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The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-
associated protein 9 (Cas9) system has emerged as a powerful tool for the precise
editing of plant genomes for crop improvement. Rapid in vitro methods for the
determination of guide RNA (gRNA) cleavage efficiency and an efficient DNA delivery
system is essential for gene editing. However, we lack an efficient gene-editing system
for palm species. In this study, we described the development of a transient oil
palm protoplast assay to rapidly evaluate the cleavage efficiency of CRISPR/Cas9
mutagenesis and the generation of stable transformed oil palms using biolistic particle
bombardment in immature embryos. Using the phytoene desaturase (EgPDS) gene,
we found cleavage frequency of up to 25.49% in electro-transfected protoplast,
which enables the production of transgenic oil palm shoots exhibiting chimeric
albino phenotypes as a result of DNA insertions, deletions (InDels), and nucleotide
substitutions, with a mutation efficiency of 62.5–83.33%. We further validated the
mutagenesis efficiency and specificity of the CRISPR/Cas9 system in oil palm by
targeting the brassinosteroid-insensitive 1 (EgBRI1) gene, which resulted in nucleotide
substitutions in EgBRI1 with premature necrosis phenotype in oil palm transgenic
shoots and stunted phenotype resulting from DNA InDels. Taken together, our results
showed that effective and efficient editing of genes using the CRISPR/Cas9 system
can be achieved in oil palm by optimizing the selection of efficient gRNA and DNA
delivery methods. This newly designed strategy will enable new routes for the genetic
improvement in oil palm and related species.
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INTRODUCTION

Genome editing technology is emerging as a powerful tool to
introduce accurately targeted mutations for plant gene function
studies and provide new avenues for crop improvement due
to its simplicity, flexibility, consistency, accuracy, and high
efficiency (Lozano-Juste and Cutler, 2014; Voytas and Gao,
2014; Bortesi and Fischer, 2015). It has been made simpler
with clustered regularly interspaced short palindromic repeat
(CRISPR)/CRISPR-associated protein 9 (Cas9) system due to its
versatility, effectiveness, and efficiency (Feng et al., 2013; Ma
et al., 2015; Jiang and Doudna, 2017). The CRISPR/Cas9 system
has been successfully established and widely applied in various
economically important crops, including wheat, rice, maize,
brassica, sweet potato, banana, and grapevine, to enhance crop
productivity, grain quality, nutritional value, disease tolerance,
resilience to climate change, and herbicide resistance (Shi et al.,
2017; Macovei et al., 2018; Okuzaki et al., 2018; Zhang et al., 2018;
Wang et al., 2019; Kaur et al., 2020; Li et al., 2020).

Clustered regularly interspaced short palindromic repeat/Cas9
mediates precise genome modification by gene knock in,
knock out, base editing, transcriptional activation or repression,
epigenetic modification, and RNA editing (Feng et al., 2013;
Konermann et al., 2015; Zong et al., 2017; Mao et al., 2018;
Papikian et al., 2019). The CRISPR/Cas9 endonuclease protein
is directed to a specific chromosomal DNA site by a short
sequence-specific single guide RNA (gRNA) to induce DNA
double-stranded breaks (DSBs) and enable precise editing of the
target DNA sequence with mutation events, including insertions,
deletions (InDels), and nucleotide substitutions induced by the
cell repair mechanisms, non-homologous end-joining (NHEJ),
or homology-directed repair (HDR) (Jiang and Doudna, 2017).
In plants, the efficiency of CRISPR/Cas9-mediated mutagenesis
is affected by the editing components (Cas9, promoter, gRNA
design, and specificity), the transformation or delivery method
into plant cells, the ability of plants to regenerate, and the
sensitivity of the mutation detection method (Ma et al., 2015; Liu
et al., 2016; Thyme et al., 2016; Wang et al., 2018; Montecillo
et al., 2020). The CRISPR/Cas9 system can be delivered into
plant cells using several methods, including plant transformation
of CRISPR/Cas9 and gRNA expression cassettes, virus-mediated
gRNA delivery, DNA-free CRISPR–Cas9 ribonucleoprotein
(RNP) delivery to protoplasts, and de novo meristem induction
bypassing tissue culture process (Xu et al., 2014; Ali et al., 2015;
Woo et al., 2015; Wang et al., 2018; Montecillo et al., 2020). The
efficiency of CRISPR/Cas9 is variable in different plant species
and requires fine-tuning of the conditions to achieve successful
and highly efficient genome editing.

Global food demand is expected to increase by 60% in 2050,
driven by the rapid expansion of the human population reaching
approximately 9–11 billion and global dietary shifts intensifying
wellness and value addition (Fróna et al., 2019). Oil palm is well
recognized as the most efficient oil crop that contributes to 35% of
global vegetable oil; thus, it can offer a critical solution for global
food insecurity to feed the growing global population (Mielke,
2017). Despite the yield and oil quality improvement achieved
through conventional breeding and marker-assisted breeding in

the past decades (Soh et al., 2017), the annual growth in palm
oil production is likely to slow down in the coming years due
to a deceleration in land expansion, yield stagnation, climate
change, declining labor force, increase in production costs, and
pest and disease issues. Thus, the application of genome editing
technology can provide opportunities to accelerate and enhance
breeding programs with high precision in oil palm to achieve
food security and sustainable agriculture.

Limitations in an efficient genetic transformation system,
a plant regeneration process, and an in vitro testing system
hindered the establishment of the CRISPR/Cas9 system in oil
palm. Here, we report an establishment of the CRISPR/Cas9
system that enables efficient genome editing in oil palm. We
investigated the efficacy and efficiency of a codon-optimized
CRISPR/Cas9 by targeting oil palm phytoene desaturase (EgPDS)
gene as a phenotypic marker to facilitate rapid screening
of mutant lines as mutation of the PDS gene disrupts the
carotenoid pathway and results in albino and dwarf phenotypes
(Odipio et al., 2017). We first established a rapid in vitro
detection method for testing gRNA efficiency in oil palm using
protoplast electro-transfection. Subsequently, we demonstrated
the delivery of CRISPR/Cas9 and gRNA cassettes into oil
palm immature embryos using biolistic particle bombardment-
mediated transformation and validated the mutagenesis effects
of CRISPR/Cas9, both genotype and phenotype in regenerated
oil palms. We further validated the mutagenesis efficiency and
specificity of the CRISPR/Cas9 system in oil palm by targeting
oil palm brassinosteroid-insensitive 1 (EgBRI1). We showed that
mutations in the kinase domain of BRI1 are associated with palms
displaying stunted phenotype and necrosis at the leaf apex.

MATERIALS AND METHODS

Plant Materials
Oil palm dura (Deli dura) immature embryos extracted from the
fresh oil palm fruits at 12 weeks after pollination (WAP) were
supplied by Oil Palm Breeding, Sime Darby Plantation Research
Sdn. Bhd., Banting, Malaysia, and used as the starting material
for this study. Before particle bombardment with plasmids at 200
replicates/constructs, the immature embryos were cultured on
Murashige and Skoog (1962) media with sucrose and vitamins.
Unopened oil palm spear leaf was used for protoplast isolation.

Construction of Clustered Regularly
Interspaced Short Palindromic
Repeat/CRISPR-Associated Protein 9
and Guide RNA Vector
The Streptococcus pyogenes Cas9 nuclease gene (Jinek et al.,
2012) was codon optimized (Supplementary Data Sheet 1) by
replacing the tandem rare codons in native gene to codon usage
bias in oil palm using the OptimumGeneTM codon optimization
analysis (GenScript USA Inc., Nanjing, China) to enhance the
efficiencies in Cas9 gene expression and translation in oil palm.
The codon-optimized Cas9 was synthesized together with the
Gateway attP1 site and nuclear localization signal (NLS) fused
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to the 5′ of SpCas9 and Gateway attP2 site fused to the 3′ of
the gene (GenScript USA Inc., Nanjing, China). The synthesized
gene construct was shuttled into the pXHb7SNFI-UBIL vector
(Vlaams Instituut voor Biotechnologie, Ghent, Belgium) fused
to the Ubiquitin promoter and β-glucuronidase (GUS) reporter
using Gateway R© BP ClonaseTM II enzyme mix (Thermo Fisher
Scientific, Waltham, MA, United States). The resulting construct
is known as pUbil-Cas9 (Supplementary Figure 1). The potential
target sequences of gRNAs for oil palms EgPDS (accession
no. XP_010937221) and EgBRI1 (accession no. XP_010927763)
were analyzed and designed using Benchling1 and CCTop2

(Stemmer et al., 2015). These gRNAs were selected based on
their position in the gene, the predicted efficacy score, and the
potential for off-target mutation. These gRNAs (Supplementary
Table 1) designed to target different exon regions of the EgPDS
gene (Figure 1A) were cloned into a modified pCAMBIA1201
vector, fused to rice OsU3 promoter and gRNA scaffold cassette
(Supplementary Figure 1).

Protoplast Electroporation
Transformation and Detection of Guide
RNA Efficiency
The oil palm mesophyll protoplasts were isolated from the
unopened spear leaf as described previously (Masani et al.,
2013). These protoplasts were co-transformed with 2 µg
plasmids of pUbil-Cas9 and individual gRNA constructed
for EgPDS and EgBRI1 genes using electroporation. A single
vector of pUbil-Cas9 or gRNA was transformed as controls.
The protoplast and plasmid mixture in HEPES-buffered
saline solution was electroporated using Gene Pulser Xcell
electroporation system (Bio-Rad Laboratories, Hercules, CA,
United States) with a square wave pulse program: 550 V/cm
(220 V setting/0.4 cm width), 10 ms for two times, and a
20 ms interval for poring pulse. The electroporated protoplasts
were incubated in HEPES-buffered saline solution under
dark conditions at 25◦C with gentle swirling for 72 h. The
protoplasts were washed using a washing solution, and the
genomic DNA of transformed protoplasts were extracted
using QuickExtractTM DNA Extraction Solution (Lucigen,
Middleton, WI, United States) according to the instructions
of the manufacturer. The electro-transfection efficiency was
determined using absolute quantitative real-time PCR. The DNA
copies of the GUS reporter gene transformed into protoplast
were compared against the total DNA copies of the endogenous
gene, Cyclophilin 2 in protoplast, both DNA copies were
determined from plasmid dilution standard curve. According
to the instructions of the manufacturer, the target site region,
flanking the gRNAs of EgPDS and EgBRI1 genes, was amplified,
respectively, from the transformed and wild-type protoplasts
DNA using region-specific primers (Supplementary Table 2) and
iProofTM High-Fidelity DNA Polymerase (Bio-Rad Laboratories,
Hercules, CA, United States). The mutations were detected by
comparing amplified fragments from the transformed and wild-
type protoplasts (50:50 ratio) using the AccuCleaveTM T7CE Kit

1https://benchling.com/
2https://cctop.cos.uni-heidelberg.de:8043/

and detection using CRISPR Discovery Gel Kit and Fragment
AnalyzerTM Automated CE System (Agilent Technologies,
Palo Alto, CA, United States). The mutation frequency of the
protoplast population was determined based on the percentage
of cleavage efficiency calculated using the PROsize Data Analysis
Software (Agilent Technologies, Palo Alto, CA, United States).

Biolistic Transformation and Plant
Regeneration
The pUbil-Cas9 and two efficient gRNA constructs for EgPDS
and EgBRI1 (2 µg each) were coated on the surface of 3 mg gold
particles in 50% glycerol and mixed with 1M CaCl2 and 16 mM
spermidine. The mixture was washed with absolute ethanol
three times and was resuspended in 60 µl absolute ethanol. For
each bombardment, 10 µl of DNA-microcarrier mixture was
placed on the microcarrier and bombarded two times into oil
palm immature embryos using the PDS-1000/Hepta Biolistic
Particle Delivery System (Bio-Rad Laboratories, Hercules, CA,
United States) with 1,100 psi rupture disks, vacuum at 27 mmHg
pressure, and 9 cm distance from the tissue. Individual pUbil-
Cas9, gRNA, and the combinations of both constructs were
bombarded or co-bombarded into 200 replicates of immature
embryos. The pUbil-Cas9 and individual gRNAs were used as
controls. The transformed immature embryos were maintained
in MS agar with sucrose and vitamins (Sigma-Aldrich, St. Louis,
MO, United States) supplemented with 50 µg/ml of hygromycin
B. Regenerated plants were transferred into MS agar without
antibiotic or herbicide and cultured under 16-h light/8-h dark
photoperiod for 6–8 months.

Identification of Transgene and
Detection of Clustered Regularly
Interspaced Short Palindromic
Repeat/CRISPR-Associated Protein 9
Mutations
Transgenic plants were identified by their resistance to
hygromycin at the early phase of tissue culture. Three
transformed embryos were randomly selected from the controls
and confirmed using β-glucuronidase staining after 2 months
on selection media. Putative transgenic plants were confirmed
using the Phire Plant Direct PCR Kit (Thermo Fisher Scientific,
Waltham, MA, United States) and specific primers targeting
Cas9 and OsU3 promoter sequences (Supplementary Table 3).
Five transgenic oil palm mutants with altered phenotypes were
randomly selected for sequence analysis. Their genomic DNA
was extracted using QuickExtractTM DNA Extraction Solution
(Lucigen, Middleton, WI, United States). The target site of
EgPDS and EgBRI1 was amplified using region-specific primers
(Supplementary Table 2) and iProofTM High-Fidelity DNA
Polymerase (Bio-Rad Laboratories, Hercules, CA, United States).
Amplicons were purified and analyzed using Sanger sequencing
(Applied Biosystems, Foster City, CA, United States) for the
detection of specific InDels and substitution. Mutation efficiency
for each gRNA was evaluated based on the number of T0
transgenic plants with mutation compared to the number
of genotyped T0 transgenic plants. The mutation event and
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frequency were analyzed and detected using TIDE3 (Brinkman
et al., 2014). These amplified fragments were cloned into pJET1.2
(Thermo Fisher Scientific, Waltham, MA, United States), and
20 colonies were randomly selected for single-colony plasmid
sequencing for chimeric mutation assessment. The sequences
were analyzed by aligning to wild-type sequences as reference.

RESULTS

Development of a Highly Efficient
System for Genome Editing in Oil Palm
To establish a highly efficient CRISPR/Cas9 system in oil palm,
we targeted EgPDS as genetic lesions will result in visible
phenotypes. Five gRNAs were designed to target mutagenesis at
different exon regions of the EgPDS gene (Figure 1A). First, we
examined the functionality of codon-optimized SpCas9 and the
effectiveness of the five gRNAs to identify efficient gRNA for
further phenotypic validation in the transgenic oil palm, using
a fast electroporation-mediated protoplast transient expression
system. The protoplast electro-transfection efficiencies ranged
from 17 to 26%. Agglutination among protoplasts was observed
after electroporation with target constructs without damages
(Figure 1B). In EgPDS mutagenesis, mutations were detected
in protoplasts transformed with Cas9/gPDS4 and Cas9/gPDS5
with cleavage frequencies of 6.49 ± 0.7 and 25.49 ± 4.11%,
respectively (Figure 1C). In contrast, we found minimal
mutagenesis activity for gPDS1, gPDS2, and gPDS3 gRNAs,
and no mutation activity was detected in the control protoplast
pool. These results suggest that the codon-optimized Cas9 and
gRNAs are an efficient system for mutagenesis in oil palm
and that their efficiency can be easily determined by protoplast
electro-transfection.

To examine the efficiency of CRISPR/Cas9 in oil palm,
we generated stable transgenic plants by the transformation
of pUbil-Cas9 and highly efficient gRNAs for EgPDS (gPDS4
and gPDS5) using the biolistic particle bombardment method.
Putatively transformed embryos were selected from non-
transformants based on their survival on a hygromycin
selection medium. A total of 14 putative transformants were
generated using pUbil-Cas9 and gPDS4 transformation, whereas
13 putative transformants were generated using pUil-Cas9
and gPDS5 transformation, with a transformation efficiency
of 7 and 6.5%, respectively (Table 1). The transformation
of a single vector cassette for Cas9 or individual gRNA
into immature embryos resulted in a relatively higher
transformation efficiency of up to 19.5%. We randomly
selected the putative transformed immature embryos for GUS
histochemical assay (Figure 2A). The hygromycin-resistant
embryos were later transferred to negative selection media
to induce shoot regeneration. Notably, we found that the
regeneration efficiencies for EgPDS-edited plants ranged
from 44 to 77%.

Alteration of PDS gene function is predicted to result in
albino phenotypes due to defects in carotenoid biosynthesis

3https://tide.nki.nl/

(Mann et al., 1994). We found that the shoots of regenerated
oil palms transformed with pUbil-Cas9/gPDS4 and pUbil-
Cas9/gPDS5 displayed albino sectors indicating mosaicism
(Figure 2B). These transgenic plantlets were scored based
on their albino phenotype to provide a preliminary mutation
efficiency for each gRNA module. Mutagenesis mediated
by pUbil-Cas9/gPDS4 resulted in 83.3% mutation with
chimeric albinism phenotype (Figure 2C) observed in 8
out of 9 regenerated oil palm shoots (Table 1). A total of
7 out of 10 regenerated oil palm shoots exhibited a similar
chimeric albinism phenotype with Cas9/gPDS5 mutagenesis.
Control plantlets transformed with a single construct of pUbil-
Cas9/gRNA did not display signs of albinism. To investigate
the effect of multiple mutageneses on plant regeneration
and phenotype, we generated mutants transformed with
pUbil-Cas9 and both gRNA (gPDS4 and gPDS5) constructs.
Notably, only eight hygromycin-resistant immature embryos
with gRNA double mutations regenerated into shoots. The
EgPDS double mutants showed delayed shoot regeneration
compared with the single gRNA mutants and non-edited
control equivalents, nevertheless, the albino phenotype was
noticeable in the shoots of the three mutants (Table 1 and
Figure 2B). All regenerated shoots with albino phenotypes
were tested positive for the presence of both Cas9 and gRNA
using PCR analysis. To confirm the gene-editing events, we
performed PCR amplification and Sanger sequencing analysis
using shoots exhibiting a clear EgPDS-edited albino phenotype
(Figures 3A–C). These sequence traces were first analyzed
using the TIDE algorithm (Brinkman et al., 2014) to identify
the occurrence of InDels from the DSBs (Supplementary
Figure 2). The sequence data indicated multiple mutations
including InDels and single base substitutions in the EgPDS
gene of the genotyped regenerated shoots, and the mutated
sequences were validated using gene cloning. Mutations by
Cas9/gPDS4 induced independent events with 71% occurrence
of deletions (Figure 3D) ranging from −1 to −24 bp and
29% of nucleotide substitutions upstream of the protospacer
adjacent motif sequence (PAM) region of the target site.
The largest deletion (−24 bp) was detected at the boundary
of intron 3, and exon 4 of the EgPDS gene may cause
disruption in the splice-regulatory sequences and modulate
exon skipping or alter splicing of pre-mRNA. Insertion (+1 bp),
deletion (−1, −2, and −9 bp), and substitution (1–3 bp) were
detected in Cas9/gPDS5 mutants at an occurrence frequency
of 29, 43, and 29%, respectively. The nucleotide indels led
to disruption in amino acid sequence and exon skipping
in one of the mutants, whereas amino acid substitutions
resulted from the nucleotide substitutions. In double mutation
shoots, deletion (−2 and −16 bp) (75% occurrence) and
insertion (+8 bp) (25% occurrence) were detected at the
gPDS4 and gPDS5 target regions. These mutations led to
amino acid frameshifts and the introduction of multiple
stop codons near target regions. Collectively, our data
suggest that the optimization of vectors for efficient Cas9
and gRNA activity combined with a rapid transformation
system is a critical factor for an efficient gene-editing
system in oil palm.
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FIGURE 1 | Efficiency testing of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) and guide RNA (gRNA)
activity using electro-transfection in oil palm protoplasts. (A) Schematic map of gRNA target site in phytoene desaturase (EgPDS) gene. (B) Oil palm protoplast
before (left) and protoplast agglutination after (right) electro-transfection with Cas9/gRNA. (C) Cleavage efficiency of Cas9/gRNA in oil palm protoplast following
electro-transfection. Data are average values ± SE from four independent experiments.

Targeted Mutagenesis of
Brassinosteroid-Insensitive 1 to
Manipulate Brassinosteroid Responses
in Oil Palm
BRI1 gene encodes a brassinosteroid receptor and defective in
BRI1 results in dwarf phenotype in Arabidopsis, rice, and maize
(Clouse et al., 1996; Noguchi et al., 1999; Yamamuro et al.,
2000; Kir et al., 2015). Hence, we selected dwarfism as another
visual phenotypic marker for the validation of the genome
editing system in oil palm. To manipulate the brassinosteroid
responses, we selected EgBRI1 (accession no. XP_010927763)
for targeted mutagenesis. The EgBRI1 genomic DNA contains
one intronless open reading frame of 3390 bp, and gRNAs

were designed based on PAM sites (Figure 4A). The activity
of the CRISPR/Cas9 system and the efficiencies of gRNAs
targeting the EgBRI1 gene were first verified using in vitro
electro-transfection system in protoplast. Mutagenesis of EgBRI1
gene mediated by Cas9 with gBRI1-1, gBRI1-2, and gBRI1-5
showed cleavage frequencies of 9.8 ± 1.21, 18.32 ± 1.4, and
5.1 ± 0.53%, respectively, in protoplast with electro-transfection
efficiencies ranging from 12 to 17% (Figure 4B). However,
cleavage was not detectable with the remaining gRNAs tested in
the protoplast system. The two most efficient gRNAs, gBRI1-1
and gBRI1-2, were selected for transformation in the oil palm.
The transformation with pUbil-Cas9 and gBRI1-1 resulted in 24
putative transformants (with a 12% transformation efficiency),
while the transformation with pUbil-Cas9 and gBRI1-2 resulted
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TABLE 1 | The efficiency of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) and guide RNA (gRNA)
transformation targeting phytoene desaturase (EgPDS) gene in oil palm and the phenotypes of the transgenic plants.

Gene Guide RNA Bombarded
immature
embryo

Putative
transformant

Regenerated
T0 shoots

T0 with
mutation/genotyped

T0 plants

Mutation rate Transformants
with altered
phenotype

Control Cas9 200 22 (11%) 17 (77%) 0/5 0 0

gPDS4 200 39 (19.5%) 29 (74%) 0/5 0 0

gPDS5 200 15 (7.5%) 10 (67%) 0/5 0 0

EgPDS Cas9/gPDS4 200 14 (7%) 9 (64%) 5/6 83.33% 8 chimeric
albino (89%)

Cas9/gPDS5 200 13 (6.5%) 10 (77%) 5/8 62.50% 7 chimeric
albino (70%)

Cas9/gPDS4 +
gPDS5

200 18 (9%) 8 (44%) 3/7 42.86% 3 chimeric
albino (37.5%)

in 23 putative transformants (with an 11.5% transformation
efficiency) (Table 2). Overall, the mutagenesis efficiency for
EgBRI1 ranged between 58.82 and 100%. Targeted mutagenesis of
the EgBRI1 resulted in two distinct phenotypes found in most of
the regenerated plants (75–87% regeneration efficiency), reduced
plant elongation (stunted), and apex necrosis (Figures 4C,D)
with mutation efficiency of 58.82 and 66.67% using pUbil-
Cas9/gBRI1-1 and pUbil-Cas9/gBRI1-2, respectively. Sequence
analysis of the targeted region detected a wide range of mutations
in regenerated transgenic oil palm shoots. Those that arose
from pUbil-Cas9/gBRI1-1 and pUbil-Cas9/gBRI1-2 had multiple
nucleotide insertions (+1, +8 bp), nucleotide deletions (−1
to −25 bp), and nucleotide substitutions at the sequence
targeted at an occurrence frequency of 18–20, 30–36, and 45–
50%, respectively (Figures 5A,B). These nonsense mutations
may cause the frameshift and aberrant amino acid sequences
with premature stop codon introduction and lead to protein
truncation. Likewise, the impaired growth phenotypes in mutants
generated using paired-gRNAs resulted primarily in deletions
(−1, −2, −18, and −39 bp) and insertions (+4 bp) (Figure 5C).
Nucleotide substitution mutations are predicted to affect the
activity of the leucine-rich repeat receptor-like protein kinase
domain of BRI1 (Figure 5D) and are responsible for the apex
necrosis phenotype observed in these plants.

DISCUSSION

Genome editing provides opportunities for the improvement
of the trait in crops, yet its implementation requires an
efficient genetic transformation and regeneration system. In
oil palm, limitations in the DNA delivery method, inefficient
clonal propagation, and regeneration processes constrain rapid
progress in genetic engineering. In this study, we developed
an efficient system for CRISPR/Cas9 genome editing in oil
palm by targeting EgPDS and EgBRI1 genes. Mutation rates
mediated by CRISPR/Cas9 varied depending on the specificity
and effectiveness of gRNAs to target sequences, delivery methods,
and sensitivity of the detection method. We first established
an in vitro protoplast electro-transfection method to identify
mutagenic and efficient gRNAs. Electroporation of Cas9 and

gRNA constructs using our optimized conditions resulted in
cleavage frequencies of up to 25.49% in viable oil palm
protoplasts, suggesting that the codon-optimized Cas9 was
effective in inducing cleavage. Several gRNAs failed to elicit
cleavage despite high GC-content has been associated with
higher Cas9 editing efficiency (Liu et al., 2016). This may be
contributed by the sequence composition or secondary structure
of several target gRNAs that potentially cause failure to recognize
target sequence or formation of functional Cas9-gRNA complex
in protoplast (Thyme et al., 2016). In cabbage, neon electro-
transfection at 1,000 V was 1.4 times more efficient than PEG-
mediated transfection in delivering CRISPR-Cas9 RNP into
protoplast and resulted in 3.4% InDels mutation frequency in
the PDS1 gene (Lee et al., 2020). Despite a previously reported
PEG-mediated transfection method for protoplast, the protoplast
viability and reproducibility are significantly reduced due to
toxicity effects of PEG (Masani et al., 2014). Our method
for electro-transfection of genome editing tools in oil palm
protoplasts provides an effective alternative strategy for gRNA
cleavage activity and potential opportunity to develop DNA-
free genome-edited palms. However, limitations with oil palm
protoplast regeneration require further studies for improvement
to enable deployment of the protoplast system for DNA-
free gene editing.

High transformation efficiency gene editing has been reported
in monocot plant species including 57% in maize, 80% in wheat,
64% in rice, and 14.3% in sorghum (Xu et al., 2014; Char
et al., 2017, 2020; Macovei et al., 2018; Zhang et al., 2018).
Previous studies in oil palm achieved 0.7–1.5% transformation
efficiencies using Agrobacterium-mediated and microprojectile
bombardment transformation methods in embryogenic callus
and regeneration by indirect somatic embryogenesis (Parveez
et al., 1998; Masli et al., 2012; Dayang Izawati et al., 2015).
In this study, we obtained 5–19.5% transformation efficiencies
using particle bombardment into zygotic embryos, and up
to 87% of embryos regenerated into shoots through direct
embryogenesis. Our results suggest that the optimization of
transformation protocol, selection of explant, and regeneration
methods are effective in improving oil palm transformation
efficiency. Furthermore, a direct embryogenesis approach was
employed to enable rapid regeneration with minimized risk
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FIGURE 2 | Mutagenesis mediated by CRISPR/Cas9 and gRNA of EgPDS in in vitro transgenic oil palm. (A) Confirmation of genetic transformation by
β-glucuronidase (GUS) assay in immature embryos transformed with Cas9/gPDS4 and Cas9/gPDS5. (B) Phenotypes of the Cas9/gPDS4 or gPDS5-mediated
mutagenesis and control transgenic in vitro oil palms. Arrow indicating shoots with albino phenotypes. (C) Mutation frequencies of CRISPR/Cas9 mutagenesis in
in vitro transgenic oil palms.
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FIGURE 3 | Mutation events of targeted CRISPR/Cas9 mutagenesis of EgPDS gene in in vitro transgenic oil palm. Mutation events detected in the transgenic oil
palms exhibiting the chimeric albino phenotypes using sequencing-based detection at the target sites of (A) gPDS4, (B) gPDS5, and (C) both gPDS4 and gPDS5 in
the EgPDS gene and (D) the percentage frequency of occurrence for each type of mutation event. Protospacer adjacent motif sequence (PAM) is highlighted in
yellow, InDels sequences of the target site are shown in red, and nucleotide substitution are marked in blue. g4, gPDS4; WT, wild-type; C, control; g5, gPDS5; Dm,
double mutant; 1–5, plantlet number.

of culture-induced genetic variation that commonly occurs
during callusing phase (Weckx et al., 2019). Although chimeric
albinism phenotype was observed in the transgenic EgPDS-edited
palms using our method, nevertheless, homozygous mutants
and transgene removal can be obtained by genetic segregation
and backcrossing.

We achieved high editing efficiency (42.86–100%) at target
sites of EgPDS and EgBRI1 genes in transgenic oil palms with
our CRISPR/Cas9 system. In rice, high mutagenesis efficiency

of 87–100% (di-allelic edits) was achieved using rice codon-
optimized SpCas9 compared with the optimized SpCas9 from
bacterial, human, and Chlamydomonas in T0 transgenic plants
(Zhou et al., 2014). High editing efficiency in our system may
be attributed to the oil palm codon-optimized Cas9 gene driven
by ubiquitin, an active promoter in monocot (Schledzewski
and Mendel, 1994), efficient gRNAs, and delivery method for
Cas9/gRNA. Our transgenic plants showed insertions (18–40%),
deletions (30–75%), and high levels of nucleotide substitutions

Frontiers in Plant Science | www.frontiersin.org 8 November 2021 | Volume 12 | Article 773656

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-773656 November 19, 2021 Time: 13:35 # 9

Yeap et al. CRISPR/Cas9 in Oil Palm

TABLE 2 | The efficiency of CRISPR/Cas9 and gRNA transformation targeting brassinosteroid-insensitive 1 (EgBRI1) gene in oil palm and the phenotypes of the
transgenic plants.

Gene Guide RNA Bombarded
immature
embryo

Putative
transformant

Regenerated
T0 shoots

T0 with
mutation/genotyped

T0 plants

Mutation rate Transformants
with altered
phenotype

Control Cas9 200 22 (11%) 17 (77%) 0/5 0 0

gBRI1-1 200 17 (8.5%) 13 (76.5%) 0/5 0 0

gBRI1-2 200 10 (5%) 8 (80%) 0/5 0 0

EgBRI1 Cas9/gBRI1-1 200 24 (12%) 18 (75%) 10/17 58.82% 6 stunted (33%)
5 leaf necrosis

(28%)

Cas9/gBRI1-2 200 23 (11.5%) 20 (87%) 10/15 66.67% 5 stunted (25%)
10 leaf necrosis

(50%)

Cas9/gBRI1-
1 + gBRI1-2

200 36 (18%) 30 (83%) 7/7 100% 30 stunted
(100%)

(29–50%) in EgPDS and EgBRI1 genes. Although InDels are
the most common mutation induced by error-prone NHEJ
repair mechanism that involves direct rejoining of DSB ends
regardless of sequence homology (Rodgers and McVey, 2016),
high frequency of NHEJ-induced base substitutions are also
prevalent in plants and substantial evidence have been reported
in rice, cassava, citrus, soybean, and melon (Sun et al., 2015;
Odipio et al., 2017; Macovei et al., 2018; Hooghvorst et al.,
2019; Dutt et al., 2020). For instance, a high frequency of base
substitutions has been reported in melon (91%) and rice (25–
45%) (Macovei et al., 2018; Hooghvorst et al., 2019). In our
study, InDels in the EgBRI1 gene resulted in reduced plant
elongation phenotype, while leaf apex necrosis was generated
from base substitution events in transgenic palms. Early studies
in Arabidopsis and rice reported dwarf and shortened internode
phenotypes in the bri1 loss-of-function mutant plants (Clouse
et al., 1996; Noguchi et al., 1999; Yamamuro et al., 2000). Choe
et al. (1999) further reported that mutation in Arabidopsis bri1
results in a retarded leaf senescence phenotype. Phenotypes
of our EgBRI1 transgenic mutant palms are substantially
affected by the types of NHEJ-induced mutations, and the
specificity of the repair mechanism for DSBs is critical to
driving accurate genomic changes without errors. Interestingly,
we observed a low frequency of nucleotide substitutions using
pUbil-Cas9/paired-gRNAs in both genes. Blunt end cleavage
site generated using single gRNA is commonly repaired by
error-prone NHEJ mechanism, but precise end-joining repairs
have been reported in human cells through simultaneous
DNA DSBs by Cas9/paired gRNAs, suggesting a direct ligation
without end processing (Zheng et al., 2014). Moreover, previous
studies in mammalian cells reported that the accuracy of the
NHEJ repair mechanism is reduced when the distance between
two collinear DSBs is beyond 1 kb (Boubakour-Azzouz and
Ricchetti, 2008; Guirouilh-Barbat et al., 2016; Guo et al., 2018).
Simultaneous DSBs by Cas9/paired-gRNAs at short distance
may improve the specificity of the repair mechanism; however,
the current understanding of this precise mechanism remains
to be determined. Hence, the dynamic interaction between
Cas9 cleavage and the endogenous DNA repair mechanism

needs further study to enhance the efficiency and specificity of
CRISPR/Cas9 system applications in plants.

Furthermore, we adapted the paired-gRNA using multi-
cassette (monocistronic) transformation to increase the
mutation frequency and chromosomal fragment deletion in
the targeted gene. The assayed pUbil-Cas9/paired-gRNAs
were mutagenic and active in inducing InDels in two target
genes; however, no large chromosomal fragment deletion was
detected. Chromosomal fragment deletion has been reported
in kiwifruit with 755 and 271 bp deletions using polycistronic
tRNA-gRNA (PTG)/Cas9 system, which is 10-fold higher than
conventional CRISPR/Cas9 expression cassette (Wang et al.,
2018). The PTG/Cas9 system enables a simultaneous expression
of multiple gRNAs up to 31 times higher than monocistronic
cassette and improves mutagenesis of multiple chromosomal
fragment deletions in rice protoplast (Xie et al., 2015). Moreover,
large chromosomal segments of more than 100 kb deletions
between two genomic loci were achieved in rice protoplasts
using the multiplex gRNA expression system (Zhou et al.,
2014). Chromosomal fragment deletion is a potential strategy
for chromosomal engineering to remove undesired loci with
detrimental traits in crops and could be achieved by multiplex
gRNA expression or PTG/Cas9 systems using gRNAs with
similar efficiency at both target sites.

Our study demonstrated that the CRISPR/Cas9 genome
editing system is effective and efficient in editing oil palm genes.
In this study, the established in vitro electro-transfection assay
provides a rapid assessment and evaluation of gRNA efficiency in
oil palm protoplast to reduce the time and cost for transformation
and regeneration in oil palm using inefficient gRNAs. An efficient
transformation system in oil palm or methods to generate non-
transgenic gene-edited mutants are highly desired to enhance
the occurrence of targeted mutagenesis with the CRISPR/Cas9
system. This enabling platform for genome editing may accelerate
the exploration of gene function for trait improvement in oil
palm, in particular, the agronomic traits that address challenges
in oil palm cultivation including basal stem rot or Ganoderma
disease, abiotic stress tolerance to reduce losses due to climate
change, and ease of harvesting traits such as dwarf, long stalk,
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FIGURE 4 | Clustered regularly interspaced short palindromic repeat/Cas9-targeted mutagenesis of brassinosteroid-insensitive 1(EgBRI1) gene in in vitro oil palm
plantlets. (A) Schema of gRNA targeting intronless EgBRI1 gene in oil palm. (B) Cleavage efficiency of Cas9/gRNA targeting EgBRI1 gene in oil palm protoplast.
Data are average values ± SE from four independent experiments. (C) CRISPR/Cas9-induced EgBRI1 mutations at different gRNA target sites showing stunted
growth and leaf apex necrosis phenotypes (boxed in blue) in transgenic oil palm shootlets and controls transformed with either Cas9 or gRNA alone. (D) Mutation
frequencies of CRISPR/Cas9 mutagenesis based on the occurrence of stunted or necrotic leaf apex phenotypes in transgenic oil palm.
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FIGURE 5 | Clustered regularly interspaced short palindromic repeat/Cas9-mediated mutation events and phenotypes of EgBRI1 mutant transgenic oil palm.
(A) The overall percentage frequency of occurrence for each type of mutation event detected at gBRI1-1 and gBRI1-2 targeted sites. The mutation events detected
in the transgenic oil palms exhibiting (B) stunted growth phenotype induced by CRISPR/Cas9 and gBRI1-1, gBRI1-2, or (C) dual gRNAs mutation induction in the
EgBRI1 gene, and (D) necrotic shoot apex phenotype. PAM is highlighted in yellow, InDels sequences of the target site are shown in red, and nucleotide substitution
is marked in blue. g1, gBRI1-1; g2, gBRI1-2; WT, wild-type; C, control; Dm, double mutant; 1–5, plantlet number.

and virescens. In addition, our study offers new insights to other
related palm species including date palm and coconut that shared
similar limitations in the DNA delivery method, low efficacy of

genetic transformation, and inefficient tissue culture propagation
and regeneration processes. The availability of full genome
sequence opened a new opportunity for genetic improvement
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in date palm and coconut through the CRISPR/Cas9 genome
editing approach. This approach will be helpful to develop date
palm and coconut resistance against biotic and abiotic stresses.
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