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Heterosis contributes a big proportion to hybrid performance in maize, especially
for grain vyield. It is attractive to explore the underlying genetic architecture of
hybrid performance and heterosis. Considering its complexity, different from former
mapping method, we developed a series of linear mixed models incorporating multiple
polygenic covariance structures to quantify the contribution of each genetic component
(additive, dominance, additive-by-additive, additive-by-dominance, and dominance-by-
dominance) to hybrid performance and midparent heterosis variation and to identify
significant additive and non-additive (dominance and epistatic) quantitative trait loci
(QTL). Here, we developed a North Carolina Il population by crossing 339 recombinant
inbred lines with two elite lines (Chang7-2 and Mo17), resulting in two populations of
hybrids signed as Chang7-2 x recombinant inbred lines and Mo17 x recombinant
inbred lines, respectively. The results of a path analysis showed that kernel number per
row and hundred grain weight contributed the most to the variation of grain yield. The
heritability of midparent heterosis for 10 investigated traits ranged from 0.27 to 0.81.
For the 10 traits, 21 main (additive and dominance) QTL for hybrid performance and 17
dominance QTL for midparent heterosis were identified in the pooled hybrid populations
with two overlapping QTL. Several of the identified QTL showed pleiotropic effects.
Significant epistatic QTL were also identified and were shown to play an important
role in ear height variation. Genomic selection was used to assess the influence of
QTL on prediction accuracy and to explore the strategy of heterosis utilization in maize
breeding. Results showed that treating significant single nucleotide polymorphisms as
fixed effects in the linear mixed model could improve the prediction accuracy under
prediction schemes 2 and 3. In conclusion, the different analyses all substantiated
the different genetic architecture of hybrid performance and midparent heterosis in
maize. Dominance contributes the highest proportion to heterosis, especially for grain
yield, however, epistasis contributes the highest proportion to hybrid performance of
grain yield.
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INTRODUCTION

Heterosis is the phenomenon that a hybrid outperforms its two
parents (Birchler et al., 2006; Lippman and Zamir, 2007). Maize
is the most successful example for the utilization of heterosis in
crops to improve agricultural production, as single-cross varieties
of maize have substantially contributed to the improvement
of maize production in the past decades (Hochholdinger and
Baldauf, 2018). There are three hypotheses to explain the
genetic basis of heterosis: dominance (Bruce, 1910; Jones,
1917), overdominance (East, 1936) and epistasis (Powers, 1944).
Many studies were performed to test these hypotheses, but
the results often varied, depending on the populations and the
traits studied, suggesting that heterosis is a complex genetic
phenomenon. One commonly used design to study heterosis
is the North Carolina Design III (NCIII) or Triple Testcross
Design which allows to estimate the contribution of additive,
dominance, and epistasis effects to heterosis (Melchinger et al.,
2007b; Garcia et al., 2008). In a maize study, a total of 264
F3 genotypes were generated by intercrossing B73 and Mol7,
and the F3 genotypes were then backcrossed to the two parents.
The results showed that nearly all heterozygous individuals
performed better than the homozygous individuals, supporting
the overdominance (or pseudo-overdominance) hypothesis
(Stuber et al., 1992). Conversely, the analysis of hybrid maize
data from another NCIII design showed that dominance loci
contributed the most to heterosis in maize, while the additive-
by-additive effects contributed the most to the heterosis of rice
(Garcia et al., 2008).

An alternative design is the North Carolina Design II (NCII)
or factorial design, where a set of males is crossed with a set of
females in a balanced or unbalanced way. In a partial NCII of
maize, eight main effect (additive and dominance) QTL and 37
epistatic QTL pairs were identified (Bu et al., 2015). In addition
to the NC mating designs, advanced maize populations were also
developed and used for analysis of heterosis. For example, Wei
et al. (2016) detected 36 heterotic loci from a series of single-
segment substitution lines. Using near-isogenic lines for QTL
detection, many additive QTL and additive-by-additive QTL
pairs were detected (Melchinger et al., 2007a; Reif et al., 2009).
An immortalized F, population (IMF,) was also a promising
mating design for dissecting the genetic basis of heterosis and
epistasis QTL (Hua et al, 2003; Xu, 2013; Guo et al, 2014;
Yietal., 2019).

Linear mixed models (LMM) are a powerful tool for the
genetic dissection of complex traits and are widely used in
plant and animal breeding (Yu et al, 2006; Xu et al, 2014;
Cui et al, 2020). In a hybrid population of rice, a LMM
incorporating multiple polygenic covariance structures to control
the genetic background was developed (Xu, 2013). In wheat,
a quantitative genetics approach was proposed to dissect the
genetic basis of grain-yield heterosis, allowing QTL mapping of
dominance, epistasis and heterotic loci for midparent heterosis
(MPH) (Jiang et al., 2017). In addition to QTL mapping, genomic
selection (GS) has become a new tool for plant breeding and
the genetic dissection of complex traits (Meuwissen et al., 2001)
and has been applied to hybrid wheat (Zhao et al., 2013, 2015b;

Jiang et al., 2017), hybrid rice (Cui et al., 2020) and hybrid maize
(Albrecht et al., 2014; Technow et al., 2014).

The general combining ability (GCA) is a measure for the
average performance of a line in different hybrid combinations,
while the specific combining ability (SCA) describes the deviation
of a hybrid from the performance expected based on the GCA
of its two parental lines. The additive and additive-by-additive
variances contribute to the variation of GCA, while the non-
additive polygenic variances contribute to the variation of SCA
(Reif et al., 2007). A two-step approach has been widely used to
study the genetics underlying hybrid performance, where the first
step consists of estimating the GCA, SCA and the MPH (Guo
et al., 2014; Zhou et al., 2018; Yi et al., 2019) and the second
step represents the QTL mapping step with the GCA, SCA and
MPH treated as the traits of interest. In a previous genome-wide
association study (GWAS) with an NCII population, different
coding schemes for the genotypes were applied, namely the
additive, dominance and recessive coding (Hyun et al.,, 2008;
Liu et al,, 2021). However, the additive model was usually not
sufficient to explain hybrid performance and MPH. Thus, more
elaborate models incorporating non-additive effects should be
used to study heterosis.

In this study, we developed a NCII population of maize by
crossing a set of 339 recombinant inbred lines (RILs) with two
elite inbred lines, resulting in two populations of hybrids. A total
of 10 traits were recorded in four to five environments and
high-density genotypic data were obtained by genotyping-by-
sequencing of the RILs and resequencing of the parents. The
aims of this study were to (1) evaluate the heritability of MPH
and the relative contribution of various traits to grain yield, (2)
perform QTL mapping for main (additive and dominance) and
non-additive effect loci for hybrid performance and MPH, (3)
identify QTL hotspots for yield-related traits, (4) explore the
mechanisms of heterosis and hybrid performance, and (5) assess
the accuracy of genomic prediction in various breeding schemes.

MATERIALS AND METHODS

Plant Materials

A RIL population consisting of 365 Fj; lines was developed
by crossing inbred lines Qi319 as the male parent and Ye478
as the female parent originating from two different heterotic
groups of maize (Zhou et al., 2016). Two hybrid populations were
developed by crossing the RILs to two female testers, Chang7-
2 and Mol7, and the two populations Chang7-2 x RIL and
Mol7 x RIL were named TC and TM, respectively (Zhou et al.,
2018). Different numbers of offspring were obtained from the two
hybrid populations. A total of 339 common lines from the RIL,
TC, and TM populations were retained for further analysis.

Experimental Design and Phenotypic
Evaluation

The RIL, TC, and TM populations, their parents and the hybrids
(Chang7-2 x Qi319, Mol7 x Qi319, Chang7-2 x Ye478, and
Mol7 x Ye478) were field-evaluated in two different locations,
Xinxiang (35.19°N and 113.53°E) and Shijiazhuang (37.27°N and
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113.30°E), in two consecutive years, 2015 and 2016, resulting
in 2 x 2 = 4 different environments. Traits recorded include
plant height (PH, cm), ear height (EH, cm), row number per ear
(RNPE, count), kernel number per row (KNPR, count), kernel
thickness (KT, mm), kernel width (KW, mm), kernel length (KL,
mm), volume weight (VW, g/L), hundred grain weight (HGW, g)
and grain yield per plant (GY, g). Furthermore, in 2017, the VW
trait was evaluated in the RIL population, traits HGW and GY
were evaluated in all the three populations (RIL, TC, and TM) in
one of the two locations, Xinxiang. Detailed descriptions of the
traits evaluated can be found in a previous study (Lu et al., 2020).

We used a randomized incomplete block design with two
replicates in each environment. To avoid competition, the
RIL and the hybrid populations were planted separately. Each
genotype was planted in two rows with a row interval of 0.6 m,
arow length of 4 m and a plant interval of 0.25 m.

Phenotypic Data Analysis

The combination between year and location was considered as an
environment (a total of 4 or 5 environments). The studentized
residual razor method (Bernal-Vasquez et al.,, 2016) was used
to remove outliers with a threshold of 2.8. The best linear
unbiased estimations (BLUE) of the fixed effects and the variance
components of the random effects were estimated using the
following model:

Yijk = W+ Gi + Ej + G * Ejj + Ri(Ej) + ik,

where y;; was the phenotypic value of the kth replicate of
genotype i from the jth environment, i was the overall mean,
G; (i = 1, 2,..,, 339) was the effect of the ith genotype, E; (j = 1,
2,.., 5) was the effect of the jth environment, G  E;; was the
genotype-by-environment interaction effect, Ry(Ej) (k = 1, 2)
was the effect of the kth replicate nested in the jth environment,
ejjk was the residual. For estimation of variance components, all
random effects were assumed to be normally distributed with
mean 0 and variances denoted by ¢ , 0%, and o for G;, G * Ejj
and gy, respectively. The broad-sense heritability of a trait was
defined as (Falconer and Mackay, 1996),

2
(¢
H2 G

2
o+

2
OGxE + ot
Ng NEXNgR

where Ng = 4 or 5 was the number of environments and N =2
was the number of replicates within each environment.

Genetic analysis of MPH was conducted in two steps (Jiang
et al., 2017). The first step was represented by BLUE of the trait
value for each parent and each hybrid. The BLUE of the trait
value obtained from the two replicates in one environment was
calculated with the following formula:

Yik = W+ Gi + R + gk,

where y;; was the trait value for the kth replicate of genotype i,
was the mean of the trait under the current environment, G; was
the genetic value of the ith genotype and Ry was the effect of the
kth replicate assumed to follow a N(O, 0123) distribution, €;; was
assumed to follow a N (O, O’?k) distribution.

The MPH was defined as (Melchinger et al., 2007b):
MPH = H — (P, + P»)/2.

Where H was the BLUE value of hybrids, P; was the BLUE
value of Chang7-2 or Mo17 (corresponding to female parent of
hybrid), P, was the BLUE value of RIL (corresponding to the male
parent of hybrid).

The second step in the MPH analysis required the following
mixed model:

MPH;j; = + Gi + Ej + ¢jj,

where MPH;; was the MPH value calculated in the first step for
hybrid (genotype) i in environment j, G; (i = 1, 2, ..., 339) was
the genetic effect of MPH for the ith hybrid, E; was effect of the jth
environment and ¢;; was the residual. Noted that G; was treated as
a fixed effect in the BLUE calculation or a random effect following
a N(0, oZG) distribution in variance estimation, E; was treated as
a random effect following a N(0, 0%) distribution and ¢;; was
assumed to be N(0,0?) distributed. The variance components
of the above linear mixed model were implemented using the
ASReml 3.0 package in R (Gilmour et al., 2009).

In addition, the hybrid performance was decomposed into
GCA, SCA and interaction with the environment using a two-
step method. In the first step, the BLUEs in RIL, TC and TM
populations were calculated within each environment following
the same formula above. In the second step, the following formula
was applied to the hybrid performance (Zhao et al., 2015a):

y =1+ E + GCApit, + GCAtester + SCA 4+ GCAgyp % E + GCArester % E+ SCA % E + ¢.

Where y was the hybrid performance, i was the mean, E was
the environment effect, GCAgy was the GCA of RILs, GCA 7egter
was the GCA of testers, the rest was the interaction between GCA,
SCA, and environment, € was the error. All effects were treated
as random following normal distributions. The variances were
estimated in ASReml 3.0 package in R (Gilmour et al., 2009).

Path analysis can be used to determine the relative
contribution of independent variables to a response variable.
Path analysis was implemented in the R package sem by taking
GY as the response variable and the other traits as independent
variables. Path coeflicient p; of variable X; was obtained by

pi = bi,/SSx; / SSy , where b; was the partial correlation, SSx;
and SSy were sum of square for X; and the response variable Y,
respectively. Path diagrams were drawn with the semPlot package
in R, where values above 0.14 (p = 0.01, n = 339) were displayed.

Genomic Data Analyses

The genotyping procedures for the RILs, the two parents of the
RILs, and the two testers were described in a previous study
(Zhou et al.,, 2016). In brief, for the four parents, the paired-
end sequencing libraries were created with a fragment length
of ~500 bp and were sequenced on an Illumina HiSeq 2000
sequencer. The resequencing depth was ~30x. For the RILs, a
genotyping-by-sequencing (GBS) strategy was applied. A total
of 137,699,000 reads were generated. On average, there were
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357,376 reads per individual, which was approximately a 0.07-
fold coverage of the maize genome. The cleaned reads were
obtained after quality control.

The filtered high-quality reads of the four parents and the
RILs were mapped to the reference genome (B73_RefGen_v4)
with BWA (Li and Durbin, 2009). SAMtools (Li, 2011) were used
to call SNPs with quantity over 20 and a total of 41,791,163
SNPs were finally produced. Details regarding the parameters
for the SNP calling process can be found in a previous report
(Zhou et al,, 2016). After filtering of all SNPs for minor allele
frequency < 0.05, missing rate > 0.1 and unknown physical
positions, a total of 36,095 SNPs remained in the data set
for analysis. Missing genotypes of SNPs were imputed using
the BEAGLE software package (version v5) with the default
parameters (Browning and Browning, 2016).

The low-coverage high-throughput sequence technologies like
GBS generate sequences that are often error-prone, which might
lead to errors for detection of genetic variants (Ma et al,
2019). Therefore, the hmm.vitFUN.rils function in the R package
MPR .genotyping was used to correct the genotyping errors using
a Hidden Markov model with errorRate = 0.05 (Xie et al., 2010).
The SNPs with high error probabilities were either corrected or
set to missing values.

The bin function in the ICIMapping package was used to
bin redundant markers with missing rate > 0.2 and a distortion
p-value < 0.001, while missing values and anchor information
were considered at the same time (Meng et al., 2015). After
the above imputation and correction, there were still a little
proportion of missing values left, then the argmax method in
qtl/R was used to perform the final imputation additive-by-
dominance and (Broman et al., 2003). Finally, a total of 4,141
bins were discovered across the entire maize genome. The genetic
map was constructed using the map function in the IciMapping
package with the default parameter values (Meng et al., 2015).

Mapping Quantitative Trait Loci in
Recombinant Inbred Line, TC, TM, and
Pooled TC-TM Populations

To determine the contribution of each genetic component to
hybrid performance and MPH variation and identify significant
non-additive QTL, firstly, we combined the TC and TM
populations to form a pooled population called TC-TM. For 341
lines (337RILs, 2 parents; 2 testers) lines, if the genotypes were the
same as Ye478, it was coded as “17; if the genotypes were the same
as Qi319, it was coded as “—1”, then the genotypes of the hybrids
were inferred from their parents (the RILs and the testers). The
additive and dominance coding matrices, Z and W, for individual
jat marker k were coded as Zj; = {10 —1} for the additive effect
and Wy, = {0 1 0} for the dominance effect.

The linear mixed model for variance component analysis was
(Xu, 2013; Jiang et al., 2017):

y:XB+§u+§d+£fua+§ad+fdd+8, (1)

where y was an n x 1 vector of phenotypic values of the hybrids
and XP captured the fixed effects of the model that were not
relevant to genetic effects. The design matrix for the fixed

effects was X = [Xy, X;], where Xy, was an n x 1 vector of
unity (a vector with all elements being 1) and X; was an n x 1
vector indicating one of the two populations, Xj; = 0 for TC
and Xj; = 1 for TM. The last term of model (1) was a vector
of residuals. The remaining terms in model (1) were various
polygenic effects (each polygenic effect was an n x 1 vector)
and were defined below. & = > ' | Zyax was the polygenic
additive effect; &; = > L Widy was the polygenic dominance
effect; &y = Z:ll > ekr1(Zi#Zi)(aa)e was the polygenic
additive-by-additive effect; &,y = zzk’zl,k’;ﬁk(Zk#Wk/)(ad)kk/
was the polygenic additive-by-dominance effect;
= Z’:_ll D ki1 (Wi#Wp)(dd)w  was  the  polygenic
dominance-by-dominance effect. The operator ; represented
element-wise product of matrices. In the formulas above, a; and
dy were the additive and dominance effect for marker k, (aa)xy,
(ad)iyr, and (dd)g were the additive-by-additive, additive-
by-dominance and dominance-by-dominance effect between
markers k and k, respectively. The distributions for the polygenic
and residual effects were &, ~ N(0, Kaoi), &g~ N(0, ché),
Saa ~ N(0, Kaq02,)s &ag ~ N(0,Kuq02), Eaq ~ N(0, Kgg03),
and & ~ N(0, Io?), where K;, Ky, Kua, Kag, and Kyg were the
corresponding kinship matrices calculated using the method
given by Xu (2013). The six variance components (five genetic
variance components and the residual variance) were estimated
using the BGLR package in R (Pérez and De Los Campos, 2014)
with the number of iterations set at 15,000 and the number of
burn-in set at 5,000.
The variance-covariance matrix of y was

var(y) = Kucg + Kdgé + KggCia + Kado'id + Kddofid + Io?.

Let Ay = 02/0? , where 02 was one of the five genetic variance

components and o> was the residual variance. The above variance
could be rewritten as

var(y) = (Kohg + Kghg + Koahaa + Kaghad + Kaghaq + o>
Define
K= Ka)\a + Kd)\d + Kua)\aa + Kad)\ad + Kdd)\dda

so that
var(y) = (K + I)o>.

Let
¢ :fa+§d+§au+éad+édd-

Model (1) could be rewritten as
y=Xp+<{+e, (2)

which was the null model for the GWAS of main effect and
epistatic effect detection. On this null model, we added a specific
marker or marker pair to the model to test the putative effect.

To test the additive effect of marker k, we added Za; to the
null mode so that the linear mixed model became:

y=XB+ Zyap +< +. (3)
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Let e = & + ¢, so that the model was rewritten as:
y=XPB + Zrar +e. (4)

The expectation of model (4) was E(y) = Xp + Zay and the
variance was:

var(y) = var(e) = var(é +¢) = (K + I)o>.

Let us perform eigenvalue decomposition for matrix K,
K = UDUT, where U was the eigenvector matrix and D was a
diagonal matrix holding the eigenvalues. So,

var(e) = U(D+ I)U o>,

Let QT = /(D +I)~1UT and pre-multiply equation (4) by
QT leading to
Qy = Q"(XB+ Zkar + ) = Q"XB + Q" Ziar + QTe.  (5)
Let y* = QTy, X* = Q'X, Z; = Q"Z; and ¢* = QTe. The
above linear mixed model was
Y =X"B+ Zag +e". (6)
The variance of the transformed residuals was
var(e*) = var(QTe)
QTU( 4+ nUTQ:?
= VO +DUTUMD+nUTu/ (D +I)~1o?
= DO+ D D+ DJ/(D+ID) 162
= JO+DWOF+FDJDOFDVD+ID1e?
= Io2.

The expectation and variance of y* were E(y*) = X*f + Z;ay
and var(y*) = Io?. Therefore, model (6) became a simple linear
model with a homogeneous residual variance. The conventional
least squares method could be used to estimate the parameters
and test for the marker effect. Since the model of the transformed
phenotypic values was very simple, the “lm” function in
R was applied to estimate the marker effect and test the
significance of the marker.

Considering the dominance and epistatic effects, we adopted
a more general likelihood ratio test (LRT) for a particular effect.
The likelihood ratio test for the additive effect of marker k was

LRT = —2 [Lo(ﬁ) —Li (B, &k)] )

where LO(ES) was the likelihood value evaluated from the null
model given in equation (7) below,

yr=X"B+e, ™)

and Ll(é», ay;) was the likelihood value evaluated from the
full model given in equation (6). The LRT statistic was
eventually converted into the log of odds (LOD) score using
LOD = LRT/4.61. If the intervals of different QTL were
overlapped or the genetic distance of peak SNP of two QTL was
within 0.65 cM (the average density in the whole genome), we
called such QTL as a pleiotropic QTL (a QTL affecting more
than one trait).

Dominance effect of marker k was detected using the same
model as the additive effect except that Z; was replaced by Wy. In
the following, we called the significant additive and dominance
QTL as the main effect QTL.

The additive-by-additive effect was detected by the following
likelihood ratio test,

LRT = -2 [Lo(ﬁ, ks ) — LB, g, e, (aa)kk/)] ,
where the null model was
Y =X"B+ Ziar + Zjap + €, (8)
and the full model was
V' =X+ Ziax + Ziap + (Zi#Z) (aa)e + €, (9)

Similarly, the additive-by-dominance effect was detected using

LRT = —2 [Lo(é, ag, dy) — LB, ay, dy, (ad)kk’)] :
The null model and the full model were
V= X8+ Ziag + Widp + €, (10)
and
y* = XB+ Zia + Widp + (ZE#WE) (ad)e + €5, (11)

respectively. Similarly, the dominance-by-additive effect was
detected using

LRT = -2 [Lo(ﬁ, g, d) — L (B, ag, di, (da)kk/)] ~
The null model and the full model were
Yy =XB+ Ziag + Wide + €, (12)
and
V' =XB 4 Zia + Wide + (WE#ZE) (da)ge + e, (13)

respectively. Finally, the dominance-by-dominance effect was
tested using

LRT = =2[Lo(B. dg, di) — Li(B. d. i, (dd)ie) |
The corresponding null model and full model were

Y =X+ W;:dk + W;;,dk/ +e*, (14)

and

y* = X*B + W;:dk —+ W;ck,dk/ + (W:#W];k/)(dd)kk’ + e*, (15)

respectively. LOD scores were converted the same way as we did
for the additive effect.

An empirical threshold of 2.5 for the LOD score was used
to determine significance of an additive or a dominance effect.
A LOD threshold of 5.0 was used to determine the significance
of an epistatic effect (Churchill and Doerge, 1994; Xu, 2013).
A confidence interval in the genome was determined for each
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detected QTL with the following steps: (1) all significant SNPs
passing the threshold were selected; (2) the most significant
SNPs were kept within a 10 ¢cM interval; (3) the QTL interval
was formed using a 1.5-LOD drop-off method (Broman,
2001). The names of QTL referred to McCouch’s method
(McCouch et al,, 1997), and a dash (-) was added to designate
different datasets.

The estimated additive and dominance effects for each QTL
were extracted from the estimated regression coefficients (ay
and di) from the models presented above. The proportion of
the phenotypic variance explained (PVE) contributed by each
QTL was calculated using (Utz et al., 2000; Garin et al., 2017),

RSSpu

PVE=1— s
RSSNun

where RSSg,;; was the residual sum of squares of the full model
and RSSy,; was the residual sum of squares of the null model.

We also performed QTL mapping in the RIL, TC and TM
population separately. The model was the same as described
above except that only the additive and additive-by-additive
polygenic effects were used to control genetic background. QTL
mapping for MPH was conducted using a similar linear mixed
model to the original traits. Details of the MPH analysis can be
found in a previous study (Jiang et al., 2017).

Genomic Selection

The genetic effects of single-cross hybrids can be dissected into
additive, dominance and epistatic polygenic effects as mentioned
before. Here, we only considered the first two components in the
genomic prediction model. The linear mixed model was (Su et al.,
2012; Xu et al., 2014).

y=Xp+da+di+te,

where y was the phenotype vector, Xp represented the fixed effect,
&, was the additive polygenic effect with an assumed distribution
of & ~ N(0, Kuoi), &4 was the dominance polygenic effect with
a distribution of &; ~ N(0, ch(zi), K, was the additive kinship
matrix and K; was the dominance kinship matrix.

Three genomic prediction schemes were proposed to mimic
the scenarios in practical genomic hybrid breeding. Scheme
(1), abbreviated as CV1: to predict the trait values for the
TM population from the phenotypes and genotypes of the
TC population or vice versa. Scheme (2), abbreviated as CV2:
to select the hybrids sharing the same RILs in TC and TM
population as the training set to predict the rest of the
population. Scheme (3), abbreviated as CV3: to select the
hybrids having the different RILs in TC and TM population
as the training set to predict the rest of the population.
Scheme (1) and (2) belong to the so-called T1 case, and
scheme (3) is in the category of T2 (Technow et al., 2014;
Zhao et al, 2015a). The three scenarios are illustrated in
Supplementary Figure 1.

The across population prediction in scheme (1) was conducted
using a model that contained only the additive polygenic effect.
For schemes (2) and (3), the prediction models contained
both the additive and the dominant polygenic effects. The

predictions were implemented with the BGLR software package
in R (Pérez and De Los Campos, 2014). The prediction accuracy
was assessed with a two-fold cross-validation scheme. In each
run, 1/2 of the lines were removed from the training set
and then the correlation between the predicted values and
the observed values of the removed lines was calculated. The
two-fold cross-validation was repeated 200 times. In addition,
significant SNPs were treated as fixed effects in the prediction
model, which has been termed wGS (Bernardo, 2014; Wiirschum
et al, 2018). For example, when the TC population was
used to predict the TM population, the QTL detected in
the TC population were treated as fixed effects in the linear
mixed model used to predict the TM population. For schemes
(2) and (3), QTL detected from the pooled population of
TC and TM were treated as fixed effects included in the
models to predict the rest of the population. For comparison,
the additive model with kinship matrix inferred from RILs
population was used to yield the prediction accuracy of 10
traits using a two-fold cross-validation scheme in TC and
TM population, respectively. This process was repeated 200
times. Data visualization was done with the ggplot2 and ggpubr
packages in R (Wickham, 2016).

RESULTS

Phenotypic Variation and Heritability in
the Recombinant Inbred Line, TC, and
TM Populations

The RIL population showed a larger variation for the 10
investigated traits than the TC and TM populations (Table 1
and Figure 1). The genetic variance components were significant
(p < 0.01) for all traits in the three populations. Except
for the trait VW in the TM population, the variance of
the genotype-by-environment interaction was also significant
(p < 0.01) for all traits. The estimated broad-sense heritability
ranged from 0.68 for VW to 0.95 for PH in the RIL
population, from 0.57 for VW to 091 for PH and KT
in the TC population, and from 0.60 for GY to 0.89 for
PH in the TM population. In general, PH had the highest
heritability and VW or GY had the lowest heritability.
The obtained moderate to high heritability implied that
the experimental designs and phenotyping procedures were
appropriate and accurate.

The MPH for traits KT and VW was negative on average
in both the TC and TM populations, which means that the
hybrids often had phenotypic values lower than the mean
of the two parents (Figure 1). In both the TC and TM
populations, GY had the highest heterosis, followed by PH and
EH (Supplementary Table 1), and the genetic variances of MPH
were statistically significant for all traits. The heritability of MPH
in the TC population ranged from 0.36 for VW to 0.81 for
PH, while the heritability of MPH ranged from 0.27 for VW
to 0.78 for PH in the TM population. The moderate to high
heritability of MPH lay the foundation to dissect the genetic
architecture of heterosis.
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TABLE 1 | Summary statistics for 10 traits in the recombinant inbred line population developed by Ye478 x Qi319 (RIL), Chang7-2 x RIL (TC), and Mo17 x RIL

(TM) populations.

Population Traits Min Max Mean SD CV (%) ok 0lup o2 Ne H?
RIL PH 138.88 223.17 179.28 15.29 8.53 217.97 26.64* 45.08 4 0.95
EH 45.48 94.49 67.87 8.91 13.13 73.83** 9.39** 17.18 4 0.94
RNPE 8.91 14.41 11.79 0.90 7.63 0.71* 0.13** 0.34 4 0.90
KNPR 12.57 32.21 23.31 3.25 13.95 8.69** 3.72** 4.03 4 0.86
KT 40.49 69.81 52.59 3.98 7.57 13.40** 2.84** 9.54 4 0.88
KW 76.29 104.84 89.60 4.26 4.75 156.28** 3.07** 13.34 4 0.86
KL 86.65 115.59 100.17 514 513 21.96* 5.76** 17.26 4 0.86
VW 509.00 732.26 640.84 32.39 5.05 606.28"* 399.41** 2026.25 5 0.68
HGW 17.68 33.72 25.27 2.90 11.46 7.30" 2.41* 4.70 5 0.88
GY 20.47 84.90 53.83 11.76 21.86 113.05* 59.47* 65.54 5 0.86
TC PH 204.20 271.68 247.23 9.34 3.78 77.97* 8.67** 42.30 4 0.91
EH 98.15 134.09 118.17 6.49 5.73 35.49* 5.63** 28.35 4 0.88
RNPE 12.47 16.74 14.36 0.73 5.05 0.44** 0.07** 0.46 4 0.86
KNPR 31.36 43.04 37.74 1.59 4.22 2.07* 1.00" 3.42 4 0.75
KT 36.29 46.66 40.44 1.72 4.25 3.18* 0.15** 2.29 4 0.91
KW 84.78 104.00 95.24 3.02 3.17 715" 2.16** 8.99 4 0.81
KL 111.28 132.37 124.22 3.63 2.92 9.22** 4.60** 17.58 4 0.73
VW 489.34 633.25 555.35 21.81 3.93 252.96** 143.69** 1238.20 4 0.57
HGW 22.09 34.48 26.77 1.87 6.98 247 1.33* 511 5 0.76
GY 99.01 158.78 131.15 9.68 7.38 53.37* 35.86** 235.67 5 0.63
™ PH 212.26 280.26 259.11 8.61 3.32 65.16" 15.32** 31.10 4 0.89
EH 84.30 117.25 100.55 6.27 6.24 33.39* 8.11** 20.62 4 0.88
RNPE 11.44 14.06 12.66 0.48 3.77 0.18** 0.03** 0.23 4 0.83
KNPR 29.00 4517 38.95 2.22 5.69 3.44* 2.86** 4.20 4 0.74
KT 39.84 57.03 46.04 217 472 3.79* 0.69** 4.65 4 0.83
KW 87.14 105.99 94.79 2.76 2.91 6.02** 0.98** 8.00 4 0.83
KL 109.41 128.48 118.74 3.43 2.89 8.62** 1.98** 15.39 4 0.78
VW 491.34 627.42 563.82 20.76 3.68 237.35" 68.33 1102.22 4 0.61
HGW 24.16 34.25 28.39 1.75 6.16 217 1.31* 4.68 5 0.75
GY 94.99 1562.12 125.65 8.74 6.95 40.76** 45.49** 180.99 5 0.60

SD, standard deviation; CV, coefficient of variation; ué, genotypic variance; cé“E, genotype-by-environment interaction variance; uf , error variance; Ng, the number of
environments; H?, broad-sense heritability; **, significance at 0.01 level; PH, plant height; EH, ear height; RNPE, row number per ear; KNPR, kernel number per row; KT,
kernel thickness; KW, kernel width; KL, kernel length; VW, volume weight; HGW, hundred grain weight; GY, grain yield per plant.

For PH, EH, RNPE, KT, and KL the GCA variance of
testers (GZGCAMH) had larger values than the GCA variance
of RILs (GZGCARIL)’ which indicated that the testers played
an important role in hybrid performance. The SCA/GCA
ratios indicating a relative contribution of additive and non-
additive (dominance and epistasis) effects to phenotypic
variation ranged from 0.04 for KT and 0.77 for GY
(Supplementary Table 2). And for GY, the variance of
SCA (G%CA) was higher than both GZGCATM, and GéCARlL’
which was consistent with the large MPH variation in
phenotype (Figure 1J).

Trait Correlation and Path Analysis in the
Three Populations

Relatively high correlations between traits were observed in the
three populations (Figure 2A). The correlation between traits
KNPR and GY was r = 0.69 (p < 0.01) and the correlation
between KL and GY was 0.57 (p < 0.01) in the RIL population,

which were the highest among the correlations between GY and
the other traits. In the TC population, the highest correlations
of GY occured between GY and HGW (r = 0.50, p < 0.01) and
between GY and KL (r = 0.45, p < 0.01). In the TM population,
the highest correlations were between GY and KNPR (r = 0.54,
p < 0.01) and between GY and KL (r = 0.41, p < 0.01).

It is difficult to determine which trait contributes the most
to the variation of grain yield only through correlation analysis
between GY and the other traits. We therefore next performed
a path analysis of all traits with GY (Figures 2B-D). By taking
GY as the response variable and all other traits as independent
variables, we estimated the path coefficients for every trait. In the
RIL population, the highest path coefficients occurred for KNPR
(0.60) and for HGW (0.36). The trait HGW had the highest path
coefficient (0.79), followed by KNPR (0.54) in the TC population.
In the TM population, the highest path coeflicient was 0.79 for
KNPR, followed by 0.62 for HGW. In summary, KNPR and
HGW contributed most to the variation of grain yield.
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FIGURE 1 | Phenotype and midparent heterosis (MPH) distributions for 10 traits in the recombinant inbred line population developed by Ye478 x Qi319 (RIL),
Chang7-2 x RIL (TC), and Mo17 x RIL (TM) populations. (A) PH, plant height; (B) EH, ear height; (C) RNPE, row number per ear; (D) KNPR, kernel number per
row; (E) KT, kernel thickness; (F) KW, kernel width; (G) KL, kernel length; (H) VW, volume weight; (I) HGW, hundred grain weight; (J) GY, grain yield per plant;
MPH.TC, MPH in TC population; MPH.TM, MPH in TM population.
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FIGURE 2 | Correlation and path analysis of 10 traits in the recombinant inbred line population developed by Ye478 x Qi319 (RIL), Chang7-2 x RIL (TC), and
Mo17 x RIL (TM) populations. (A) Correlation coefficients between grain yield per plant (GY) and the other traits. (B) Correlation and path coefficients between GY
and the other traits in the RIL population, (C) in the TC population, and (D) in the TM population. The lines toward GY are the path coefficients and the other lines
among the traits are correlation coefficients. Only coefficients larger than 0.14 (p = 0.01, n = 339) are displayed. **, significance at 0.01 level; *, significance at 0.05
level; PH, plant height; EH, ear height; RNPE, row number per ear; KNPR, kernel number per row; KT, kernel thickness; KW, kernel width; KL, kernel length; VW,

Main Effect Quantitative Trait Loci
Mapping in the Recombinant Inbred
Line, TC, and TM Populations

A high-density genetic map was constructed using 4,141 bins,
covering 2669.49 ¢cM of the maize genome (Supplementary
Table 3 and Supplementary Figure 2). The average density of
the marker map was 0.64 cM/bin in the whole genome, enabling
a high resolution for QTL mapping.

To dissect the genetic architecture of the 10 traits, we first
examined the additive model with the additive polygenic effect
plus the additive-by-additive polygenic effect to control the
genomic background (Supplementary Table 4). The additive
(narrow-sense) heritability in the RIL population ranged from
0.25 for VW to 0.69 for PH. In the TC population, it ranged

from 0.31 for VW to 0.70 for RNPE and in the TM population,
it ranged from 0.38 for VW to 0.72 for EH. Generally, the
proportion of phenotypic variance explained by the additive
effects was greater than that explained by the additive-by-additive
effects for all 10 traits. We also found that the proportion
of variance explained by the additive-by-additive effects for
the traits RNPE, KT, KW, KL, and GY was larger in the
RIL population than the corresponding proportion in the TC
and TM populations (Supplementary Table 4), illustrating that
further studies are needed to understand the non-additive genetic
architecture of these traits.

We also mapped QTL for the 10 traits in the RIL, TC, and
TM populations, respectively (Figure 3A and Supplementary
Table 5). In the RIL population, a total of 16 QTL were
identified on eight chromosomes and five superior alleles were
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FIGURE 3 | Quantitative trait loci (QTL) distribution and pleiotropic QTL detected in the recombinant inbred line population developed by Ye478 x Qi319 (RIL),
Chang7-2 x RIL (TC), and Mo17 x RIL (TM) populations. (A) QTL distribution and hotspots in the whole genome shown for RIL, TC, and TM populations.
TC-TM-Main is the mapping results for the additive and dominance effects of QTL from the pooled population of TC and TM. MPH represents the result of
dominance QTL mapping for MPH. (B) Venn diagram showing the numbers of overlapping QTL between the RIL, TC, and TM populations. (C) Trait-QTL network for
the 10 traits and QTL identified in the RIL, TC, and TM populations. The connections between traits and QTL are linked if a QTL was identified for the respective trait.
PH, plant height; EH, ear height; RNPE, row number per ear; KNPR, kernel number per row; KT, kernel thickness; KW, kernel width; KL, kernel length; VW, volume
weight; HGW, hundred grain weight; GY, grain yield per plant.

from the Ye478 parental line over the 10 traits. In the TC identified in the TM population, among which eight superior
population, a total of 18 QTL were identified, among which alleles originated from the Ye478 parent. Three common QTL
10 superior alleles came from the Ye478 parent. 19 QTL were were jointly identified in the RIL and TM populations, two
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QTL were shared by the RIL and TC populations, and six
QTL were jointly detected in the TC and TM populations
(Figure 3B). One QTL (MQTL15) located in the interval
from 162.93 to 17223 Mb on chromosome 3 was shared
among all three populations. This QTL was associated with
KW in the RIL and the TC population and with HGW in all
three populations (Figure 3C). A few other QTL also showed
pleiotropic effects. For example, MQTL9 located between 1.71
and 4.67 Mb on chromosome 2 was associated with RNPE
and KL in the TC population and with KNPR and KL in
the TM population.

In the above QTL mapping results, low overlapping ratios
among TC, TM and RIL populations were observed. In
addition, in phenotype, the top 10 lines in the TC population
did not match those identified in the TM population or
vice versa (Supplementary Figures 3A,B). The two genetic
phenomenons suggested that non-additive effects were important
for hybrid performance. In this case, it is interesting to
further dissect the hybrid performance to mine dominance
and epistatic QTL.

Multiple Variance Components
Dissection and Main Effect Quantitative
Trait Loci Mapping for Hybrid
Performance and Midparent Heterosis in
the TC-TM Population

We dissected the contribution of all five variance components
(additive, dominance, and three epistatic polygenic variances)
by Bayesian generalized linear regression (Pérez and De
Los Campos, 2014) based on the hybrid performance
and MPH in the TC-TM population. The results for the
hybrid performance showed that additive-by-additive was
the most important polygenic effect for the traits PH, EH,
and KT, additive-by-dominance was predominant for VW
and dominance was the most important polygenic effect
for the remaining traits (Supplementary Table 6). For
the analysis of MPH, the additive-by-dominance variance
contributed the most for traits KT, KW, VW, and HGW,
while the dominance variance contributed the most for
the other six traits (Supplementary Table 7). Different
proportions of dominant variances among 10 traits showed
the complexity of heterosis.

We implemented a mixed model to test the main (additive
and dominance) effects of a specific marker for both the hybrid
performance and the MPH for all traits in the pooled TC-TM
population. A total of 21 main effect QTL were identified for
the 10 traits for hybrid performance (Supplementary Table 5
and Figure 4A). Among them, one had a significant dominance
effect for KNPR and was located in the interval 210.29-211.57 Mb
on chromosome 2 (Figure 4B and Supplementary Figure 4).
For the other 20 QTL, the additive and dominance effects
were confounded due to the fact that there were only two
genotypes per locus (Supplementary Figure 4). Moreover, a
total of 17 dominance QTL were detected for MPH for the 10
traits (Figure 4C and Supplementary Table 5). Interestingly,
only two detected QTL were in common between MPH

and hybrid performance (Figure 4A). The pleiotropic QTL
MQTL43 located in the interval around 80.08-112.87 Mb
on chromosome 10 was associated with EH and GY in the
MPH dataset and with PH, EH and GY in the TC-TM-
Main dataset (Supplementary Table 5 and Figure 4C). The
lack of common QTL between MPH and hybrid performance
implies that the two phenomena might have different genetic
architectures, consistent with the results of the wvariance
component analysis.

Epistasis Plays an Important Role in

Hybrid Performance

For hybrid performance in the TC-TM population, we
scanned the entire genome to identify significant epistasis
loci for the 10 traits and 197, 176, 131, and 112 significant
epistatic pairs of loci were identified for additive-by-additive,
additive-by-dominance, dominance-by-additive and dominance-
by-dominance effects, respectively (Supplementary Table 8).
The number of significant locus pairs varied across traits and
the proportion of explained variance of an epistatic interaction
ranged from 3.46 to 4.52%. For grain yield, only one significant
additive-by-dominance QTL were detected. We observed
the phenomenon of a continuous region interacting with
another locus in the genome. For example, for additive-by-
additive mapping, the interaction between a cluster of adjacent
SNPs on chromosome 8 (Chr8_180048590, Chr8_180913576,
Chr8_181023046, and Chr8_180032314) and a locus on
chromosome 6 (Chr6_166754537) was significantly associated
with PH (Supplementary Table 8).

EH had a more simple genetic architecture compared to
GY and the variation of MPH for EH was also higher
(Supplementary Table 1). We therefore used the trait EH as
an example to investigate the epistatic effects in the RIL and
the two hybrid populations. In the RIL population, no QTL
was identified (Figure 5A). However, in the pooled TC-TM
population, two main effect QTL for hybrid performance were
identified on chromosomes 1 (TC-TM-Main-qEH]I represented
by the peak SNP Chrl_131115160) and 10 (TC-TM-Main-qEHI0
represented by the peak SNP Chr10_91890676) (Figure 5B). For
MPH, however, only the MPH-gEH10 QTL had a significant
dominance effect as well as several additional small-effect
QTL (Figure 5C). We further tested the additive-by-additive
interactions between TC-TM-Main-qEHI and all other SNPs
(4,140 in total). None of the tested effects were significant in
the RIL population (Figure 5D). However, several significant
interactions were identified in the pooled TC-TM population
(Figure 5E). Further analysis confirmed the interaction between
the two loci TC-TM-Main-qEHI and TC-TM-Main-qEH10
in the pooled TC-TM population (Figure 5F). The specific
type of epistatic effect between the two loci in the TC-
TM population could not be determined because there were
only two different genotypes at each locus. However, as
we observed that the additive-by-additive effect was not
significant between these two loci in the RIL population,
we concluded that it is likely the additive-by-dominance or
dominance-by-dominance effects that led to the detection
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FIGURE 4 | Results of the main effect quantitative trait loci (QTL) mapping in the pooled Chang7-2 x RIL (TC)-Mo17 x RIL (TM) population and dominance effect
QTL mapping for midparent heterosis (MPH). (A) Venn diagram showing the numbers of pleiotropic QTL overlapping between TC-TM-Main and MPH. TC-TM-Main
is the mapping results for the additive and dominance effects of QTL from the pooled population of TC and TM. MPH represents the result of dominance QTL
mapping for midparent heterosis. (B) Dominance QTL identified for kernel number per row in the pooled TC-TM population. (C) Trait-QTL network for 10 traits and
QTL identified in the TC-TM-Main and MPH datasets. The connections between traits and QTL are linked if a QTL was identified for this trait. PH, plant height; EH,
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grain weight; GY, grain yield per plant; LOD, log of odds.

of this epistatic QTL in the hybrid population but not in
the RIL population.

Correlation Between the Number of
Favorable Quantitative Trait Loci and
Hybrid Performance

We chose a slightly lower significance threshold of LOD = 2.0
to obtain more loci for this analysis, which yielded four and
six significant QTL for GY in the TC and TM population,
respectively. If the performance of heterozygous genotypes was

better than that of homozygous genotypes at one QTL, it
was called a heterozygous favorable QTL; otherwise, it was
called a homozygous favorable QTL. The correlations between
the number of favorable QTL and the hybrid performance
were calculated for all 10 traits (Supplementary Table 9). The
correlations between the hybrid performance and the number
of favorable homozygous QTL (r;), the number of favorable
heterozygous QTL (r;) and the total number of favorable QTL
(r3) varied across traits, but were significant for most of traits in
both the TC and TM populations.
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In the TC population, three of the four QTL for GY
were heterozygous favorable QTL and ry, r3, and r3 were
0.16 (Supplementary Table 9), 0.43 (Figure 6A) and 0.41
(Figure 6B), respectively. In the TM population, only two
of the six detected QTL were heterozygous favorable QTL
and r;, rp, and r3 were 0.42 (Figure 6C), 0.25 (Figure 6D),
and 0.47 (Figure 6E), respectively. These results illustrate that

superior hybrids can be selected by combining favorable alleles
at significant loci.

Genomic Selection Accuracy in Different

Breeding Schemes
For genomic selection within populations, the prediction
accuracy ranged from 0.70 for RNPE to 0.40 for VW in
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TC and ranged from 0.63 for KT to 0.51 for GY in TM
population (Figure 7A). Generally, traits with a low heritability
usually had a low prediction accuracy, like VW in TC and GY
in TM population.

The three cross-validation schemes were shown in
Supplementary Figure 1. For strategy 1 (CV1), when using
the TC population to predict the TM population (TC_TM), the
prediction accuracy ranged from 0.305 for GY to 0.699 for EH
(Figure 7B). Conversely, the prediction accuracy ranged from
0.287 for GY to 0.73 for EH when the TM population was used to
predict the TC population (TM_TC). When the significant QTL
identified in the training population were included as fixed effects
in the prediction model, this did not result in an improvement of
the prediction accuracy for most of the traits. Only a few traits,
e.g., EH and KL, showed a slight improvement. For some traits,
e.g., KNPR and KT, the prediction accuracy even decreased.

For the second cross-validation strategy (CV2), the lowest
prediction accuracy was 0.49 for VW and the highest prediction
accuracy was 0.90 for RNPE. For the third cross-validation
strategy (CV3), the lowest prediction accuracy was 0.53 for GY
and the highest prediction accuracy was 0.92 for KT and RNPE
(Figure 7C). The results also showed that the prediction accuracy
of CV3 was higher than within population scheme and CV1,
CV2, regardless of whether GS or wGS was applied. The wGS
taking potential QTL as fixed had a higher prediction accuracy
than GS in both CV2 and CV3 (Figure 7C).

DISCUSSION

Hundred Grain Weight and Kernel
Number per Row Significantly Contribute
to the Variation of Grain Yield

Grain yield is a complex trait, affected by many genetic and
non-genetic factors. The three traits that were found to mainly
contribute to GY are HGW, RNPE, and KNPR. In earlier studies,
the focus has been placed on correlation analysis between traits.
In general, moderate to high correlations were observed between
GY and many other traits (Cui et al., 2016; Li et al., 2020, 2021).
However, it is difficult to determine which trait contributes the
most to grain yield. Path analysis is an alternative approach that
allows examining the relative importance of a component trait
to the variation of the target trait. Our results revealed that
regardless of whether the population was the RIL population or
the hybrid population, HGW and KNPR had the highest path
coefficients thus, contributed the most to the variation of GY
(Figures 2B-D). Consequently, HGW and KNPR are promising
indirect traits to improve GY in hybrid breeding in maize.

Identification of Quantitative Trait Loci

Using an Additive Genetic Model

Previous studies in the underlying populations (RIL, TC, and
TM) focused on additive genetic models, where the genotypes
and phenotypes of the RIL population were used to map QTL
by treating the GCA as traits (Zhou et al., 2018; Lu et al,
2020). In this study, the genotypes and phenotypes of two hybrid

populations were used to detect significant main (additive and
dominance) effects and epistatic QTL. Only two common QTL
were identified between the RIL and the TC hybrid population,
and three common QTL were identified between the RIL and the
TM hybrid population (Figure 3B). These results indicated that
the non-additive genetic effect played an important role, which
meant that a line with a moderate value of GY can still yield a
high GY when crossing with testers (Supplementary Figure 3).
And an additive model was not enough to explain heterosis.

Non-additive Polygenic Effects Play an

Important Role in Hybrid Performance

The proportion of phenotypic variance explained by the additive-
by-additive effects in the RIL population was higher for most
traits than that in the TC and TM populations (Supplementary
Table 4). And the unparallel relationship between RILs and
hybrid populations (Supplementary Figure 3) inspired further
exploration of the genetic basis in the combined TC-TM hybrid
population using a model integrating non-additive polygenic
effects. Based on the estimated variance components, we
conclude that the prominent gene action varies across traits
(Supplementary Table 6). For example, the prominent variance
was the additive-by-additive component for the trait PH, but
for GY the prominent variance was the dominance component.
This presents a considerable challenge for selecting elite single-
cross hybrids and for uncovering the importance of non-additive
genetic effects because additive variance is not a prominent factor
to control the variation of any of the investigated traits.

Identification of Quantitative Trait Loci

Using a Non-additive Model

For genetic dissection of the hybrid performance, Xu (2013)
proposed a new mixed model method for QTL mapping by
incorporating multiple polygenic covariance structures, which
consist of the additive, dominance, and epistatic variance
components. In theory, each particular effect could be tested in
a model by controlling all other genetic effects as background.
Similarly, a quantitative genetic framework was proposed for the
genetic dissection of MPH (Jiang et al., 2017). The above two
linear mixed models are very similar in the polygenic background
control. The main difference is the response variable, in the
former it is the performance of the hybrid (Xu, 2013) and in
the latter the MPH (Jiang et al., 2017). It should be noted that
the hybrid performance could not be simply replaced by MPH
with just the removal of the additive effect from the linear mixed
model (Jiang et al., 2017). In our study, the GBS technology
only covered about 0.07-fold of the genome in our populations.
The two tester lines had the same genotype at 95% of the loci,
which resulted in the pooled TC-TM population having just two
genotypes at 95% of loci. Two genotypes per locus mimick a
backcross population so that the additive effects are confounded
with the dominance effects, which explains why the TC-TM-
Add model was nearly the same as the TC-TM-Dom model
(with one exception for a dominance QTL) (Supplementary
Figure 4). Regardless of the high similarity between the hybrid
populations and the hypothetical BC population, the hybrid
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populations still had advantages. In a dominance test for MPH,
17 significant dominance loci were detected (Figure 4A) and
for hybrid performance, a set of significant epistatic loci was
identified (Supplementary Table 8).

Improve Prediction Accuracy by

Integrating Functional Markers

In genomic selection models like GBLUP or rrBLUP, all SNPs
were treated equally or had the same distribution when treated
as random. Actually, significant QTL contributed more to the
variation of traits. In such a case, significant SNPs should be
treated differently. In this study, those SNPs were included in
the fixed effect in the GS model to explore whether prediction
accuracy could be improved. For cross-validation scheme 1, just

two of 10 traits, namely EH and KL showed slight improvement.
We guess that TC and TM populations had different genetic
backgrounds (Li et al., 2019) and those QTL made different
effect within two different populations. So the QTL effect was
estimated biasedly when only one tester population as training
population. But for CV2 and CV3, the population used for
QTL mapping consisted of lines from both TC and TV, in
this case, improvements were observed for all traits harboring
QTL (Figure 7C). By comparison, it showed that CV3 scheme
had superiority over the within population scheme, CV1, and
CV2, which inspired us that when there were some known
functional QTL in a target population, a strategy treating known
QTL as fixed effects with CV3 design was a better choice for
genomic prediction.
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Relationship Between Midparent

Heterosis and Hybrid Performance

Hybrid performance is the phenotypic value of the hybrid,
which is the sum of the midparent heterosis and the midparent
value. Hybrid performance is controlled by the additive, the
dominance and all four epistatic polygenic effects, whereas
MPH is not affected by the additive effect because the additive
effect does not contribute to heterosis (Jiang et al., 2017). In
this study, we confirmed the different genetic architecture of
hybrid performance and MPH as both had only two QTL
in common (Figure 4A), which is consistent with a previous
study (Hua et al.,, 2003). Furthermore, the variance component
ratios were also different between hybrid performance and
MPH (Supplementary Tables 6, 7). In a wheat study, the
midparent value showed a negative correlation with MPH
but was positively correlated with the hybrid performance
(Boeven et al., 2020). In our study, we observed the correlation
between the hybrid performance and MPH was 0.77 (p < 0.01)
(Supplementary Figure 5A), and a positive correlation of 0.23
(p < 0.01) between the hybrid performance and midparent
value (Supplementary Figure 5B), while a negative correlation
between midparent value and MPH for grain yield of —0.45
(p < 0.01) (Supplementary Figure 5C). And the path
analysis also highlighted the superior contribution of MPH
to hybrid performance in hybrid population (Supplementary
Figure 5D). In plant hybrid breeding, we aim to select
a single-cross hybrid with both high MPH and midparent
value, but these seem to be contradictory goals considering
the negative correlation. Consequently, hybrid breeding must
balance the two and target hybrid performance to achieve high
performing hybrids.

Mechanisms of Midparent Heterosis and

Hybrid Performance

Although dominant and additive effects couldn’t be separated
and dominant degree couldn’t be estimated in this study, multiple
variance components dissection provided possibility to assess the
mechanism of heterosis and hybrid performance. Results showed
the dominance contributed the highest proportion for MPH
of most traits, especially for GY and KNPR (Supplementary
Table 7). However, it was found that the epistasis (sum of
additive-by-additive, additive-by-dominance, and dominance-
by-dominance) contributes the highest proportion to hybrid
performance of GY, PH, EH, and KNPR (Supplementary
Table 6). The results were similar to a previous report in maize
(Tang et al., 2010). A series of linear mixed models incorporating
multiple polygenic covariance structures together with NCII
population provide possibility to explore the genetic factors and
mechanism of heterosis.
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Supplementary Figure 1 | Three different cross-validation schemes. (A)
Cross-validation strategy 1. (B) Cross-validation strategy 2. (C) Cross-validation
strategy 3. RILs, the recombinant inbred lines developed by Ye478 x Qi319.

Supplementary Figure 2 | Collinearity between the genetic and physical maps.

Supplementary Figure 3 | Parallel maps of grain yield per plant (GY) in the
recombinant inbred line population developed by Ye478 x Qi319 (RIL),
Chang7-2 x RIL (TC), and Mo17 x RIL (TM) populations. (A) GY was ranked
based on the TC population. (B) GY was ranked based on the TM population.

Supplementary Figure 4 | Venn diagram showing the numbers of pleiotropic
quantitative trait loci (QTL) overlapping among TC-TM-Add, TC-TM-Dom and
MPH. TC-TM-Add represents the mapping results for the additive effects in the
pooled population of Chang7-2 x RIL (TC) and Mo17 x RIL (TM). RIL, the
recombinant inbred line population developed by Ye478 x Qi319; TC-TM-Dom
represents the mapping results for the dominance effects in the pooled population
of TC and TM; MPH represents the result of dominance QTL mapping for
midparent heterosis.

Supplementary Figure 5 | Correlations and path coefficients among hybrid
performance, midparent heterosis (MPH) and midparent value. (A) Correlation
between MPH and hybrid performance. (B) Correlation between midparent value
and hybrid performance. (C) Correlation between midparent value and MPH. (D)
The path coefficients among hybrid performance, MPH and midparent value.

Supplementary Table 1 | Summary statistics for 10 traits for midparent heterosis
in the Chang7-2 x RIL (TC), and Mo17 x RIL (TM) populations.

Supplementary Table 2 | Variance of general combining ability (GCA) and
specific combining ability (SCA) and their interaction with the environment.

Supplementary Table 3 | Summary statistics for the genetic distances across 10
linkage groups of the maize genome.

Supplementary Table 4 | Variance components and proportion of the phenotypic
variance contributed by each variance component in the recombinant inbred line
population developed by Ye478 x Qi319 (RIL), Chang7-2 x RIL (TC), and

Mo17 x RIL (TM) populations, respectively.

Supplementary Table 5 | QTL mapping results for 10 traits in the recombinant
inbred line population developed by Ye478 x Qi319 (RIL), Chang7-2 x RIL (TC),
Mo17 x RIL (TM) populations, the pooled TC-TM population and

heterosis dataset.
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Supplementary Table 6 | Variance components and proportion of the phenotypic
variance contributed by each variance component in the pooled Chang7-2 x RIL
(TC)-Mo17 x RIL (TM) population.

Supplementary Table 7 | Variance components and proportion of the phenotypic
variance contributed by each variance component for midparent heterosis.
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