastically decreased at 6 hpt, then
increased again mainly at 24 hpt, but to a lesser extent. In both
cases, changes in gene expression over time are not surprising,
given that gene expression is a complex stochastic process that
represents the combination of numerous enzymatic reactions
with unknown cell variables (Dal Co et al., 2017; Park et al., 2018).
These changes in gene expression have been proposed to occur as
the result of an optimization process, due to a trade-off between
speed and cost (to the cell) of transcript production (Zaslaver
et al., 2004). Also, the changes in gene expression might be linked
to adaptation to the changes in stress (Koch and Guillaume,
2020). The present study suggests that these differences in
gene expression over time can be correlated to the different
natures of these two compounds, CS and REO. EOs are volatile,
thermolabile, and unstable, which results in natural fluctuations
in their components and compositions. They are highly reactive
substances, and their antimicrobial activities might be impaired
by changes in pH or temperature (Turek and Stintzing, 2013).
On the other hand, CS has excellent film-forming properties,
which will provide a mechanical barrier for the control of the
respiration rate and decrease the loss of volatiles. The highly
reactive volatile EOs can thus be stabilized and incorporated into
the biodegradable, nontoxic CS, to produce transparent elastic
films that can improve the effectiveness of their postharvest
actions. This additive effect was evident in the gene expression
patterns. Indeed, the genes analyzed after the CS-REO treatment
generally showed greatly increased expression levels starting at
6 hpt, rather than at 0.5 hpt, as observed after the REO treatment.
This might be due to the encapsulation of REO within the
CS emulsion. Then, later on after the CS-REO treatment (i.e.,
beyond 6 hpt), for most of the genes, the expression levels
were maintained relatively high for longer. This was seen for
genes linked to the phenylpropanoid pathway, as PAL, FLS,
and UFGT, as well as for genes involved in the signaling
pathways that regulate plant defense, as SABP2, SNC1, M-JA,
LOX2, ETR-2, and RAP2-13, but not for genes more closely with
abiotic stresses such as NAC and HSP70, which suggests greater
control of the cell stress by CS. This shows that the increase
in the effectiveness of the disease control was associated with
a broader and constant physiological change in the levels of
the gene transcripts with roles in the induction of postharvest
defense responses.

CONCLUSION

This study initially confirms that the incorporation of REO
into the edible CS coating improves the control of postharvest
decay of papaya fruit compared to the use of these treatments
individually. For the first time, the main molecular mechanism
in the triggering of defense pathways linked to the CS-REO
combination is also indicated, as compared to their application.
Indeed, CS largely showed effects on genes involved in the
regulation of plant defense at 6 hpt, while REO showed
strong induction of overexpression in the early phase, at
0.5 hpt. The CS-REO treatment also demonstrated additive
actions on gene expression in these papaya fruits. This was
supported by the delay in gene upregulation for CS-REO
compared with REO, from 0.5 to 6 hpt, and kept longer
over time. Indeed, this effect might be associated with CS
such that it incorporates the volatile substances of the rue
oil, and then releases them more slowly, to improve the
regulation of cell stress.

This study thus represents an important first step in our
better understanding of the molecular mechanisms involved in
the combined effects of CS and EOs for postharvest control
of fruit diseases. Similar studies are important for the control
of postharvest decay, to suggest new strategies for induction
of defense reactions in plants, and their possible use for the
production of new active biological preparations.
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