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The recent developments in artificial intelligence have the potential to facilitate new
research methods in ecology. Especially Deep Convolutional Neural Networks (DCNNs)
have been shown to outperform other approaches in automatic image analyses. Here
we apply a DCNN to facilitate quantitative wood anatomical (QWA) analyses, where the
main challenges reside in the detection of a high number of cells, in the intrinsic variability
of wood anatomical features, and in the sample quality. To properly classify and interpret
features within the images, DCNNs need to undergo a training stage. We performed
the training with images from transversal wood anatomical sections, together with
manually created optimal outputs of the target cell areas. The target species included
an example for the most common wood anatomical structures: four conifer species; a
diffuse-porous species, black alder (Alnus glutinosa L.); a diffuse to semi-diffuse-porous
species, European beech (Fagus sylvatica L.); and a ring-porous species, sessile oak
(Quercus petraea Liebl.). The DCNN was created in Python with Pytorch, and relies on
a Mask-RCNN architecture. The developed algorithm detects and segments cells, and
provides information on the measurement accuracy. To evaluate the performance of this
tool we compared our Mask-RCNN outputs with U-Net, a model architecture employed
in a similar study, and with ROXAS, a program based on traditional image analysis
techniques. First, we evaluated how many target cells were correctly recognized. Next,
we assessed the cell measurement accuracy by evaluating the number of pixels that
were correctly assigned to each target cell. Overall, the “learning process” defining
artificial intelligence plays a key role in overcoming the issues that are usually manually
solved in QWA analyses. Mask-RCNN is the model that better detects which are the
features characterizing a target cell when these issues occur. In general, U-Net did not
attain the other algorithms’ performance, while ROXAS performed best for conifers, and
Mask-RCNN showed the highest accuracy in detecting target cells and segmenting
lumen areas of angiosperms. Our research demonstrates that future software tools for
QWA analyses would greatly benefit from using DCNNs, saving time during the analysis
phase, and providing a flexible approach that allows model retraining.
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INTRODUCTION

In recent years, deep learning, as a subset of artificial intelligence,
has proven to be the new key tool to investigate ecological
research questions (Christin et al., 2019). Hierarchically, deep
learning is a sub-field of machine learning, a modeling approach
able to detect common patterns in datasets (Olden et al., 2008).
The reason of deep learning suitability to ecological investigations
lies in its intrinsic characteristics: deep learning can automate the
pattern interpolation processes from the provided data (LeCun
et al., 2015). The step forward lies in the particular algorithm
architecture, which de-structures data features through different
evaluation layers. This allows the machine to automatically
change internal parameters and fit the computational process
according to the required task (Zhang et al., 2016).

Overall, ecological investigations are enhanced by the
flexibility of deep learning tools, especially when dealing with
large and complex datasets (Christin et al., 2019). This is the
case for image analysis tasks, where Deep Convolutional Neural
Networks (DCNNs) stand out by performance (Krizhevsky et al.,
2017). In this specialized architecture, the different layers are
composed by artificial neurons (Zhang et al., 2016) and each
layer has a specific task, such as feature extraction, mathematical
computation-based training, or dimensional adjustment, that
makes DCNNs particularly suitable for image interpretation
(James and Bradshaw, 2020).

Wood anatomical research is a field where DCNNs find
an ideal application (Garcia-Pedrero et al., 2019). In the past,
machine learning methods have mainly been used for wood
species identification (Luis et al., 2009; Mallik et al., 2011;
Ravindran et al., 2018; He et al., 2020; Wu et al., 2021). In
contrast, quantitative wood anatomy (QWA), that refers to the
broad set of analyses quantifying and interpreting the variation of
xylem features in trees, shrubs, and herbaceous plants (von Arx
et al., 2016), has just started being investigated with such tools.
Investigations are performed on wood anatomical images at a
microscopic level, to study number, distribution, and properties
of the main cell types: conduits, parenchyma cells, and fibers
(von Arx and Carrer, 2014). Wood anatomical analyses can
provide a higher temporal resolution than annual tree-ring
width measurements, and the wood anatomical structure is
more directly linked to biological processes and tree functioning.
This allows to link tree growth to the study of phenology,
tree allometry, species physiological performance, and ecosystem
dynamics, among others (Fonti et al., 2010; Carrer et al., 2015; De
Micco et al., 2019; Castagneri et al., 2020).

To obtain wood anatomical images, the wooden sample has
to undergo several steps. Standard procedures start with cutting
thin sections from the sample and mounting them on a glass slide,
whereas, in case of damaged or particularly fragile material, the
wood sample can be embedded in paraffin to stabilize the tissues
before the cutting. This stage is followed by the image acquisition
process, where images of the slides are taken with a camera
installed on a microscope, or via specialized scanners. The
images are then analyzed with image analysis tools to perform
quantitative wood anatomical investigations (Gärtner et al., 2015;
Yeung et al., 2015; von Arx et al., 2016; Prendin et al., 2017;

Peters et al., 2018). Despite the great advances in the procedures
for wood sectioning and image acquisition, the actual feature
recognition phase still requires human supervision (Hwang and
Sugiyama, 2021). In fact, traditional image analysis is often not
able to overcome the artifacts generated by the sample processing:
the great number of cells occurring in the sections, combined
with a non-optimal image quality, is the reason why automated
image analysis is often followed by a manual editing phase.
However, the effort taken to fix these issues by hand can be
very time-consuming. This is exactly where DCNNs show their
strength, as many of these issues can benefit from a DCNN
approach. Images showing excessive darkness, brightness or
blurred areas, for example, can be easily processed after a proper
neural network training. Moreover, DCNNs have the ability to
encode specific wood features, which is the key to accelerate data
production: fibers are less likely to be mistaken for conduits,
for example, or pit chambers will be recognized as such and
automatically excluded from the lumen area.

In this study, we aimed to overcome these general QWA
challenges in transversal images using DCNNs. Specifically, we
created a practical graphical user interface relying on a Mask-
RCNN algorithm architecture (He et al., 2017), that detects
cells and quantifies the lumen area on four conifers and
three angiosperms. We also present the comparison on the
accuracy of cell instance (cell identification as an object) and
lumen area detection with another neural network architecture
(U-Net; Garcia-Pedrero et al., 2019), and ROXAS, one of
the most widely used programs for wood anatomical image
analyses (von Arx and Dietz, 2005; von Arx and Carrer, 2014;
Garcia-Pedrero et al., 2019).

MATERIALS

To perform classification analyses on wood anatomical
parameters, such as cell instance recognition (i.e., the
identification of the cell as an individual structure) and
lumen area detection (cell segmentation), the neural network
has to undergo a training stage. During this training, the neural
network architecture is provided with wood anatomical images
as well as the desired output, the ground truth – a map of the
original image where all the target cells have been manually
marked (segmented). Given the original and the segmented
images, the algorithm can learn to generalize the features that
are characteristic for a target cell. For this purpose, we chose four
conifers: Norway spruce (Picea abies L. Karst), Scots pine (Pinus
sylvestris L.), White spruce (Picea glauca Moench), and European
larch (Larix decidua Mill); and three angiosperms: Black alder
(Alnus glutinosa L.), European beech (Fagus sylvatica L.), and
Sessile oak (Quercus petraea Liebl.). We will refer to these groups
as: conifers, alder, beech, and oak. Each of them represents a
typical wood anatomical structure: softwood for gymnosperms
and the three typologies of hardwood for angiosperms, a diffuse-
porous species, a diffuse to semi-diffuse-porous species and a
ring-porous species.

Conifers, beech, and oak are some of the most used species
for tree ring studies in general (Scharnweber et al., 2013;
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Príncipe et al., 2017; Lange et al., 2018; Janecka et al., 2020)
and specifically for wood anatomical analyses (Björklund et al.,
2020; Pampuch et al., 2020; Peters et al., 2020). Images were
collected from several sources, to ensure variability in the
image quality and within the sample processing (Supplementary
Table 1). Conifer species were grouped due to the high similarity
in wood anatomical structure, therefore it was possible to
train one single neural network for this group; whereas the
angiosperms remained separated per species, due to their less
uniform structural properties. Moreover, because it is more
common to perform QWA analyses on gymnosperms due to
their homogeneous wood structure, having a broadly trained
algorithm is of high value. Concerning gymnosperms images, the
provenance is more restricted and the quality is generally very
high. While for conifer images we managed to collect examples
of a wide quality range, the image acquisition process of all the
angiosperms slides was carried out by the high-end Zeiss Axio
Scan.Z1 slide scanner (Carl Zeiss AG, Germany), except part of
the alder samples.

METHODS

Neural Network Architecture
Our goal was to perform cell instance and lumen area detection
together in a single algorithm architecture to maximize the
utility for QWA analyses. We treated lumen area detection
as an instance segmentation problem rather than a semantic
segmentation task as we see in Garcia-Pedrero et al. (2019) with
the U-Net neural network architecture. The difference between
these two is that with the U-Net algorithm every pixel is classified
(as “cell” or “not-cell”) independently from each other, whereas in
instance segmentation the objects (cells) are first identified and
located as a whole, and then segmented to their estimated real
dimension in a following stage. In practice, this has the benefit of
fewer spurious false detections because a larger field of view can
be used for the object detection stage, allowing to put distance
between the image and the “observer” in order to focus better the
objects themselves.

Specifically, we used the Mask-RCNN (He et al., 2017) neural
network architecture for this task. This model employs a feature
pyramid network (FPN) (Lin et al., 2017) to extract visual features
from the input image at different levels of detail. These features
are then forwarded to the next stages: first, a region proposal
network (RPN) which identifies regions in the image that might
be objects of interest, and second, a classification head, which
filters out undesired regions. In our case this can include ray
cells, pits, or air bubbles. Finally, if the region is classified as a
target object, the third step performs a per-pixel segmentation.
We refer to He et al. (2017) for a more detailed description of
the used Mask-RCNN.

Neural Network Training
We used the version implemented in the PyTorch v1.6 library
(Paszke et al., 2019) with a ResNet50 backbone. Weights (model
parameters) were obtained from pre-training on the COCO
dataset (Lin et al., 2014). They were used as a starting point

and then fine-tuned on image patches of anatomical wood thin
sections of size 1000 × 1000 pixels for all species except oak, for
which images of 2000 × 3000 pixels were used to safely include
the larger vessels in the tiles. Although COCO contains natural
images that have little in common with wood anatomical thin
sections, this process is still beneficial as part of transfer learning.
As we started algorithm development with alder, our training set
consisted of 89 patches for this species, while only 31 patches were
employed for conifers, 20 for beech and 20 for oak.

The images were annotated in the form of a semantic
segmentation map, the ground truth, which is an image file (in
png format) created for every training image, containing the
information related to the correct identification of the lumen
area. This map was created using Gimp (Spencer et al., 2021)
a free and open-source raster graphics editor, used to draw the
lumen areas on an additional layer with transparent background.

We converted this annotation into boxes by taking the
minimum and maximum X and Y pixel coordinates of
the connected components. During training we used data
augmentation in the form of random horizontal and vertical
flipping as well as 90◦ rotations to artificially enlarge the data
set. The stochastic gradient descent (SGD) optimizer was used as
the training algorithm, with a learning rate of 0.005, momentum
0.9 and weight decay of 0.0005 for overall 20 epochs and a
batch size of 1.

For each wood type a separate neural network was trained.
At the training stage, some modifications were required for the
different species. Particularly for oak, we trained two networks
that specialize in either the small or the large vessels. However,
the networks belong to the same model in the graphical user
interface, therefore the analyses are run in parallel, providing a
single output per picture. For the large vessel network, we used
patches of half the resolution (but same patch size), thus doubling
the field of view.

Neural Network Evaluation
The testing phase was performed on patches cropped from wood
anatomical images of the same dimensions as the ones included in
the training dataset and completely new to the algorithm (i.e., not
present in the training dataset), 15 for each group. The patches
were extrapolated from images of seven different trees for conifer,
eight trees for alder, seven for beech, and six for oak. The aim
of using this dataset was to cover all the problematic issues that
might hamper a smooth workflow and require large correction
efforts during the post-analysis editing phase.

Sample processing is the most delicate step in QWA analyses.
When the tissue is sectioned, the fragile structure of the wooden
sample can be compromised, often resulting in broken vessel or
tracheid walls, and cell wall protrusion into the lumen area. The
microslide preparation step is also critical as sections are very
thin and can overlap with themselves, if they are not positioned
carefully. Moreover, depending on the accuracy used in the
following section processing, stains from coloring solutions,
drops of paraffin or air bubbles can occur on the slide. If
these artifacts cannot be avoided in the image acquisition step
with a tailored cropping, they have to be solved manually after
the automated image analysis. Acquiring high quality images
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can be difficult as well, since artifacts from wrongly stitched
images, blurred areas due to uneven surfaces, dust spots, or
inhomogeneous lighting can hamper a smooth analysis of the
image and consequently, of the whole the dataset. Moreover,
even the species-specific structure can hamper a traditional
image analysis approach. In general, pits, fibers, apotracheal
parenchyma, bark cells, vessels with scalariform perforation
plates, resin canals and the related parenchyma cells constitute an
issue. The testing dataset we created included at least one image
for every feature mentioned above, in detail:

- Overlaying pollution particles (dirt or dust);
- Overlapping/folded tissue;
- Stains from coloring solutions of variable intensity;
- Drops of paraffin from embedding;
- Broken cell walls;
- Reduced lumen area in the latewood hampering a proper

cell recognition;
- Cells that are not conduits (resin canals, bark cells, fibers,

and parenchyma cells);
- Pit chambers connecting conifer tracheids;
- Pith fleck in alder;
- Scalariform perforation plate for alder and beech.

The evaluation procedure has been implemented in a web
browser-based software via a graphical user interface, and is
automated. Within the graphical user interface, four different
models can be selected and applied to new images. One model
corresponds to gymnosperms and one for each angiosperm.
Furthermore, we implemented the possibility to upload ground
truth references and previously computed prediction files.
This facilitates testing and evaluating the algorithm, and also
comparing its accuracy to the output of other specialized
software such as the traditional image-analysis tool ROXAS
(von Arx and Carrer, 2014) running on Image-Pro Plus
(Media Cybernetics, 2021, Rockville, MD, United States).

For the cell instance metrics (cell detected: yes/no), the
procedure first matches the connected components (cells) of the
outputs with the corresponding ground truth maps. Two cells
are matched if they have a high similarity (overlap) to each other
and thus count as a true positive instance (TP). Unmatched cells

from the output are counted as false positive instances (FP), that
is when the algorithm detected a cell that is not present in the
ground truth. On the other hand, unmatched cells of the ground
truth are counted as false negative instances (FN), in this case cells
are not present in the output and therefore they are counted as
missed cells (Table 1).

Matched target cells are then compared in terms of lumen area
accuracy by directly comparing individual pixels. Pixels that are
positive in both predicted and ground truth cell count as true
positive lumen area. Pixels that are positive only in the predicted
cell are counted as FP lumen area and those that are positive
only in the ground truth cell are FN lumen area. These lumen
area metrics, along with the F1 score, an index to evaluate the
algorithm performance, are computed for each cell individually
and results are provided as Excel files.

Along with the computational data, an error map is given to
visually interpret the graphical user interface results on every
image of the dataset (Figure 1). These image files report all
the categories used to classify cell instance recognition and
lumen area detection, and three other specific cases: disconnected
positive, a single cell that was detected as two or more (thus
counts as FP); merged negative, two or more cells that were
detected as a single one (thus counts as FN); and incomplete cells,
which are cut at the borders and ignored since they are irrelevant
for the analysis.

The testing dataset was analyzed with ROXAS, with the
Mask-RCNN algorithm, and with the U-Net algorithm. ROXAS
program was run without any additional manual editing, but
employing a configuration file per group species, tailored to
the specific sub-datasets. Configurations are batches of settings
adjusted to specific image characteristics, with the purpose
of improving the performance in the cell and lumen area
recognition. Subsequently, the output provided by the three
approaches was compared to the ground truth, since it represents
an unbiased reference (Figure 2). Results from the Mask-
RCNN segmentation approach have been compared to the
other two algorithms in terms of cell instance detection and
lumen area detection accuracy (how accurately the cell area
has been detected). Training and evaluation code can be found
in the online repository: https://github.com/alexander-g/Cell-
Detection-for-Wood-Anatomy.

TABLE 1 | Confusion matrix approach applied to cell instance detection.
hhhhhhhhhhhhhhGround truth

Prediction
Positive Negative

Positive True positive (TP) False negative (FN) Recall

It is a target cell, it was detected It is a target cell, it
was not detected

How many of the
target cells are
detected?

Negative False positive (FP) True negative (TN)

It is not a target cell, it was
detected

It is not a target cell, it
was not detected

Precision

How many of the detected cells
are target cells?

Both recall and precision parameters are a benchmark of accuracy, respectively, they assess how many cells were missed (FN) and how many redundant cells were
segmented (FP), considering the total amount of correctly detected cells (TP). See Equation 1 for reference.
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FIGURE 1 | Patch from an original beech thin section, error map, and related legend. The error map is the visual comparison between the algorithm computation
and the ground truth, and it helps in the visual assessment of the algorithms’ performance.

Cell Instance Detection and Lumen Area
Detection
We defined the cells masked in the ground truth as target
cells because they represent the optimal image analysis output,
in this case, they are represented by vessels for angiosperms
and tracheids for gymnosperms. As a first step, we evaluated
how many target cells were correctly identified; furthermore, we
analyzed and compared the results with the other two algorithms:
ROXAS and U-Net. The latter is the same architecture used in
Garcia-Pedrero et al. (2019). In this study, U-Net was employed
with the same purpose but trained on ROXAS output as ground
truth, while in our research the ground truth was manually
created, allowing first, a consistent training of the neural network
models, and second an unbiased reference for comparing the
algorithms. For the same purpose, in our study, the U-Net neural
network architecture was trained on the same training dataset
as the Mask-RCNN version. Comparing U-Net performance
with Mask-RCNN should allow us to provide a more complete
overview on the topic and to highlight the improvements in
this research field.

Cell instance accuracy was assessed with the help of a
confusion matrix (Table 1). The confusion matrix helps to
bring together and compare the results from the two sides:
the algorithm (Mask-RCNN, ROXAS, or U-Net) and the ideal
output (ground truth).

False positive and false negative values were used to analyze
recall, which estimates the missed cells numbers (FN) considering
the total TP detected; and precision, which gives an estimation of
the redundant cells (FP) weighting the value with TP (Equation
1, 2).

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

A general overview of the performance of the algorithm in cell
instance detection is provided by the F1 score. This index is
the harmonic mean between precision and recall (Equation 3),
for this reason it reflects both when the cell instance count is
overestimated and/or when it is underestimated.

F1 = 2∗
Precision ∗ Recall
Precision+ Recall

(3)

Computing TN for the cell instance analysis, does not apply in
this case, since there is no reference on the number of total
cells of all the typologies (vessels/tracheids, fibers, rays, and axial
parenchyma) present in the images. The definite and important
value is the number of target cells shown by the patches, obtained
via the ground truth mask. Overall, we calculated the confusion
matrix for all the species and for all the segmenting approaches
(Supplementary Table 2).

After assessing how many cells were correctly identified, we
analogously (i.e., with the same recall, precision, and F1 score
scheme) evaluated the accuracy of the cell lumen area detection,
in the following referred to as lumen area. In fact, parameters
belonging to the cell instance classification can be applied to
the pixel dimension as well: pixels correctly assigned to the cell
area are TP and those which are misclassified belong to the FP
or FN categories. We used the F1 score to provide an overall
assessment of the algorithms’ performance, and subsequently
analyzed precision and recall to understand when the lumen area
is overestimated and/or when it is underestimated.

Moreover, an additional sub-dataset was created to increase
variability of the original testing dataset, and to test the ability
of the Mask-RCNN algorithm to handle the most insidious
issues faced in QWA analyses (see list in section “Neural
Network Evaluation”). This dataset consisted of five images per
group (conifer, alder, beech, and oak) that were not analyzed
with ROXAS, since they would have required a tailor-made
configuration, which requires expert knowledge.

Frontiers in Plant Science | www.frontiersin.org 5 November 2021 | Volume 12 | Article 767400

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-767400 November 2, 2021 Time: 14:8 # 6

Resente et al. Artificial Intelligence for Quantitative Wood Anatomy

FIGURE 2 | Flowchart of the comparison process. To obtain a meaningful result, the output from the algorithms has to be compared to the ground truth, a manually
segmented image for every image of the groups investigated. Mask-RCNN output was then compared to the one of U-Net and ROXAS in terms of cell instance (cell
detected: yes/no) and lumen area accuracy (how accurately the lumen area was detected).

RESULTS AND DISCUSSION

Result Structure
The relatively complex analysis structure used to highlight
different aspects of algorithm performance as described in section
“Methods” is summarized in Figure 3 for convenience.

Cell Instance Detection
First, performances on cell instance detection have been
calculated using the F1 score (Table 2). Since the values provide
an overall assessment of the accuracy reached by the algorithms,
we could already infer that in general Mask-RCNN and ROXAS
records were very high and that these two approaches performed
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FIGURE 3 | Flowchart summarizing how performance of the considered
approaches was assessed.

very similarly for all the groups, while U-Net consistently
showed lower values.

As the F1 score is the harmonic mean between precision and
recall, it raised interest in the investigation of the algorithms’
trend about underestimation and overestimation of the cell
instance detection. The recall parameter was generally higher
for the U-Net algorithm, followed by Mask-RCNN and ROXAS
(Table 2). High recall values indicate that, overall, fewer cells
are missed compared to the total amount of cells correctly
recognized. Although this might seem in contrast to the F1 score
results, the U-Net approach of recognizing cells – pixel per pixel –
seems to lose the perspective on the cell instance identification,
generating many spurious cells detection, therefore rising the
probability of segmenting the right ones. Conifer was the group
showing the best result for all algorithms (0.99 for U-Net, 0.97
for Mask-RCNN, and ROXAS); while alder, beech, and oak
vessels segmentation showed very similar results for the artificial

intelligence algorithms (0.96, 0.91, and 0.93 for Mask RCNN,
and 0.96, 0.95, and 0.92 for U-Net, respectively). Slightly lower
values were shown for ROXAS, where oak was the species with
the lowest recall value (0.85).

Furthermore, we investigated the characteristics of the FN
instance within the cell size classes, to determine where the lack of
cell detection was more pronounced (Figure 4). This assessment
is useful for the future training of the DCNN, in order to fine-tune
the cell instance detection process. Generally, the most affected
size classes are the smaller ones, but wood anatomical type
plays a consistent role in this evaluation. Oak as a ring-porous
species shows great differences in size between the earlywood the
latewood vessels. This size difference exists also in conifers, where
latewood cells are distinctively smaller than the earlywood cells.
However, in conifers the difference is smaller and the transition
occurs less abruptly. In these two categories, the most affected size
classes were the smallest, supporting the predictable trend that
the smallest cells are more difficult to identify. In contrast, alder
and beech, diffuse and semi-diffuse porous species, respectively,
show the bias shifted to medium-small cells and more evenly
distributed across size classes. This analysis demonstrates that,
when the wood structure is more homogeneous, cell size has less
effect on cell instance recognition.

Since the testing dataset was built to include artifacts generated
by sample preparation, we analyzed how the detection process
is affected when an artifact occurs, comparing the Mask-RCNN
segmentation approach with ROXAS. As a result, we observed
that tackling FN issues from the segmentation methodology
perspective highlights the benefit of using artificial intelligence
for the feature recognition step. A visual comparison between
Mask-RCNN output and the ROXAS output, involving the issues
that might generate FN instances, is shown in Figure 5: blurred
areas caused by various artifacts such as overlapping object
(Figure 5A), paraffin drops (Figure 5B), and stains of coloring
solutions (Figure 5C).

To estimate how many non-target (redundant) cells got
recognized, we used the precision parameter: the closer to 1 the
value, the lower is the overestimation in cell instance detection.

As we expected, U-Net architecture provided the lowest
values, therefore the worst performance. Mask-RCNN and
ROXAS results showed the same general pattern: from the worst
to the best precision rate we found alder (0.82, 0.84), conifers
(0.89, 0.91), oak (0.94 for both), and beech (0.94, 0.96). Overall,
results on the precision values were very high and close for both
approaches, although ROXAS demonstrated to be slightly more
efficient in the task (Table 2).

Precision values interpretation was performed on a visual
level, comparing the error maps provided by the different
algorithms, to identify in which situations errors occurred more
frequently and which cells were most susceptible. Since the
U-Net architecture proved not to be particularly meaningful
in filtering target cells from non-target cells, we focused on
the comparison between ROXAS and Mask-RCNN outputs
(Supplementary Table 3).

The wood anatomical feature that produced the most FP
instances was the bark, with similar results for both approaches.
In this respect, ROXAS provides the possibility to define an area
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TABLE 2 | Average values of F1 score, recall, and precision for cell instance detection using different segmenting approaches (Mask-RCNN, U-Net, and ROXAS)
calculated for all anatomical groups.

Conifer Alder Beech Oak

Mask-RCNN U-Net ROXAS Mask-RCNN U-Net ROXAS Mask-RCNN U-Net ROXAS Mask-RCNN U-Net ROXAS

F1 0.93 0.91 0.94 0.88 0.83 0.88 0.92 0.80 0.92 0.93 0.85 0.89

Recall 0.97 0.99 0.97 0.96 0.96 0.92 0.91 0.95 0.89 0.93 0.92 0.85

Precision 0.89 0.84 0.91 0.82 0.73 0.84 0.94 0.69 0.96 0.94 0.79 0.94

FIGURE 4 | Histograms of the missed cells (FN value) per groups: conifer, alder, beech, and oak. The count in the legend refers to the FN instances that were
recorded in total per algorithm for each species, while the histograms show the respective size-frequency distributions.

of interest and thus to manually exclude the bark. Nevertheless,
the comparison was done on images analyzed without any
manual editing (no tailored area of interest defined), and it was
performed with the same methodology than with the Mask-
RCNN algorithm. The process could be further streamlined if the
algorithm training focused on bark/non-bark area recognition,
since the manual editing step of creating the area of interest
could be skipped.

Overall, the cell categories presenting FP issues coincide for
the Mask-RCNN algorithm and ROXAS on conifers. However,
one advantage of the Mask-RCNN seems to be pit recognition.
The high amount of target cells per unit area allowed the
algorithm to perfectly recognize this feature, and no pit was

included in the lumen area nor mistaken for a cell itself for every
image of the dataset analyzed.

For the angiosperms, Mask-RCNN FPs included all those
small cells that could resemble a small vessel (our target), or a
big fiber or apotracheal parenchyma; while ROXAS automatically
filtered them out by their size thanks to the tailored configuration
files. Nonetheless, we believe that this challenging category
cannot be clarified unambiguously without a closer look at
the longitudinal sections of a sample. This highlights how the
learning process of the DCNN approach really took place, and
clearly had an effect on the image segmentation. Another example
of FP included the scalariform perforation plates (Figure 6),
a feature abundantly present in alder and occasionally in
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FIGURE 5 | Output comparison between Mask-RCNN and ROXAS on examples of overlaying dust particle (A), paraffin drops (B), and stains of coloring solutions
(C). Error legend can be found in Figure 1. The FN cell instance are marked in blue, and in ROXAS outputs they exactly correspond to the area interested by the
(A–C) issue.

beech. Here the algorithm, within certain limits, successfully
distinguished between adjacent vessels and individual vessels
sectioned at a scalariform perforation plate with thin bars,
which could be wrongly interpreted as two adjacent vessels. The
interpretation as one or two separate conduits influences the
calculation of theoretical hydraulic conductivity of the specimen
and therefore matters for studies dealing with water transport.

The Mask-RCNN output presented some FP instances related
to damaged cells. This happened because the algorithm training
aimed to consider every cell whose shape can be accurately
predicted, as long as it fulfills the requirements for a reliable
measurement. What is usually a matter of exclusion when

the whole dataset is of average quality, sometimes has to be
reconsidered as usable if this happens to be the only material
available, therefore as many cells as possible should be measured.
In this testing dataset, the slide quality was very high and quite
homogeneous, which explains why many high-quality cells were
available and thus damaged and dubious cells were not segmented
in the ground truth. This sheds light on how FP evaluation
is very case-specific regarding this issue. However, applied to
QWA analyses and specifically to ROXAS use, the FP error can
be considered less time-consuming to handle, since eventually
requires deleting redundant cells, rather than drawing new ones
from scratch, as it happens in the case of FNs.

Frontiers in Plant Science | www.frontiersin.org 9 November 2021 | Volume 12 | Article 767400

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-767400 November 2, 2021 Time: 14:8 # 10

Resente et al. Artificial Intelligence for Quantitative Wood Anatomy

FIGURE 6 | Output comparison on vessel identification. Original alder image from the testing dataset, Mask-RCNN error map, and ROXAS error map. When the
perforation plate is strongly visible, there is a high chance that one single vessel is wrongly recognized as two separate ones.

TABLE 3 | Average values of F1 score, recall, and precision for lumen area detection using different segmenting approaches (Mask-RCNN, U-Net, and ROXAS)
calculated for all the groups.

Conifer Alder Beech Oak

Mask-RCNN U-Net ROXAS Mask-RCNN U-Net ROXAS Mask-RCNN U-Net ROXAS Mask-RCNN U-Net ROXAS

F1 0.95 0.96 0.98 0.97 0.95 0.96 0.97 0.93 0.97 0.97 0.91 0.97

Recall 0.97 0.94 0.97 0.98 0.94 0.94 0.97 0.92 0.96 0.97 0.90 0.97

Precision 0.93 0.98 0.98 0.96 0.98 0.97 0.97 0.97 0.99 0.97 0.96 0.98

FIGURE 7 | Box plot showing the frequency distribution of the F1 score for lumen area, which allows a comparison of the three algorithms (Mask-RCNN, U-Net, and
ROXAS) for each tree-species group. The blue values represent the fraction of cells reaching and surpassing the F1 score threshold of 0.9.

Lumen Area Detection
Overall, all segmentation approaches showed very high F1 scores
for lumen area (Table 3). For conifers, values varied between
0.98 (ROXAS) to 0.95 (Mask-RCNN algorithm). A different trend
characterized the angiosperms. The Mask-RCNN algorithm

results for alder, beech, and, oak, all reported an F1 score
of 0.97. This value was the same for ROXAS with beech
and oak, but it was slightly lower (0.96) for the ROXAS
segmentation results on alder. U-Net algorithm did not cope
as well as the other approaches, and while the value was
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TABLE 4 | Example of parameters calculated for an underestimated lumen area
and an overestimated lumen area.

Area Prediction TP FP FN Precision Recall F1

Underestimated
lumen area

1715 482 482 0 1233 1 0.28 0.44

Overestimated
lumen area

85 600 85 515 0 0.14 1 0.25

When high precision is associated to low recall, then the area is underestimated.
When the values are low for precision and high for recall, then the area
is overestimated.

FIGURE 8 | (A) Example of lumen area underestimation, the dark green area
represents the FN pixels. (B) Example of lumen area overestimation, the
orange area represents the FP pixels.

still very similar for alder (0.95), it dropped for beech
(0.93), and oak (0.91).

Overall, F1 scores were very high and results were close for
all the segmenting approaches, but generally ROXAS performed
slightly better. Nonetheless, since with artificial intelligence we
aimed at very high accuracy levels to avoid manual editing as
much as possible, we additionally analyzed the percentage of cells
belonging to the highest accuracy class, that is when F1 ≥ 0.9
(Figure 7, blue number). U-Net underperforms for beech and oak
and to a lesser extent for alder. The Mask-RCNN algorithm and
ROXAS perform generally similarly well for the angiosperms, but
Mask-RCNN performs lower in the conifer category.

The F1 score gives an overall idea of how well lumen
area is detected. To understand if the algorithms are generally
underestimating or overestimating the areas, we need to closely
analyze precision and recall parameters. In Table 4 we show two
cell records from the conifer dataset generated by the Mask-
RCNN algorithm. Both show very low F1 scores, meaning that
the segmentation process failed in accuracy for both cells. In
the first row, it is shown how precision, which ranges from 0

TABLE 5 | Summary result on the comparison of the algorithms’ performances.

Cell instance detection Lumen area detection

Best
performing
algorithm (F1
score)

Conifer * *

Alder * * *

Beech * * * *

Oak * * *

Detection
accuracy trend
(precision and
recall)

Conifer + + + − + +

Alder + + + + − −

Beech − + − = − −

Oak − + − = − −

Mask-
RCNN

U-Net ROXAS Mask-
RCNN

U-Net ROXAS

The best performing algorithm was signaled with an asterisk (*). If the F1 score of
a group type reported the same number for more than one approach, the star is
represented twice. With respect to the detection accuracy trend, the overestimation
both of the cell instance and the lumen area was reported with a plus sign (+),
underestimation with a minus (−), and if there was no evident trend an equal
symbol was noted (=).

to 1, reaches its maximum, while recall is very low. In practice,
what happened is that all the pixels that were recognized as
belonging to the cell were indeed target pixels, but not all the
target pixels were recognized, leading to an underestimation
of the area (Figure 8A). The second row in Table 4 reports
the opposite situation, recall reaches the maximum value, but
precision is low. Figure 8B visually explains this case: all the
pixels belonging to the cell were recognized, but redundant pixels
around the area were included in the segmentation, resulting in
an overestimated lumen area.

Results for all the three approaches demonstrated a very high
performance, even in terms of precision and recall of lumen
area segmentation (Table 3). In the conifer group, we found that
ROXAS had the highest F1, precision, and recall values (0.98,
0.98, 0.97, respectively). This resulted in very few redundant
pixels and even less missed ones. Regarding the deep learning
approaches, cells were more likely to be underestimated with
U-Net (0.94 for recall and 0.98 for precision), while the opposite
held for Mask-RCNN (0.97 for recall and 0.93 for precision).
Analyses of alder samples were most precise when performed
by the Mask-RCNN algorithm. The advantage of this approach
consists of a lower percentage of lumen area underestimated (0.98
for recall), and still a very good result on the overestimation
issue (0.96 for precision). ROXAS and U-Net, in contrast, tend
to underestimate cell areas (0.94 for both approaches on recall)
more than overestimating them (0.97 for ROXAS and 0.98 for
U-Net on precision). Beech and oak segmentation behaved very
similarly in the three approaches. Mask-RCNN was the most
stable of the three, where 0.97 was the value for both species and
for both parameters, meaning that there was no evident tendency
in under- or over-estimating. ROXAS, which performs better
than U-Net, showed a strong precision both on beech (0.99)
and oak (0.98), but generally underestimated lumen area. The
same trend was confirmed for U-Net, with a stronger tendency
in underestimating lumen area (0.92 for beech and 0.90 for oak).

Since many aspects contribute to the evaluation process of the
algorithms’ performances, we include a general overview of the
results to summarize the main outcomes of this analysis (Table 5).
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Mask-RCNN Results for the Sub-Dataset
The Mask-RCNN approach worked properly for all the species
and accurately segmented cells (Supplementary Figure 1).
The visual assessment revealed that conifers remain the main
weakness of the Mask-RCNN. The most occurring issue is
represented by missed cells, especially small cells in the latewood.
Regarding the lumen area detection, underestimation was more
likely to happen, but the algorithm coped particularly well with
problematic regions where the cell wall protrudes in the lumen
area or where stains occurred. Alder is one of the species the
model worked best with: error maps showed few redundant
vessels and some broken ones wrongly segmented. This great
performance is partially explained by the fact that the neural
network could rely on a larger training dataset, but most likely by
the fact that vessels have a distinctive shape and size compared to
the surrounding fibers, and the diffuse porous organization of the
vessels make them quite consistent in shape along the ring. If the
larger training dataset would have had a major impact, we would
have also noticed a difference within the groups in the F1 scores
calculated for the main dataset. In general, for alder images, a very
small portion of target cells were missed, in contrast to beech.
Beech presented very accurately segmented lumen areas but some
of them, especially when affected by very dark stains, were not
identified. The large oak earlywood vessels were almost perfectly
recognized, with only a minor percentage of missing cells and
some redundant fibers which were segmented in the latewood.

In this smaller sample we also tested the running time of the
Mask-RCNN model, using a 15-10210U CPU. By monitoring
the process with a timer, we found out that the time needed for
analyzing cells per single image varied from a minimum of 7.76 s
to a maximum of 1.37 min depending on the species and the
complexity of the image. Running time is also dependent on the
task; when the comparison between other outputs is performed
along with the cell detection, time can slightly increase. On
average, oak is the species that employs more time because of the
two models running on the same image.

CONCLUSION

Our results show that Mask-RCNN is highly suitable for the
analysis of wood anatomical images. In all four wood-type
groups, cells could be detected and segmented with high accuracy
(i.e., high F1 score, precision, and recall).

While ROXAS always performed better for conifers in all
the different parameters analyzed, the Mask-RCNN was better
suited for angiosperms. We can thus infer that the wood
anatomical variability of the angiosperms does not hamper a
proper segmentation process with the Mask-RCNN algorithm.
This is explained by the methodology employed by the Mask-
RCNN approach: the instance segmentation operated by the
algorithm first evaluates the context of a target cell and
then proceeds in the segmentation. Therefore, the more stable
the features of the target cells in the images, the more likely the
Mask-RCNN is to succeed in the detection process, despite the
diversity of the surrounding structures. Oak vessels, for example
required two different algorithms, due to the difference in shape

and size. Analogously, the homogeneous pattern of conifers is not
facilitating a proper detection and segmentation of the tracheids,
due to the small lumen of the latewood cells.

Another important aspect is the perspective we take
to look at the data. A strict evaluation of numeric results
would suggest that Mask-RCNN accomplishes the best
performance for the F1 score with three species categories
out of four; U-Net performed best for the recall parameter,
very close to the Mask-RCNN results; and ROXAS recorded
the best values for the precision parameter, still very close
to Mask-RCNN results (Table 2). However, the visual
interpretation of the error maps allowed us to draw additional
conclusions. Looking at the recall value on cell instances
(i.e., missed cells) from the cell characteristic perspective,
highlighted how the detection process benefits from the
neural network methodology. Many of the issues we selected,
that hamper a smooth workflow with a traditional image
analysis approach (i.e., ROXAS), were better handled with
the DCNNs. Both U-Net and Mask-RCNN showed not
only the best results, but also a similar trend. At the same
time, visual interpretation of the error maps was also
important for the analysis of redundant cell instances (i.e.,
precision). If on a first look, ROXAS and Mask-RCNN
seemed to behave similarly, a further analysis demonstrated
the Mask-RCNN ability to encode species-specific features,
thus avoiding certain undesirable cell categories that we
previously classified as issues. Moving the focus to the
precision of the lumen area detection and the fraction of
target cells reaching and surpassing a 0.9 threshold for
the F1 score, we obtained the highest values for Mask-
RCNN in all the angiosperm groups. Although Mask-RCNN
was not always the best performing, it demonstrated to
be the most stable concerning the underestimation and
overestimation of lumen area parameter. Overall, the most
frequent issue hampering the lumen area segmentation was the
underestimation of lumen areas.

As expected, the Mask-RCNN is best suited for the detection of
a high numbers of objects in a single image. As previously stated,
the algorithm first detects all the possible target cells, therefore a
consistent number of redundant predictions are avoided. Because
segmenting a higher number of cells makes it more likely to
identify all the target cell instances, recall values showed the
highest results for U-Net model.

Overall, ROXAS performed very well, despite the traditional
image analysis methodology. This is partially explained by the
characteristics of the testing dataset. The selected images already
belonged to a very high-quality standard, i.e., they were quite
homogeneous and tissue identification was generally very clear.
Moreover, ROXAS configuration files used to analyze the images
were specifically created for each dataset, to obtain the best
performance from the program. In contrast, we demonstrated
how the Mask-RCNN model can deal with bad quality samples
reaching an acceptable result, even with a rather small training
dataset (at least 30 images per group), consisting of cropped
images from original sections. The development of a very flexible
and user-friendly tool is particularly beneficial for future studies
on various species. For this reason, our next aim is to implement
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the current version with the ability of retraining the models as a
permanent feature. Generally, the advantage of the Mask-RCNN
approach does not rely in a high-speed processing of the images,
but if the performance in detecting and segmenting target cell is
high, then the manual editing phase afterward can be avoided or
significantly reduced.

In summary, this study shows that future QWA analyses could
greatly benefit from Mask-RCNN approaches, such as the one
presented here, due to their high accuracy, stability, and ability
to deal with artifacts, coupled with high usability. Moreover, a
highly automatized approach, like Mask-RCNN, will allow the
processing of larger quantities of wood anatomical measurements
in a shorter time, opening the way for higher replicated studies on
variability in wood anatomical features.
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