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Grasslands are crucial components of ecosystems. In recent years, owing to certain
natural and socio-economic factors, alpine grassland ecosystems have experienced
significant degradation. This study integrated the frequency ratio model (FR) and
Bayesian belief networks (BBN) for grassland degradation risk assessment to mitigate
several issues found in previous studies. Firstly, the identification of non-encroached
degraded grasslands and shrub-encroached grasslands could help stakeholders more
accurately understand the status of different types of alpine grassland degradation. In
addition, the index discretization method based on the FR model can more accurately
ascertain the relationship between grassland degradation and driving factors to improve
the accuracy of results. On this basis, the application of BBN not only effectively
expresses the complex causal relationships among various variables in the process
of grassland degradation, but also solves the problem of identifying key factors and
assessing grassland degradation risks under uncertain conditions caused by a lack of
information. The obtained result showed that the accuracies based on the confusion
matrix of the slope of NDVI change (NDVIs), shrub-encroached grasslands, and
grassland degradation indicators in the BBN model were 85.27, 88.99, and 74.37%,
respectively. The areas under the curve based on the ROC curve of NDVIs, shrub-
encroached grasslands, and grassland degradation were 75.39% (P < 0.05), 66.57%
(P < 0.05), and 66.11% (P < 0.05), respectively. Therefore, this model could be used to
infer the probability of grassland degradation risk. The results obtained using the model
showed that the area with a higher probability of degradation (P > 30%) was 2.22
million ha (15.94%), with 1.742 million ha (78.46%) based on NDVIs and 0.478 million
ha (21.54%) based on shrub-encroached grasslands. Moreover, the higher probability
of grassland degradation risk was mainly distributed in regions with lower vegetation
coverage, lower temperatures, less potential evapotranspiration, and higher soil sand
content. Our research can provide guidance for decision-makers when formulating
scientific measures for alpine grassland restoration.
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INTRODUCTION

Grasslands cover approximately 40% of the global area, and
have significant effects on the production, daily life of humans,
and ecology (Zong et al., 2021). However, these grasslands are
currently degrading owing to the influence of human activity
and climatic changes on grassland ecosystems. As a typical
ecologically vulnerable area, alpine grasslands have significantly
changed in terms of plant productivity and diversity, soil
properties, and vegetation community. This has resulted in
extensive degradation (Zhang et al., 2018; Miehe et al., 2019).
Alpine grassland degradation has become an ecological and
environmental issue that is of global concern (Seddon et al.,
2016; Zhang et al., 2018). Take the Qinghai-Tibet Plateau as
an example, whose coverage area of alpine grassland is 128.78
million ha (Liu et al., 2021). However, nearly 50% of the
grasslands have been degraded owing to the interference of
livestock husbandry and climatic changes (Teng et al., 2020). To
relieve the ecological environmental pressure caused by alpine
grassland degradation, the government of China (GOC) has
implemented a plan to turn grazing land back into grassland
and implement a policy of grassland ecological compensation.
Although grassland vegetation is improving overall, intensive
grassland degradation is occurring in local areas (Zhou et al.,
2020; Wang Z. et al., 2021). Further, alpine grassland ecosystems
are complex systems, making it difficult to solve all degradation
problems through policy instruments alone. Hence, recognising
and predicting grassland degradation patterns from the dual
perspective of nature and humanity is imperative.

Previous studies on grassland degradation assessment are
mainly based on remote sensing technology and parameter
assessment systems (Gao et al., 2006; Feng et al., 2009; Lang
et al., 2021). When using this method, indexes for grassland
degradation are always uncertain, and most index parameters are
set according to the subjective experience of researchers, resulting
in the results being unreliable. Some scholars have detected
grassland degradation using alarm signals (Lin et al., 2015; Han
et al., 2018). However, this method had a small observation
scope, and can only ascertain grassland degradation, without
understanding its driving forces. In addition, previous studies
do not take into consideration probability due to the complexity
of grassland degradation mechanisms, the uncertainty of risk
driving factors, and approaches limitations (Fleskens and
Stringer, 2014; Farber, 2015). In fact, grassland degradation is
influenced by multiple factors and the degradation trend should
be a probability event. This risk assessment is determined by
scientific cause and effect relationships where cause and effect
are understood and predictable (although uncertainty is not quite
zero) (French, 2015).

Therefore, an effective method for grassland degradation
risk assessment – which can not only express the uncertainty
of grassland degradation, but also understand the quantitative
inference of grassland degradation risk probabilities according
to the relationship between grassland degradation and driving
factors – is required. As a method to measure the probability
of risk occurrence, Bayesian belief networks (BBN) have been
widely applied in accident risk assessment (Zywiec et al., 2021)

and health risk prediction (Orak, 2020). Recently, the application
of BBN to ecological environments is gradually increasing,
including for decision support (Dang et al., 2019) and risk
assessment (Plomaritis et al., 2018). BBN integrates several
continuous variables (e.g., precipitation) and discrete variables
(e.g., soil texture) through qualitative and quantitative analysis
to construct an independent model (Zhu et al., 2020). Moreover,
BBN inherits various data sources (e.g., expert knowledge,
historical data, and empirical data) and transforms qualitative
causality into a quantitative inference model based on probability
calculations (Kerebel et al., 2019). The uncertainty of factors
can be effectively solved because the uncertainty of the factor
is transferred to the target variable through the conditional
probability distribution table in the BBN model (Calder et al.,
2019). Therefore, BBN not only can be used to assess the
grassland degradation risk, but can also act as a decision support
tool for stakeholders to make scientific measures.

The grassland of the Northwest Sichuan Plateau is located
along the northeast edges of the Qinghai-Tibet Plateau, which
is one of the five typical vulnerable grassland ecological regions
in China. In this region, the grassland area is 13.93 million ha,
accounting for more than 50% of the total area of the region, and
has a high ecological value in terms of water conservation, soil
and water conservation, and biodiversity protection. However,
the ecosystem of local grasslands is becoming more and more
vulnerable owing to the interference of humans and natural
factors, which influences ecosystem services and the development
of livestock husbandry (Li et al., 2020).

In this study, a quantitative grassland degradation risk
assessment of the Northwest Sichuan Plateau was carried out
by integrating the frequency ratio model (FR) model and BBN
model. (1) The degradation pattern of grasslands in the study
period was identified based on land use data and the normalized
difference vegetation index (NDVI). (2) The driving risk factors
of grassland degradation were discretized using the FR model and
the BBN model structure was established according to knowledge
regarding the grassland degradation and driving factors. (3) The
importance of driving factors was identified based on a sensitivity
analysis of the BBN model. (4) The probability of grassland
degradation risk occurrence in each grid was predicted. On one
hand, research conclusions can acquire objective and integrated
grassland degradation states in the Northwest Sichuan Plateau.
On the other hand, this study can assist decision-makers to
formulate grassland restoration measures to maintain sustainable
development in the region.

MATERIALS AND METHODS

Study Area
With a total area of approximately 13.93 million ha, the alpine
grasslands of the Northwest Sichuan Plateau – located along
the southeast edges of the Qinghai-Tibet Plateau (97◦34′ –
104◦43′E, 27◦96′ – 34◦31′N), is home to two prefecture-level
cities (Ganzi Tibetan Autonomous Region and Aba Tibetan
and Qiang Autonomous Prefecture) and 31 counties (districts)
(Figure 1). In 2018, the population was about 2.14 million, which
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FIGURE 1 | Location and elevation of the study area.

only accounted for 2.6% of the total population of the Sichuan
Province. In the region, the terrain lifts gradually from the east
to the west, and the elevation ranges between 783 and 7,143 m.
Grasslands are the major land-use type in the Northwest Sichuan
Plateau, which accounts for 59.92% of the total area. Moreover,
a large area comprises an ecological reserve, which plays an
important role in water conservation, water–soil conservation,
and biodiversity protection in China.

Owing to the high sensitivity and vulnerability of alpine
grasslands, ecological functions in local areas are degrading in
response to human activities and climate change. In particular,
there has been a significant increase in grassland degradation and
insect attacks. The area of grassland degradation, desertification,
and salinization has reached 9.39 km2, which accounts for 6.96%
of the national value in China. Further, about 45% of the counties
suffer from livestock overloading in the summer, which causes
over-grazing in grasslands. Considering the ecological concerns
and existing grassland degradation, the alpine grasslands of
the Northwest Sichuan Plateau were chosen for grassland

degradation risk assessment, which aims to help stakeholders
recognize important spaces and allocate resources reasonably.

Data Collection
In this study, eight datasets were used, as follows. (1) Land use
and land cover (LULC) data in 2005 and 2018, with spatial
resolution of 30 m, from the Resource and Environmental Science
Data Center of the Chinese Academy of Sciences1; (2) Digital
elevation model (Elevation) data from SRTM90m were provided
by the Resource and Environmental Science Data Center of the
Chinese Academy of Sciences (see text footnote 1); (3) Nighttime
light data was published on the Harvard Dataverse2, with a spatial
resolution of 500 m; (4) Geographic information data, including
administrative boundaries, administrative centres, traffic network
elements, and river basin datasets, were taken from the National

1http://www.resdc.cn/
2https://doi.org/10.7910/DVN/YGIVCD
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Geomatics Center of China3; (5) Meteorological data from
2005 to 2018, including the precipitation, temperature, and
potential evapotranspiration (ET0), were obtained from China’s
meteorological data sharing service system4; (6) the MOD13Q1
NDVI from 2005 to 2018, with a spatial resolution of 250 m,
was obtained from the United States Geological Survey5; (7) Soil
texture data were taken from the 1:1,000,000 soil dataset of the
National Tibetan Plateau Data Center6; and (8) the livestock
numbers were provided by the local governmental department.
In total, 18 potential factors affecting grassland degradation were
selected (Table 1), and the spatial distribution of the indicators
are shown in Supplementary Figure 1.

Methods
Concept of Bayesian Belief Networks
Bayesian belief networks is supported by a flexible network
structure that can perform bottom-up reasoning or diagnostic
analysis, along with top-down reasoning or predictive analysis

3https://www.openstreetmap.org/
4http://data.cma.cn/
5https://www.usgs.gov/
6http://data.tpdc.ac.cn/

TABLE 1 | Potential factors affecting grassland degradation.

Factors Description

Topographic Elevation Elevation (m)

Slope Slope (◦)

Soil Clay Proportion of clay (%)

Sand Proportion of sand (%)

Silt Proportion of silt (%)

Climatic Tm Mean value of annual temperature (2005–2018)
(◦C)

Ts Slope of annual temperature change
(2005–2018) (/)

ETm Mean value of annual potential
evapotranspiration (2005–2018) (mm)

ETs Slope of annual potential evapotranspiration
change (2005–2018) (/)

Pm Mean value of annual precipitation (2005–2018)
(mm)

Ps Slope of annual precipitation change
(2005–2018) (/)

Social and
economic

Livestock Mean value of the number of livestock
(2005–2018) (cow unit)

NTLm Mean value of annual nighttime light
(2005–2018) (/)

NTLs Slope of annual nighttime light change
(2005–2018) (/)

DW Distance between each grid and its nearest
water body (m)

DR Distance between each grid and its nearest
road (m)

DD/DC Distance between each grid and its nearest
administrative centre (m)

Others NDVIm Mean value of annual normalized difference
vegetation index (2005–2018) (/)

(Rusek et al., 2021). They consist of nodes, which represent
the random variables, and arrows, which represent the cause–
effect relationship between variables. All variables in the BBN
model are discretised into a limited number of states, and
the causal relationship between a parent node X and a child
node Y is quantified through a conditional probability table
(CPT). For those nodes without a parent, the CPT transitions
into a probability distribution with several possible states.
These probabilities can be obtained through observational data,
professional knowledge, or empirical observation (Kabir et al.,
2015; Abebe et al., 2018). The primary advantage of using BBNs is
that they reach probabilistic inferences or update their beliefs by
integrating qualitative and quantitative data using the conditional
probability theorem (Bicking et al., 2019) (Eq. 1). In the BBN
model, the joint probability distribution (JPD) of related variables
is obtained by multiplying the CPT of all nodes, as shown in Eq. 2.
The JPD enables a BBN to effectively calculate the conditional
probability of events based on the introduction of evidence
variables. In the context of risk prediction, for example, the BBN
can forecast the conditional probability of grassland degradation
given information on evidence variables in each grid.

P (B|A) =
P (A|B) × P (B)

P (A)
(1)

Equation 1 indicates that the posterior probability of an event B
based on the data or evidence A is observed in terms of the prior
probability of B P (B), the conditional probability of A given B
P (A | B), and the prior or marginal probability of A P (A).

P (X1,X2, ...,Xn) =

n∏
i = 1

P
(
Xi
∣∣ parent (Xi)

)
(2)

Equation 2 is a formal representation of probability theory to
calculate the JPD over a set of related variables.

The construction of a BBN model includes model design
and parameterization, model validation, and risk probability
inference. The Genie and MATLAB software were used to
construct the BBN model and infer the risk probability of
grassland degradation. The design and application of the BBN
model for the case study are presented in Figure 2.

Establish the Grassland Degradation Risk Inference
Model
For macro-scale research, the characterization of grassland
degradation based on NDVI is a commonly used method. NDVI
is an important indicator of vegetation coverage, with which it has
a significant linear relationship (Zhao et al., 2021). Therefore, for
each grassland grid, the slope value of NDVI (NDVIs) from 2005
to 2018 could be used to indicate the trend of grassland change,
and NDVIs values less than 0 could be regarded as grassland
degradation. However, it is worth noting that NDVIs values lower
than 0 do not indicate grassland degradation, because shrub-
encroached grasslands in alpine regions are an important form of
grassland degradation and do not necessarily lead to a reduction
in NDVI (Fraser et al., 2014; May et al., 2020). Therefore, to more
comprehensively identify the pattern of grassland degradation,
we defined grassland degradation as non-encroached degraded
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FIGURE 2 | Design and application framework of the BBN model.

grasslands with negative slope values of NDVIs (NDVIs < 0) and
shrub-encroached grasslands.

Taking into account the non-stationarity of ecological
processes, the diversity and incompleteness of data, and the
complex relationships among factors, we selected 18 potential
factors based on previous research results (Kane et al., 2017;
Chen et al., 2020). The Pearson correlation coefficient was used
to identify the correlation and intensity between potential factors
and NDVIs or shrub-encroached grasslands. The results are
shown in Figure 3, where the red pixels represent a positive
correlation between two variables, blue pixels represent a negative
correlation between two variables, and the flatter the ellipse,
the larger the absolute value of the correlation coefficient. The
results indicate that the selected potential factors had impacts on
grassland degradation, other than NTLs, NTLm, and DD/DC.
Therefore, NTLs, NTLm, and DD/DC were removed, because
including them had no significant effect on the prediction
results. In combination with the aforementioned analysis results,
expert judgment, and historical data, the BBN-based grassland
degradation risk model is constructed as shown in Figure 4.

Model Parameterization and Validation
First, the scientific division of driving factor states is the premise
of the BBN model inference. As an efficient probabilistic method,
the FR model can provide a more reliable prior knowledge

for the BBN model of grassland degradation by calculating the
frequency ratio of grassland degradation and impact factors in
each interval. The larger the FR value, the higher the probability
of grassland degradation (Yang et al., 2021). In this study, the FR
not only characterizes the proportion of the area where grassland
degradation occurs, but also explores the possibility of grassland
degradation occurring (or not occurring)under given conditions.
Thus, the intervals with similar frequency ratios can be merged
to realize the scientific division of indicator factor status. It can
be calculated as follows:

FR =
a/b(%)

c/d(%)
(3)

where a is the number of each factor’s grassland degradation, b
is the number of total grassland degradation, c is the number
of pixels in a given factor, and d is the total number of pixels
in the study area.

Then, a case file was generated, which included 124,517
observations, with each row representing a sample. The case
file was randomly divided into two partitions: a training set
(n = 99,614; 80%) for model development, and a testing set
(n = 24,903; 20%) for accuracy. Given the link structures, the
training dataset was entered into the model as evidence to
calculate the CPTs of each node in the BBN model.
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FIGURE 3 | Correlation matrix between the selected variables for grassland degradation. GD, grassland degradation; NDVIs, slope of NDVI change; SE,
shrub-encroached grasslands.

Finally, to evaluate the accuracy of the BBN model predictions,
a confusion matrix and receiver operating characteristic (ROC)
curve were calculated using the testing set. The confusion matrix
is a useful tool to ascertain the level of prediction accuracy
by comparing the number of true values against the number
of predicted values (Deng et al., 2016). The ROC curve can
effectively measure the judgment ability of the model. If the
model has good judgment ability, the ROC curve will be located
above the diagonal of the coordinate axis, and the corresponding
AUC will be greater than 0.5 (Anderson, 2019).

Grassland Degradation Risk Calculation
Through the evaluated BBN model, it is convenient to infer the
probability of the target nodes in different combination states
of evidence variables. The evidence variables with a significant
contribution to grassland degradation were chosen through
sensitivity analysis. Variance of belief (VB) – based on variance
reduction – and mutual information (MI) – based on entropy
reduction – are often used as sensitivity analysis indicators
to quantitatively evaluate whether network nodes sensitively
perceive changes in other nodes (Shi et al., 2020). Therefore,
this study used the VB and MI to assess the sensitivity of input

variables relative to the target variables. VB and MI are calculated
as follows:

VB = V(S)− V(S|I) =∑
s

P(s) × (s-E(S))2
−

∑
s

P(s|I) ×
(
s-E(S|I)

)2 (4)

MI = H(S)−H(S|I)

=

∑
s

∑
i

P(s,i)log2

(
P(s,i)

P(s) × P(i)

)
(5)

where S is the target variable, I is another variable, and s and i
represent the states of S and I, respectively. The larger the value
of VB and MI, the stronger influence of the driving factor on the
target variable.

According to the results of the sensitivity analysis, we selected
six driving factors with the highest sensitivity to target variable
changes as the evidence variables. The CPT and probability
distribution of each node in the BBN model can infer the CPT
of the target variable under given conditions (Hao et al., 2018).
Therefore, by integrating the evidence variables of each grid into
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FIGURE 4 | Bayesian conceptual network of grassland degradation risk inference. NDVIs, slope of NDVI change; SE, shrub-encroached grasslands.

the established BBN model, we can obtain the potential grassland
degradation risk in the grid.

RESULTS

Grassland Degradation Pattern
The dynamic variation trend of NDVI in each grid from 2005
to 2018 was calculated (Figure 5A). According to statistical
results, the area of NDVIs less than 0 was 2.433 million ha,
with 11.39% attributed to significantly decreased areas and
88.61% to non-significantly increased areas. In view of the
spatial distribution, these areas are mainly distributed in Shiqu
County, Songpan County, Daocheng County, and the junction
of Maerkang County, Li County, and Xiaojin County. Based on
land use data (Supplementary Figure 2) in 2005 and 2018, shrub-
encroached grasslands were recognized, as shown in Figure 5B.
The results showed that shrub-encroached grasslands covered an
area of 1.689 million ha, and the areas of the degraded grids
were larger in Daofu County, Songpan County, and Wenchuan
County. Overall, the grassland degradation appeared in scattered
areas and in a wide range. According to the results of the
overlay analysis of shrub-encroached grasslands and NDVIs, a
spatially intersecting area of 1.357 million ha was identified.
This meant that the 1.553 million ha of degraded grasslands

had been identified through shrub-encroached grasslands, which
offset the shortcomings of grassland degradation recognition
based on NDVIs only.

Driving Factors Analysis
The FR model was used to identify the relationship between
screened driving factors and grassland degradation, and then the
driving factors were discretized based on similar frequency ratios
(Figure 6). For the soil silt content, the class with a soil silt
content of less than 10% had the highest FR value, indicating that
grassland degradation has the highest probability of occurrence.
The results of soil sand content and soil silt content showed that
most grassland degradation occurred at values >80% and <10%,
respectively. The livestock results indicated that the >600,000
class had a higher FR value than the other classes, which indicated
a high probability of grassland degradation. For Tm and Ts, the
classes of −0.01 −0.03 and <−4◦C, respectively, had a higher
grassland degradation occurrence. The highest FR value of ETs,
ETm, Ps, and Pm belonged to the −0.2−0.1 class, <400 mm,
<−6, and >1,040 mm, respectively. Interestingly, some factors
exhibited obvious spatial variations in terms of the FR results.
For example, the FR results for the >5,000 m class of elevation
and the >25◦ class of slope were greater than those of the
other classes, indicating that the grassland degradation occurred
close to high altitudes and high slopes. Regarding the DR and
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FIGURE 5 | Grassland degradation from 2005 to 2018. (A) NDVIs, slope of NDVI change. (B) SE, shrub-encroached grasslands.

DW factors, grassland degradation occurred more easily in areas
5,000–20,000 m away from roads and areas more than 7,500 m
away from rivers. The FR value of NDVIm decreased with
increases in vegetation coverage, which was not only consistent
with prior knowledge of grassland degradation, but also verified
the reliability of the experimental dataset. Based on the above
analysis, the screened driving factors were classified according to
the FR value. The results of the aforementioned classes can be
found in Supplementary Table 1.

Parameter Learning and Model Validation
Based on the above discretization results regarding variables
related to grassland degradation, 80% of the training set
was selected randomly for the parameterization of the BBN
model (Figure 7). According to the parameterization results,
31.58% of grassland grids were experiencing degradation trends,
indicating that the severity of grassland degradation in the
study area requires the attention of stakeholders. Furthermore,
in comparison to the grid number of shrub-encroached
grasslands (10.58%), the grid number of non-encroached
degraded grasslands (NDVI <0) caused by human activities and
climatic changes is higher (22.51%).

The NDVIs, shrub-encroached grasslands, and grassland
degradation were predicted by entering the test set into the BBN
model. The precision of the BBN model was evaluated based on
the confusion matrix and ROC curve. The results of the confusion
matrix showed that the prediction accuracy of NDVIs, shrub-
encroached grasslands, and grassland degradation was 85.27,
88.99, and 74.37%, respectively. The AUCs based on the ROC
curve of NDVIs, shrub-encroached grasslands, and grassland
degradation were 75.39% (P < 0.05), 66.57% (P < 0.05), and
66.11% (P < 0.05), respectively (Figure 8). This made it clear that
the model accuracy met the criterion for grassland degradation
risk assessment.

Sensitivity Analysis of the Target Variables
Nodes of NDVIs, shrub-encroached grasslands, and grassland
degradation were chosen as target variables for sensitivity
analysis. Figure 9 showed that the ratio of VB and MI exhibited
a linear relationship; the higher value of MI, the higher value
of VB. A high value of the ratio of VB and MI indicates the
significant influence of the node on the target node. With respect
to the nodes of grassland degradation and NDVIs, the variables
of NDVIm, sand, silt, clay, ETm, and Tm had a high sensitivity
(VB > 0.1%), indicating that they made significant contributions
to grassland degradation. Therefore, significant attention should
be paid to controlling the vegetation coverage, soil texture, and
climatic factors in the grassland degradation regions in the future.
For nodes of shrub-encroached grasslands, the higher sensitivity
of NDVIm (VB = 0.179%) and Ps (VB = 0.106%) indicated that
vegetation coverage and precipitation have significant influences
on grassland degradation.

Heat maps showed the probability relationship between
the state of the target variables and the influencing factors
(Figure 10). The reddest pixels indicated that the factor has
the highest conditional probability under the states of the given
target variables. The bluest pixels indicated that the factor has
the lowest conditional probability under the state of the given
target variables. For example, the optimal combination of factors
that had significant influences on grassland degradation was as
follows: {NDVIm = Low, sand = Low, silt = Low, clay = Medium,
ETm = Medium, Tm = Lowest}. For NDVIs, the probability
of grassland degradation was relatively high when the optimal
combination of factors was as follows: {NDVIm = Medium,
sand = Low, silt = Low, clay = Medium, ETm = Medium,
Tm = Lowest}. The probability of shrub-encroached grasslands
in grids was relatively high when the grid was {NDVIm = Low,
Ps = Low, slope = High, Ts = Highest, ETs = Medium,
ETm = Low}. Therefore, attention should be paid to regions
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FIGURE 6 | Relationship between the grass degradation and the conditioning factors. (A) Clay. Proportion of clay. (B) Sand (%). Proportion of sand. (C) Silt (%).
Proportion of silt. (D) Lm (cow unit). Mean value of the number of livestock. (E) Ts. Slope of annual temperature change. (F) Tm (◦C). Mean value of annual
temperature. (G) ETs. Slope of annual potential evapotranspiration change. (H) ETm (mm). Mean value of annual potential evapotranspiration. (I) Ps. Slope of annual
precipitation. (J) Pm (mm). Mean value of annual precipitation. (K) DEM (m). Elevation. (L) Slope (◦). Slope. (M) DR (m). The distance between each grid and its
nearest road. (N) DW (◦). The distance between each grid and its nearest water body. (O) NDVIm. Mean value of annual normalized difference vegetation index.
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FIGURE 7 | Results of parameter learning in the BBN model. NDVIs, slope of NDVI change; SE, shrub-encroached grasslands.

in the factor state combination that met the above conditions
in the next stage.

Grassland Degradation Risk Probability Calculation
Based on the sensitivity analysis results (Figure 9) and
corresponding principles, the evidence variables for NDVIs,
shrub-encroached grasslands, and grassland degradation were
chosen to infer the probability of the land degradation risks for
each grid unit. These were NDVIm, sand, silt, clay, ETm, and Tm
in NDVIs index and grassland degradation index. In the shrub-
encroached grasslands index, these variables were NDVIm, Ps,
slope, Ts, ETs, and ETm.

Figure 11 showed the probability of the degradation risk
identified by NDVIs and shrub-encroached grasslands indicators
in each grid according to the selected evidence variables. The
results showed that the probability ranges of the degradation risk
of NDVIs and shrub-encroached grasslands in the study area
were 10.15–78.88% and 0.69–83.33%, respectively. According
to grading results of the risks, the area of high-risk grassland
degradation (P > 30%) predicted by NDVIs is 1.742 million ha,
which accounted for 12.51% of the total study area. Moreover,
these regions were primarily distributed in Shiqu County and
the junction areas of Li County, Xiaojin County, and Wenchuan
County, corresponding to areas with the “low” state of NDVIm,
sand, and silt; the “medium” state of clay and ETm; and the
“lowest” state of Tm. The area of high-risk grassland degradation
(P > 30%) predicted by shrub-encroached grasslands is 0.636

million ha, which accounted for 4.57% of the total area, and
these regions were mainly distributed in Mao County and Luding
County, corresponding to areas with a “low” state of NDVIm,
Ps, and ETm; “high” state of slope; “highest” state of Ts; and
“medium” state of ETs, as expected.

FIGURE 8 | ROC curve of NDVIs, shrub-encroached grasslands, and
grassland degradation. NDVIs, slope of NDVI change; SE, shrub-encroached
grasslands.
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FIGURE 9 | Sensitivity analysis of all driving factors. (A) Grassland degradation. (B) NDVIs, slope of NDVI change. (C) SE, shrub-encroached grasslands.

FIGURE 10 | Heat maps showing the conditional probabilities driving NDVIs, SE, and grassland degradation. (A) Grassland degradation. (B) NDVIs, slope of NDVI
change. (C) SE, shrub-encroached grasslands.

The result of grassland degradation risk in each grid was
predicted by the selected evidence variables, as shown in
Figure 12. The risk probability values were about 21.65–87.15%.
The region of high-risk grassland degradation (P > 30%)
covered 2.22 million ha, accounting for 15.94% of the total

study area. By comparing the high-risk degradation probabilities
identified by NDVIs and shrub-encroached grasslands indicators
in grids, it was found that the degradation area based on
NDVIs was 1.742 million ha (78.46%) and the degradation
area based on shrub-encroached grasslands was 0.478 million
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FIGURE 11 | Inference probability of grassland degradation risks based on NDVIs and SE. (A) NDVIs, slope of NDVI change. (B) SE, shrub-encroached grasslands.

FIGURE 12 | Distribution of grassland degradation risk.
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ha (21.54%). In terms of spatial distribution, regions with
high-risk grassland degradation were quite scattered; however,
they were clustered in local areas (e.g., the junction area of
Shiqu County, Batang County, and Litang County, and the
junction area of Li County, Wenchuan County, and Xiaojin
County). It can be seen from Table 2 and Supplementary
Table 1 that the grassland degradation mainly occurred in
regions with lower vegetation coverage, higher soil sand content,
lower soil clay and silt content, lower temperature, as well
as less potential evapotranspiration, indicating that natural
factors had stronger influences on vegetation degradation than
human factors. Moreover, although this study chose 30% as
the threshold for recognising high grassland degradation risks,
there is uncertainty in terms of grassland degradation owing
to the inherent nature of probability. As a result, regions with
grassland degradation risk probabilities lower than 30% could
have degraded, and regions with probabilities higher than 30%
could have experienced no degradation. For example, grids
with the highest degradation probability (87.15%) could also
have no degradation.

DISCUSSION

In this study, alpine grassland degradation in Northwest Sichuan
Plateau was assessed by integrating the FR model and the
BBN model. First, the driving factors of grassland degradation
were discretized using the FR model. Then, a BBN model
was established to identify the driving factors of grassland
degradation and quantitatively evaluate the probability of
degradation risks.

For the grassland degradation analysis, NDVIs and shrub-
encroached grasslands were chosen as the grassland degradation
index. In previous studies, most alpine grassland degradation
on the macro scale was based on NDVIs, and the effects of
shrub-encroached grasslands in alpine regions were ignored
(which are one of the most important forms of alpine grassland
degradation), resulting in missing degradation grids (Chen
et al., 2020). To offset the limitations of recognition based
on NDVIs only, grassland degradation was identified herein
by combining shrub-encroached grasslands and the slope of
NDVI change, which could realize the complete characterization
of macro-scaled grassland degradation, and is conducive to
understanding the states of different dominant degradation types.

TABLE 2 | Comparison of evidence variables in different states in high-risk areas.

Indicator Classes of evidence variable

Lowest Low Medium High Highest

NDVIm – 49.8% 36.3% 11.8% 2.1%

Sand – 41.1% 4.3% 54.6% –

Silt – 39.4% 4.3% 56.3% –

Clay – 0.9% 30.4% 0.1% 68.6%

ETm – 0.2% 47.9% 51.8% 0.1%

Tm 32.9% 0.2% 48.4% 8.4% 10.1%

Furthermore, states of driving factors of NDVIs and shrub-
encroached grasslands were divided by calculating the frequency
ratios of different intervals of driving factors and combining
intervals with similar frequency ratios (De Santana et al., 2021).
The FR method obtains a prior probability, and then the BBN
model is used to infer the posterior probability of the event.
Compared with the node classification method based on the
characteristics of the node itself in the previous studies (Dai et al.,
2021; Sakib et al., 2021), the FR method is graded the driving
factors based on the importance of each attribute interval of the
factor to the susceptibility of the event, which is more scientific.
Therefore, as the premise of the BBN model interference, the FR
model can provide a relatively reliable prior probability.

In the process of grassland degradation risk assessment,
the model structure and parameterization are the key steps of
BBN modelling. In this study, the grassland degradation risk
assessment model was constructed by integrating correlation
analysis, expert experience, and previous research conclusions,
which were effectively used to determine the complex causal
relationships among variables during grassland degradation
(Carriger and Parker, 2021). In comparison to previous grassland
degradation risk assessment methods, the BBN-based grassland
degradation risk assessment model was based on the relationship
between grassland degradation and driving forces, which could
deduce the uncertainty of grassland degradation that was
caused by insufficient and incomplete relevant information or
knowledge (Luu et al., 2009). Furthermore, the model could
be applied to reassess the grassland degradation risk when new
information or data from nodes were updated or replaced,
helping decision-makers formulate appropriate management
measures (Dai et al., 2021). Hence, the BBN method showed
better reliability and practicability. According to the results of
grassland degradation risk probability in the BBN model, the
potential degradation risk in most regions in the study area
was maintained at a low level (21.65–30%). However, local
regions still had relatively high degradation risk probabilities,
which primarily include the grassland restoration regions that
decision-makers need to focus on in the future. In terms of
the probability of degradation risks, it must be noted that the
degradation risk in the BBN model is a concept of probability,
which means that it is inherently uncertain (Rohmer, 2020).
In other words, places with the lowest degradation probability
(21.65%) could also experience degradation, and those with
the highest degradation probability (87.15%) could experience
no degradation. For this reason, the Bayesian results must be
understood in terms of probability.

The sensitivity analysis results of target variables help us
recognize the influence of factors on grassland degradation,
facilitating the formulation of scientific and effective ecological
restoration measures (Hao et al., 2018). The results showed that
the vegetation coverage, soil texture, and climatic factors of grids
influence grassland degradation significantly, while terrain and
human activity-related factors had relatively smaller effects in the
study area. This could be because of the low levels of human
activity due to a small population in the study area; this caused
grassland degradation to be mainly affected by natural factors
(Gang et al., 2014; Wang et al., 2017). However, it is worth
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noting that the IPCC report clearly stated that human activities
significantly affect climate change, so that grass degradation
related to climate change is indirectly affected by human activities
(Intergovernmental Panel on Climate Change, 2021). In addition,
the probability correlations between grassland degradation and
important driving factors showed that the highest probability of
grassland degradation occurred when the state combination of
driving factors met the following conditions: {NDVIm = Low,
sand = Low, silt = Low, clay = Medium, ETm = Medium,
Tm = Lowest}. This was consistent with geographic features
in high-risk regions predicted by the BBN model. Therefore,
the grassland restoration measures in the future should pay
keen attention to regions with low vegetation coverage, high
soil sand content, less potential evapotranspiration, and low
temperatures. Moreover, the probability of grassland degradation
was relatively low in regions with high vegetation coverage,
high soil clay content, high temperature, and high potential
evapotranspiration. Based on previous studies, there is evidence
that human activities can improve the status of the above factors
to a certain extent, such as the Returning Grazing Land to
Grassland Project can increase the vegetation coverage (Shao
et al., 2016); fertilization or soil amendments can improve
soil properties (Wang X. et al., 2021). The findings from
this study provide a reference basis for the restoration of
grassland ecosystems.

Overall, the BBN method used in this study is most suitable
in the situation characterised by large uncertainties, long time
frames, and the influence of socio-economic and biophysical
changes. However, in addition to the impact of the driving factor
status, the temporal and spatial scale along with the data update
rate will also affect the accuracy of grassland degradation risk
assessment. To improve the accuracy of the assessment and
the reliability of grassland ecosystem restoration decisions, on
the basis of ensuring the timeliness and accuracy of the data,
other potential influencing factors should also be identified; this
should be followed by the optimization of the BBN model should
improve the accuracy of grassland degradation risk inferences.

CONCLUSION

In this study, we use the alpine grassland of Northwest Sichuan
Plateau as an example to predict the grassland degradation
risk probability. We also propose suggestions for the scientific
and reasonable restoration of grassland ecosystems, elucidating
the advantages of using this method. The results regarding
the grassland degradation pattern indicated that the area of
grassland degradation characterized by NDVIs is 2.433 million
ha, with 11.39% in significantly decreased areas and 88.61%
in non-significantly increased areas. The grassland degradation
area characterized by shrub-encroached grasslands was 1.6886
million ha. Moreover, overlapping results of shrub-encroached
grasslands and NDVIs less than 0 indicated a spatial intersection
of 1.357 million ha. In other words, a total of 1.553 million ha of
grassland degradation was recognized through shrub-encroached
grasslands. In the BBN model, the prediction accuracy based on
the confusion matrix of NDVIs, shrub-encroached grasslands,

and grassland degradation was 85.27, 88.99, and 74.37%,
respectively. The area under the curves based on the ROC
curve of NDVIs, shrub-encroached grasslands, and grassland
degradation were 75.39% (P < 0.05), 66.57% (P < 0.05), and
66.11% (P < 0.05), respectively. This proved that the proposed
BBN model met the requirements and could be used to predict
the grassland degradation risk probability. According to model
inference results, the area of high degradation risk probability
(P > 30%) was 2.22 million ha (15.94%), with 1.742 million
ha (78.46%) characterized by NDVIs and 0.478 ha (21.54%)
characterized by shrub-encroached grasslands. Furthermore, the
sensitivity analysis indicated that grassland degradation had a
relatively high sensitivity to NDVIm, sand, silt, clay, ETm, and
Tm, and regions with low vegetation coverage, high soil sand
content, less evapotranspiration and low potential temperature
could easily experience grassland degradation. Such regions
included the junction area of Shiqu County, Batang County, and
Litang County, and the junction area of Li County, Wenchuan
County, and Xiaojin County.

Identifying and quantifying the complex relationships
between driving factors and grassland degradation is crucial for
grassland degradation assessment; the BBN method not only
provides an effective solution to solve this problem, but assists
stakeholders in formulating scientific decisions on grassland
ecosystem restoration. Therefore, the BBN model could be
used as a decision-support instrument for restoring grassland
ecosystems, along with maintaining regional ecological safety
and sustainable development.
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