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To elucidate the unknown regulatory mechanisms involved in aluminum (Al)-induced 
expression of POLYGALACTURONASE-INHIBITING PROTEIN 1 (PGIP1), which is one of 
the downstream genes of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) regulating 
Al-tolerance genes, we conducted a genome-wide association analysis of gene expression 
levels (eGWAS) of PGIP1 in the shoots under Al stress using 83 Arabidopsis thaliana 
accessions. The eGWAS, conducted through a mixed linear model, revealed 17 suggestive 
SNPs across the genome having the association with the expression level variation in 
PGIP1. The GWAS-detected SNPs were directly located inside transcription factors and 
other genes involved in stress signaling, which were expressed in response to Al. These 
candidate genes carried different expression level and amino acid polymorphisms. Among 
them, three genes encoding NAC domain-containing protein 27 (NAC027), TRX superfamily 
protein, and R-R-type MYB protein were associated with the suppression of PGIP1 
expression in their mutants, and accordingly, the system affected Al tolerance. We also 
found the involvement of Al-induced endogenous nitric oxide (NO) signaling, which induces 
NAC027 and R-R-type MYB genes to regulate PGIP1 expression. In this study, we provide 
genetic evidence that STOP1-independent NO signaling pathway and STOP1-dependent 
regulation in phosphoinositide (PI) signaling pathway are involved in the regulation of 
PGIP1 expression under Al stress.
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INTRODUCTION

In the last few decades, extensive studies in molecular 
physiological research for aluminum (Al) toxicity in acid soils 
(pH < 5.5) have found that activation of Al-tolerance genes 
governs Al resistance in plants (Delhaize and Ryan, 1995; Liu 
et  al., 2014; Kochian et  al., 2015). Several transcription factors 
that activate the transcription of critical Al-resistant genes (e.g., 
ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 
(ALMT1); Tokizawa et al., 2015) have been identified, including 
SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1; Iuchi 
et al., 2007). Al-inducible expression of STOP1-regulated genes 
plays critical roles in Al tolerance in Arabidopsis (Sawaki et al., 
2009) and is conserved in various plant species (Ohyama et al., 
2013). It is important to identify the mechanisms regulating 
gene expression related to Al tolerance, which would be helpful 
in the field of breeding and the management of crops in 
acid soil.

Several mechanisms regulating the expression of STOP1-
regulated Al-tolerance genes have been reported. For example, 
the expression of AtALMT1 under Al stress involves calcium 
signaling that includes CALCINEURIN B-LIKE PROTEIN 1 
(Ligaba-Osena et  al., 2017) and CALMODULIN-BINDING 
TRANSCRIPTION ACTIVATOR 2 (Tokizawa et al., 2015), and 
phosphatidylinositol signaling that includes 
PHOSPHATIDYLINOSITOL 4-KINASE (Wu et  al., 2019). In 
addition, WRKY DNA-BINDING PROTEIN 46 suppresses 
AtALMT1 (Ding et  al., 2013). These regulators have been 
characterized in most Al-stress root responses. However, long-
term stress leads to high accumulation of Al in the shoot, 
which is also directly related to shoot growth inhibition (Larsen 
et  al., 1997, 2005; Sadhukhan et  al., 2020). Although most of 
the Al signaling mechanism in shoot is unknown, for example 
recently we have found Al-inducible expression of ALUMINUM 
SENSITIVE 3 [ALS3; encodes a bacterial-type ABC transporter-
like protein that is involved in the translocation of Al (Larsen 
et al., 2005)] is STOP1-dependent and shows a specific response 
to Al in the shoots of Arabidopsis (Sawaki et  al., 2016). By 
contrast, Al-inducible expression of ALS3 in the shoots is 
dependent on similar signaling mechanisms in the roots, 
including phosphatidylinositol signaling, although the genes 
involved in the pathway differ between the shoots and roots 
(Wu et  al., 2019; Sadhukhan et  al., 2020). These observations 
suggest that understanding the regulatory mechanisms of gene 
expression in shoots is critically important to explore the 
complexity of the Al signaling pathway.

POLYGALACTURONASE-INHIBITING PROTEIN 1 (PGIP1) 
gene expression is regulated by STOP1 and is strongly induced 
in the shoot along with ALS3 by mineral stress (especially Al) 
and acidic soil conditions (Sawaki et  al., 2016). Although the 
contribution of PGIP1 to Al tolerance has not been studied 
yet, it has been speculated that PGIP1 plays a role in stabilizing 
the pectin in the cell wall under acidic conditions (Sawaki 
et  al., 2009; Kobayashi et  al., 2014). Al binds preferentially to 
unmethylated pectin, catalyzed by pectin methylesterase via 
nitric oxide (NO) signaling (Sun et  al., 2016), which negatively 
affects cell wall structure and function by increasing rigidity 

and reducing cell expansion and mechanical extensibility, thus 
inhibiting plant growth (Tabuchi and Matsumoto, 2001; Sun 
et al., 2016). In contrast to ALS3, which is specifically expressed 
in Al, PGIP1 is also responsive to abiotic stress. Specifically, 
PGIP1 is induced by oligogalacturonides, a known degradation 
product of the cell wall in plant defense (Ferrari et  al., 2003; 
Davidsson et al., 2017). This suggests that analysis of the response 
of PGIP1 expression will provide an opportunity to study Al 
signaling pathways in the shoot that may reveal the cross talk 
between stress signaling pathways, including Al stress, when 
compared to previous studies of ALS3 (Sadhukhan et al., 2020).

GWAS on the expression level difference of an Al-response 
gene is a powerful tool to identify the unknown upstream signaling 
pathways regulating the gene of interest (Atwell et  al., 2010; 
Wang et  al., 2020). GO enrichment and gene co-expression 
network analyses can add to the power of eGWAS in identifying 
functional candidate genes (Kobayashi et  al., 2016; Sadhukhan 
et  al., 2020; Song et  al., 2021). We  have conducted a genome-
wide association study targeting gene expression level (eGWAS) 
that identified cis-mutations in the promoters of NOD26-like 
intrinsic protein 1; 1 (NIP1; 1), which regulates hydrogen peroxide 
sensitivity, and AtALMT1; multidrug and toxic compound extrusion 
(MATE), which encodes an Al-responsive citrate transporter, is 
the determinant of the expression levels of these genes in roots 
(Sadhukhan et al., 2017; Nakano et al., 2020a, 2020b). In addition 
to the cis-locus, the eGWAS of AtMATE also revealed trans-loci 
associated with gene expression (Nakano et  al., 2020b). Through 
eGWAS, we  also found the involvement of phosphatidylinositol 
and calcium signaling in the regulation of ALS3 expression under 
Al stress in Arabidopsis shoots (Sadhukhan et  al., 2020). To 
identify the factors involved in Al signaling related to PGIP1 
expression, we  conducted an eGWAS based on the expression 
level of PGIP1 in Arabidopsis thaliana accessions with a reverse 
genetics approach. We  propose both STOP1-dependent and 
STOP1-independent Al signalings for the transcriptional regulation 
of PGIP1 in the shoots of A. thaliana.

MATERIALS AND METHODS

Plant Materials
Seeds of 83 worldwide natural A. thaliana accessions (Atwell 
et  al., 2010; Cao et  al., 2011; Horton et  al., 2012) used in our 
previous GWAS (Sadhukhan et  al., 2020; Nakano et  al., 2020b) 
and T-DNA insertion lines were obtained from the Arabidopsis 
Biological Resource Center (ABRC, Columbus, OH, United States), 
the Nottingham Arabidopsis Stock Centre (NASC, Nottingham, 
United Kingdom), and the RIKEN BioResource Center (RIKEN 
BRC, Tsukuba, Japan). Prior to experimental use, the procured 
seeds were multiplied by a single-seed descent process. 
Homozygosity was confirmed in T-DNA insertion mutant line 
using primers from the SALK database, following their protocols.1 
The sequences of the primers are given in Supplementary Table S1. 
The T-DNA insertion mutants used in this study were pgip1 
(SALK_001662), STOP1-KO (SALK_114108), at1g64105 

1 http://signal.salk.edu/tdnaprimers.2.html
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(SAIL_235_D03), at2g21950 (GK-707C08), at3g24480 
(GABI_017A08), at5g15300 (SALK_044494C), at5g38900 
(SAIL_453_G03), at5g43460 (SALK_067877C), at5g58900 
(SALK_084867C), at5g58910 (SALK_064093C), at1g51070 
(SALK_104253C), at2g38090 (SALK_127250C), at2g04780 
(SALK_113729C) and plc9 (SALK_021982C).

Plant Growth Conditions and Stress 
Treatment
Seedlings were grown on nylon mesh floating on modified 
MGRL solution (Fujiwara et al., 1992; 2% solution with 200 μM 
CaCl2; initial pH 5.6) for 10 days at 22°C using a 12-h photoperiod 
with 37 μMol m−2  s−1 photon flux density. The culture solution 
was renewed every 2 days. After 10 days, the seedlings were 
transferred to another modified MGRL solution (without P 
and pH 5.0) containing 25 μM AlCl3·6H2O (Sawaki et al., 2016). 
The shoots were harvested after 24 h of Al treatment and 
immediately frozen with liquid nitrogen for RNA extraction. 
The same Al toxic solution containing 50 μM 2-(4-carboxyphenyl)- 
4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), an NO 
scavenger, was used to evaluate the effect of NO (D’Alessandro 
et  al., 2013; Sun et  al., 2016). The concentration of cPTIO 
was based on preliminary experiments from which maximum 
suppressed responses were obtained without affecting the plant 
root (Supplementary Figures S1, S2).

Soil culture was conducted using commercial acidic soil 
(PROTOLEAF, Tokyo, Japan; pH 4.2; 1:2.5 w/v soil/water solution; 
Agrahari et  al., 2020). The acidic soil was neutralized by the 
addition of CaCO3 (Koyama et  al., 2000; Sawaki et  al., 2016; 
Agrahari et  al., 2020; 4.0 g kg−1; pH 5.1; 1:2.5 w/v soil/water 
solution) and used as the control soil. Plants (100 seeds) were 
grown for 2 weeks at 22°C during a 12-h photoperiod with 
37 μMol m−2  s−1. Throughout the experiment, the plants were 
irrigated daily with deionized water to maintain soil moisture. 
The soil pH (water) and exchangeable Al were determined 
using the method described by Koyama et  al. (2000).

RNA Extraction and Real-Time 
Quantitative Reverse Transcription PCR
Total RNA was isolated from the shoots using Sepasol-RNA 
I  Super G (Nacalai Tesque, Kyoto, Japan) according to the 
manufacturer’s instructions. The RNA quality was analyzed 
using the A260/A280 ratio on a NanoVue Plus spectrophotometer 
(Biochrom, Holliston, United  States). Total RNA was reverse-
transcribed using ReverTra Ace quantitative PCR master mix 
with genomic DNA remover (Toyobo, Osaka, Japan) following 
the manufacturer’s instructions. The gene expression levels were 
quantified using SYBR Premix Ex Taq II (Takara Bio, Otsu, 
Japan) with a Dice Real Time System II MRQ thermal cycler 
(Takara Bio, Otsu, Japan) according to the manufacturer’s 
instructions. Briefly, all quantifications were carried out based 
on the real-time quantitative reverse transcription PCR (qRT-
PCR) standard curve method of Bustin et al. (2009), as described 
by Kobayashi et  al. (2014). For all quantifications, a standard 
curve was constructed using a cDNA dilution series, and the 
transcript levels of selected genes were quantified relative to 

that of the stable internal reference gene, Ubiquitin 1 (UBQ1; 
AT3G52590; Kobayashi et  al., 2007, 2014). We  have checked 
the invariant expression of UBQ1 for all experimental condition 
in used lines in this study (Supplementary Figure S3). 
We  included a control with no reverse transcriptase to assess 
genomic DNA contamination, and the amplification efficiency 
of all primers was confirmed. The primer sequences used to 
amplify the selected genes are shown in Supplementary Table S2.

Expression Genome-Wide Association 
Study of PGIP1
The eGWAS analyses were carried out using TASSEL v3.0 software 
following a mixed linear model (MLM; Bradbury et  al., 2007) 
using a total of 160,748 genome-wide single nucleotide 
polymorphism (SNP) information from public databases (Atwell 
et  al., 2010; Cao et  al., 2011; Horton et  al., 2012),2 3 which 
excluded SNPs of missing data or those with less than 5% 
minor allele frequency, as described earlier (Nakano et al., 2020b). 
The heritability (h2) was estimated by the following formula 
h2 = (the additive genetic variance)/(the additive genetic variance 
+ the residual variance). The suggestive SNPs were determined 
by quantile–quantile (Q–Q) plot analysis (Zhang et  al., 2018) 
using a free statistics software,4 and the genes closest to the 
SNPs (Table  1) were identified using the TAIR 10 database.5

Bioinformatics of Genes Associated With 
Significant SNPS
Gene ontology (GO) analysis was performed using an online 
tool available in the TAIR database.6 Gene polymorphisms were 
mined from the 1,001 Genomes database7 and POLYMORPH 
database.8 The genes upregulating PGIP1 expression in 
T87-cultured cells of Arabidopsis were identified by the 
Regulatory-network Research (RnR) database (Sakurai et  al., 
2014).9 Co-expression network analysis was conducted on the 
eGWAS-detected and RnR database-listed genes using the 
ATTED-II database (Obayashi et  al., 2018).10 Cis-elements and 
corresponding transcription factors (TFs) of the promoters were 
predicted using PlantPAN 3.0 (Chang et  al., 2008).11

In planta Complementation Assay of 
STOP1
The STOP1 complementation Arabidopsis transgenic plant was 
constructed as described by Ohyama et  al. (2013). STOP1 
genomic DNA containing the promoter (−2,848 from the first 
ATG) and downstream (+626 from the stop codon) regions 
was cloned into a binary vector (promoterless pBIG2113SF). 

2 https://cynin.gmi.oeaw.ac.at/
3 http://1001genomes.org/index.html
4 https://www.wessa.net/
5 http://www.arabidopsis.org
6 https://www.arabidopsis.org/tools/bulk/go/index.jsp
7 http://signal.salk.edu/atg1001/3.0/gebrowser.php
8 http://polymorph.weigelworld.org/cgi-bin/webapp.cgi
9 http://webs2.kazusa.or.jp/kagiana/rnr0912/indexff.html
10 http://atted.jp/
11 http://PlantPan.mbc.nctu.edu.tw
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TABLE 1 | GWAS identified SNPs with directly linked to protein-coding genes that were associated with PGIP1 expression levels in the shoots of 83 Arabidopsis thaliana accessions under Al stress.

Chr.
Physical 
position

GWAS  
p-value

Lower expression group Higher expression group Directly 
associated 

gene of 
detected SNP

SNP location 
in the directly 

associated 
gene

Functionally 
candidate‡‡

Al-responsive 
expression†† Short description

Allele 
frequency†

Mean of 
RFC‡ Allele frequency† Mean of 

RFC‡

1 3,476,243 7.46 × 10−5 71/G 0.34 12/A 0.54 AT1G10540 Intron 1.04
NAT8 (nucleobase-ascorbate 
transporter 8)

1 22,938,272 1.88 × 10−4 79/G 0.37 4/A 0.39 AT1G62050 Exon 1.14 Ankyrin repeat family protein

1 23,795,163 1.39 × 10−4 74/C 0.33 9/G 0.68 AT1G64105 Exon ○ 1.23*
NAC027 (NAC domain containing 
protein 027)

2 8,175,062 1.75 × 10−4 17/T 0.36 66/C 0.37 AT2G18880 −1,324 ○ 1.01 VEL2 (vernalization5/VIN3-like 2)

2 9,317,842 2.59 × 10−4 9/C 0.29 74/A 0.38 AT2G21850 Exon ○ 0.97
Cysteine/Histidine-rich C1 domain 
family protein

2 9,354,086 9.32 × 10−5 10/A 0.23 73/C 0.38 AT2G21950 Exon ○ 0.98 SKIP6 (SKP1 interacting partner 6)

3 8,902,459 2.93 × 10−4 13/T 0.27 70/A 0.39 AT3G24480 Exon ○ 0.74
LRX4 (leucine-rich repeat 
extension 4)

5 4,969,631 3.16 × 10−4 35/T 0.27 48/A 0.44 AT5G15300 Exon 2.40*
Pentatricopeptide repeat (PPR) 
superfamily protein

5 9,229,573 1.45 × 10−4 13/C 0.30 70/A 0.38 AT5G26300 Intron 0.64 TRAF-like family protein
5 9,241,705 1.44 × 10−4 17/G 0.28 66/A 0.39 AT5G26330 Exon 0.92 Cupredoxin superfamily protein

5 14,889,845 2.74 × 10−4 62/G 0.35 21/T 0.46 AT5G37500 Exon 0.77
GORK (gated outwardly-rectifying 
K+ channel)

5 15,560,442 1.99 × 10−4 9/A 0.28 74/G 0.37 AT5G38860 Intron ○ 1.15
BIM3 (BES1-interacting Myc-like 
protein 3)

5 15,574,085 2.08 × 10−4 77/G 0.35 6/A 0.59 AT5G38900 Exon ○ 2.61* Thioredoxin superfamily protein

5 17,460,312 6.27 × 10−5 62/C 0.35 21/T 0.48 AT5G43460 Intron ○ 0.98
HR-like lesion-inducing protein-
like protein

5 20,724,766 5.60 × 10−5 73/T 0.34 10/A 0.59 AT5G50940 Intron ○ 1.05
RNA-binding KH domain-
containing protein

5 23,783,404 2.34 × 10−4 66/A 0.33 17/C 0.51 AT5G58900 Exon ○ 1.24*
Homeodomain-like transcriptional 
regulator (R-R-type MYB protein)

5 23,790,818 1.47 × 10−4 70/A 0.34 13/G 0.53 AT5G58910 Intron 1.45* LAC16 (laccase 16)

†Number of accessions for each SNP allele.
‡Mean value of relative fold change (RFC) in PGIP1 expression for accessions carrying the tolerant or sensitive SNP allele.
††The fold change between Al treatment and control. Asterisk indicates showed greater than 1.2-fold change (p < 0.05). The expression data in the shoot obtained from our previous microarray data (Sawaki et al., 2016).
‡‡The circle indicates gene that may be functionally related to regulation of gene expression based on their GO term and publications. The GO term is shown in Supplementary Figure S6.
The most focused SNPs with a value of p < 10–3.5 in the GWAS for expression levels of PGIP1 in the shoots of 83 A. thaliana accessions under 24-h Al treatment are presented. SNP locations within the directly associated gene are 
shown as exon or intron or upstream (denoted as a minus sign). Gene symbols and a short description of each gene from the literature and the TAIR/Araport11 database are indicated. Bold type indicates information on a priori 
candidate genes.
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This construct was introduced into Agrobacterium tumefaciens 
strain GV3101 and transformed into STOP1-KO plants by the 
floral dip method (Clough and Bent, 1998). A T3 homozygous 
line was used for the experiments.

DNA-Protein Binding Assay
The binding of STOP1 to double-stranded, synthetic promoter 
fragments was studied using an amplified luminescent proximity 
homogeneous assay (AlphaScreen™, PerkinElmer, Waltham, 
MA, United States) and a 276 EnSpire Multimode Plate Reader 
(PerkinElmer) as described by Enomoto et al. (2019). Competition 
assays were performed with non-biotinylated probes (450 nM) 
according to the manufacturer’s instructions. The competitor 
probes, consisting of the promoter fragments −193 to −222 bp 
upstream from the PGIP1 and − 2,694 to −2,723 bp upstream 
from the AT5G38900 start codons, respectively, were designed 
around the STOP1-binding site according to the Plant Cistrome 
Database (Sadhukhan et  al., 2019).12 The mutated probes were 
designed following the method of Tokizawa et  al. (2015). The 
forward and reverse probe sequences are listed in 
Supplementary Table S3.

Al Content in Pectin and Nuclear Magnetic 
Resonance Analysis
Pectin was extracted from 250 mg powdered Arabidopsis shoot 
tissue (500 seedlings were grown for 10 days in the hydroponics 
system mentioned above) in buffer containing 50 mM Tris–HCl 
(pH 7.2) and 50 mM cyclohexane-trans-1, 2-diamine tetra-acetate 
(CDTA; Bethke and Glazebrook, 2014). The extraction was 
continued for 15 min at 95°C with intermittent vortexing, and 
the sample was then centrifuged at 10,000 × g for 10 min. The 
supernatant containing pectin was analyzed for Al content 
using inductively coupled plasma mass spectrometry as described 
by Watanabe et  al. (2015). For nuclear magnetic resonance 
(NMR) analysis, the supernatant containing pectin was lyophilized 
and dissolved in D2O. 1H-13C-Heteronuclear Single Quantum 
Coherence (HSQC) NMR was performed at 600.17 MHz on 
a JEOL ECA 600 NMR spectrometer (JEOL, Tokyo, Japan) 
equipped with a 5-mm FG/TH tunable probe, using the pulse 
sequence ‘hsqc_dec_club_pn’. NMR measurements were recorded 
at 70°C (Siedlecka et al., 2008). Sweep widths of 15 and 170 ppm 
were used to acquire the 1H and 13C spectra, respectively. For 
each NMR experiment, 88 scans were collected using a relaxation 
delay of 1.5 s.

RESULTS

Genome-Wide Association Study to  
Detect Loci Associated With Expression of 
Arabidopsis thaliana PGIP1 Under Al Stress
We analyzed the expression of PGIP1 in the shoots of wild-
type (WT) Arabidopsis, Columbia (Col-0) at different time 
points after root exposure to 25 μM Al. The expression of 

12 http://neomorph.salk.edu/dap_web/pages/

PGIP1 was induced after 12 h and was markedly induced ( 
five-fold on average) after 24 h of treatment (Figure  1A). It 
is also a condition of Al accumulation in the shoots 
(Supplementary Figure S4). Hence, in this study, we  chose 
24 h as the time point for evaluating PGIP1 gene expression 
under Al stress to conduct the eGWAS of PGIP1 in the shoots. 
Next, we  analyzed the expression of PGIP1 in 83 Arabidopsis 
accessions (Supplementary Figure S5; Supplementary Table S4) 
that had been treated with treated with 25 μM Al for 24 h 
and found that the expression range between log2 RFC −3.3 
and log2 RFC 0.1 (RFC: relative fold change; compared to 
Col-0; Figure 1B; h2 = 88.3%). We performed a GWAS following 
MLM using the PGIP1 expression data, but after Bonferroni 
correction for multiple testing, we could not detect any significant 
SNPs at the genome-wide significance level. This could be  due 
to the dependence of the statistical power of GWAS on the 
population size and allele frequency. Although the Q–Q plot 
showed only a slight deviated plot, in this study we  set a 
suggestive threshold based on this result (p < 10–3.5) and selected 
the top-ranked 17 SNPs as suggestive SNPs associated with 
PGIP1 expression level variation (Figures 1C,D; Table 1). These 
potentially associated SNPs were selected for further analysis.

We first characterized 17 protein-coding genes carrying the 
17 SNPs directly in their exons, introns, and promoters (Table 1) 
and then considered a priori candidate genes related to the 
regulation of PGIP1 expression out of these 17 genes. Out of 
these, seven genes belonged to the GO term of “regulation of 
gene expression,” “DNA-binding transcription factor activity,” 
“intracellular signal transduction,” and “hormone-mediated signaling 
pathway” and may be functionally associated with PGIP1 expression 
(Table 1; Supplementary Figure S6). Out of the a priori candidate 
genes, AT2G21950 (SKP1 interacting partner 6: SKIP6; Farrás et al., 
2001) and AT3G24480 (leucine-rich repeat extension 4: LRX4; Zhao 
et  al., 2018) are involved in hormonal signaling and cell-wall 
integrity, respectively. AT5G38900 (Thioredoxin superfamily protein: 
TRX SF) is involved in regulation of gene expression via redox 
signaling (Sevilla et  al., 2015). On the other hand, five among 
the 17 genes were induced more than 1.2-fold by Al in the 
shoot, according to our earlier transcriptome analysis, carried out 
under the same experimental conditions (Sawaki et  al., 2016; 
Table  1). Therefore, we  finally selected 12 genes with functions 
related to transcriptional regulation and Al-responsive expression, 
as a priori candidate genes associated with PGIP1 expression, for 
subsequent analyses.

Expression Level Polymorphisms and 
Amino Acid Polymorphisms Caused by 
Detected SNP of the Candidate Genes
We examined the 12 candidate genes for expression level 
polymorphisms (ELPs) and amino acid polymorphisms associated 
with the PGIP1 expression level. The expression levels of these 
genes were compared between representative accession groups 
that carried different detected SNP alleles (Figure  2, 
Supplementary Figure S7). Five genes, AT1G64105 (NAC027), 
AT5G38900 (TRX SF) AT5G43460 (HR-like lesion-inducing protein-
like protein: HR-like protein), AT5G58900 (Homeodomain-like 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://neomorph.salk.edu/dap_web/pages/


Agrahari et al. Al-Stress Signaling Pathway Regulating PGIP1

Frontiers in Plant Science | www.frontiersin.org 6 December 2021 | Volume 12 | Article 774687

transcriptional regulator: R-R MYB), and AT5G58910 (laccase 16: 
LAC16) exhibited significant differences in the level of expression 
between accessions carrying different SNP alleles (Figure 2). When 
comparing the different alleles, the minor allele group with elevated 
PGIP1 expression showed higher expression levels of each gene 
than the major allele group with low PGIP1 expression (Table  1; 
Figure  2). In the case of genes with SNP alleles located directly 
in exons, we  examined the amino acid polymorphisms caused 
by the detected SNPs using reliable DNA sequences from the 
1,001 genome database. The SNPs detected in the exons of five 
genes caused amino acid polymorphisms, viz. Ser29Cys in NAC027, 
Ala187Ser in SKIP6, Asn60Lys in LRX4, Phe134Ile in AT5G15300 
(pentatricopeptide repeat superfamily protein) and His246Gln in 
R-R MYB. Among them, NAC027 and R-R MYB showed both 

ELP and amino acid polymorphism. These polymorphisms might 
affect the expression level variation of PGIP1 as cis-factors. In 
this way, eight genes were selected as the first group of possible 
candidate genes, which were further studied using reverse genetics.

Reverse Genetic Characterization of the 
Candidate Genes
To examine the effect of the candidate genes on PGIP1 expression, 
its expression level was quantified in the T-DNA insertion knockout 
(KO) or knockdown mutants (KD; Supplementary Figure S8) 
of the eight candidate genes. PGIP1 expression was significantly 
lower in the three T-DNA insertion mutants of nac027, trx sf 
and r-r myb than in the WT under Al treatment (Figure  3A). 

A
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B

FIGURE 1 | Expression GWAS for POLYGALACTURONASE-INHIBITING PROTEIN 1 (PGIP1) expression in Arabidopsis thaliana. (A) Fold induction of PGIP1 
expression under Al stress at different time points of treatment are shown. The shoots were excised from 10-day-old approximately 100 seedlings of Arabidopsis 
(WT, Col-0) treated with either 0 or 25 μM Al for 0, 6, 12, and 24 h. Fold induction was calculated as the ratio of gene expression in growth media with Al to that 
without Al. An asterisk indicates significant difference from 0 h (Student’s t-test, p < 0.05). (B) Histogram showing the frequency distribution of PGIP1 expression 
levels in the shoots of 83 A. thaliana accessions. 10 days pre-grown approximately 100 seedlings of each accession were treated with 25 μM Al for 24 h for 
quantification of gene expression. UBQ1 was used as an internal control in the qRT-PCR experiment. The average data of three technical replicates are shown as 
relative fold change of PGIP1 expression compared to Col-0. (C) GWAS of PGIP1 expression levels in 83 A. thaliana accessions. The results are presented as a 
Manhattan plot of significance [−log10 (value of p)] versus chromosomal locations of SNPs. The horizontal dashed line indicates a value of p threshold according to 
the Q–Q plot of GWAS from D. Locations of the a priori candidate genes directly associated with the suggestive SNPs (p < 10–3.5; see also Table 1) based on the 
Q–Q plot of GWAS are shown by arrows. (D) Q–Q plot of GWAS, straight line represents expected null distribution of values of p; dots represent observed 
distribution of values of p; dotted line represents the 95% confidence intervals. Primers used for qRT-PCR are listed in Supplementary Table S2.
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In particular, the reduction of PGIP1 expression in the r-r myb 
was as high as approximately 40%. In contrast, other mutants 
(at2g21950, at3g24480, at5g15300, at5g43460, at5g58910) showed 
no significant difference of PGIP1 expression compared to the 
WT under Al treatment (Figure 3A). From this analysis, we found 
that NAC027, TRX SF and R-R MYB are involved in the regulation 
of PGIP1 expression.

We also analyzed the patterns of expression of NAC027, TRX 
SF, and R-R MYB under Al stress in the shoots of WT A. thaliana 
after 24 h of treatment. We  observed a significant induction of 
these genes relative to the control (Figure  3B). The Al-induced 
responses of NAC027 were weak, but their gene expression showed 
Al responses similar to PGIP1 expression. These results suggest 
that NAC027, TRX SF, and R-R MYB are related to the regulation 
of Al-induced PGIP1 expression. In addition, Al-responsive PGIP1 
and its regulatory system were involved in Al tolerance. In acidic 
soils containing higher exchangeable Al, pgip1, like the 
Al-hypersensitive stop1, was much more inhibited in growth than 
the WT (Supplementary Figure S9). On the other hand, the 
growth was recovered in the neutralized soil (Supplementary  

Figure S9). Similarly, the growth of trx sf and r-r myb was  
inhibited than the WT in acidic soil, although the growth of 
nac027 was not severely inhibited (Supplementary Figure S9). 
This may be  consistent with the lower degree of repression of 
PGIP1 in nac027 and the weaker induction of Al on the  
expression level of NAC027 compared to the other two genes 
(Figure  3).

Relationship Between STOP1 and Genes 
Regulating PGIP1 Identified by eGWAS
We investigated the relationship between STOP1 regulation 
and the eGWAS-detected genes because it has been reported 
that STOP1 regulates PGIP1 expression (Sawaki et al., 2009). 
There was no difference in expression levels of STOP1 in 
the nac027, trx sf, and r-r myb (Supplementary Figure S10A). 
In contrast, we  found a significant reduction in the gene 
expression level of TRX SF in the STOP1-KO, whereas the 
other two genes showed similar expression levels compared 
to WT (Figure 4A). In addition, in the STOP1-complemented 

FIGURE 2 | Expression level polymorphisms of the genes identified by expression genome-wide association study (eGWAS). The expression level variations in a 
priori candidate genes directly linked to SNPs (Table 1) that showed significant segregation between SNP alleles are presented as box plots. Genes whose 
expression levels were not significantly different between accessions are shown in Supplementary Figure S7. Expression of these genes was monitored by qRT-
PCR in 45 randomly chosen accessions among the 83 accessions used in eGWAS. Accessions are grouped according to SNP alleles at a particular physical 
chromosome position mentioned below each box plot. Number of accessions of each SNP allele is shown under the each SNP. UBQ1 was used as an internal 
control. Expression level of each accession is relative to Col-0. An asterisk indicates a significant difference between the average values of group (p < 0.05, Student’s 
t-test).
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line, the expression of TRX SF was fully recovered similar 
to Col-0 (Figure  4B). These results suggest that TRX SF 
is regulated by the STOP1 transcription factor, while none 
of the three genes affect the expression level of STOP1.

In our previous eGWAS of ALS3, we  found the involvement 
of phosphoinositide (PI)-dependent phospholipase C9 (PLC9) signaling 
upstream of the STOP1 regulation system, which regulates the 
expression of ALS3 and PGIP1 in the shoots of A. thaliana 
(Sadhukhan et  al., 2020). Therefore, we  examined the expression 
of TRX SF, NAC027, and R-R MYB in the plc9. We  found that 
the expression of TRX SF was significantly suppressed in plc9 
(Figure  4A), similar to the downregulation of PGIP1 
(Supplementary Figure S10B). These findings suggest that TRX 

SF is regulated by a PI signaling-mediated STOP1-dependent 
pathway. In contrast, we  found that the expression of ALS3 
remained unchanged in the trx sf, nac027, and r-r myb mutants 
(Supplementary Figure S10A). These results suggest that TRX 
SF differentially regulates transcription of PGIP1 and ALS3, which 
are co-regulated by STOP1  in Arabidopsis shoots.

In vitro Binding Analysis of STOP1 to TRX 
SF and PGIP1 Promoter Regions
Next, we  performed a promoter binding analysis to reveal 
whether STOP1 directly regulates TRX SF and PGIP1 in the 
STOP1-dependent pathway. The STOP1-binding positions were 

A
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FIGURE 3 | PGIP1 expression in the mutants of genes identified by eGWAS. (A) Relative expression levels of PGIP1 in the shoots of WT (WT, Col-0) and T-DNA 
insertion mutants of eight final candidate genes having expression level polymorphisms (Figure 2) and/or amino acid polymorphisms (see main text). Approximately 
100 seedlings of the WT and independent homozygous T-DNA insertion mutants were grown for 10 days and treated with 0 (-Al) or 25 μM AlCl3 (+Al) for 24 h. PGIP1 
expression was measured by qRT-PCR. Expression levels are expressed as relative fold changes compared to WT (-Al); significant reductions in relative fold change 
of PGIP1 from the Al-treated WT sample are indicated by asterisks (Student’s t-test, p < 0.05). (B) Fold changes (+Al/-Al) of AT1G64105 (NAC027), AT5G38900 
(TRX SF), and AT5G58900 (R-R MYB) at 24 h of Al treatment, measured by qRT-PCR, are shown; significant fold increases from the control (-Al) samples are 
indicated by asterisks, *(Student’s t-test, p < 0.05). Average data of three biological replicates are presented with standard errors. UBQ1 was used as an internal 
control. Primers used for qRT-PCR are listed in Supplementary Table S2.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Agrahari et al. Al-Stress Signaling Pathway Regulating PGIP1

Frontiers in Plant Science | www.frontiersin.org 9 December 2021 | Volume 12 | Article 774687

predicted by searching enriched sequences (octamer units) in 
the stress-inducible promoters.13 They were identical to the 
binding sites provided by the Plant Cistrome Database. Therefore, 
we searched for putative STOP1-binding sites in the promoters 
of PGIP1 and TRX SF using the Plant Cistrome Database. 
Based on DNA affinity purification sequencing (DAP-seq), the 
database identified the “GGNVS” consensus sequence in the 
PGIP1 and TRX SF promoters for binding STOP1-like proteins 
(Figure  5A), as previously identified in rice by Tsutsui et  al. 
(2011). The binding capacity of STOP1 to the sequences available 
from the Plant Cistrome Database was validated by an in vitro 
competitive binding assay using the AlphaScreen™ system 
(Figure  5B). A 30-bp synthetic double-stranded DNA probe, 
designed around the binding site in the PGIP1 (−193 to 
−222 bp) and TRX SF (−2,694 to −2,723) promoters, could 
compete for STOP1 protein binding with a known STOP1-
binding site in the AtALMT1 promoter (Tokizawa et al., 2015). 
On the other hand, replacing the “GGNVS” consensus sequences 
within the PGIP1 and TRX SF probe with A/T stretches 
abolished STOP1 binding (Figure  5B). These results indicate 
that STOP1 binds directly to the PGIP1 and TRX SF promoters.

Al-Inducible NO Signaling Effects 
Expression of Genes Regulating PGIP1
NO generation is positively correlated with cell wall pectin 
demethylation and alteration of cell wall metabolism under 
Al stress (Zhou et  al., 2012; Sun et  al., 2016). To establish 
whether Al accumulation induces NO signaling, we  examined 
NO-inducible marker gene (AT2G06050, AT3G45140, and 

13 http://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi

AT5G42650; Huang et  al., 2004) expression in shoots after 
exposing the roots to Al or Al plus cPTIO (NO scavenger; 
Shi et  al., 2015) for 24 h. We  found that the expression of 
the NO marker genes was substantially induced in the Al-treated 
samples, whereas their expression was suppressed in the samples 
treated with Al plus cPTIO (Figure  6A). This suggests that 
Al induces NO signaling in the shoots. Next, we  examined 
whether PGIP1 and ALS3, which are regulated by STOP1, 
function downstream of NO signaling by quantifying their 
expression levels in the shoots after exposing the roots to Al 
or Al plus cPTIO for 24 h. The transcript levels of PGIP1 
were suppressed significantly in the Al plus cPTIO samples, 
whereas ALS3 expression was unchanged (Figure  6B). STOP1 
expression was neither Al-induced nor affected by cPTIO.

We also assessed whether the eGWAS-identified genes that 
regulate PGIP1 expression function downstream of NO signaling 
by quantifying their expression levels in the shoots after exposing 
the roots to Al or Al plus cPTIO for 24 h. We  found that 
only NAC027 expression and R-R MYB expression were 
significantly suppressed in the Al plus cPTIO samples, while 
TRX SF remained unchanged (Figure 6B). These results clearly 
indicate that Al-inducible PGIP1 expression is regulated by 
the NO signaling pathway through NAC027 and R-R MYB, 
and this is not regulated by STOP1 (Figure  4A).

Transcriptional Regulation of R-R MYB 
and NAC027 Included in NO Signaling
The expression of NAC027 and R-R MYB was measured in 
each KO line. A significant reduction in the expression of 
NAC027 was observed in the r-r myb compared with the WT 

A B

FIGURE 4 | Relationship of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) to the genes identified by eGWAS for PGIP1 expression. (A) Transcriptional 
regulation of the genes identified in eGWAS (NAC027, TRX SF, and R-R MYB) by STOP1 and PLC9 was studied. Seedlings of WT (WT, Col-0) and knockout (KO) 
lines were grown for 10 days in MGRL solution and treated with 25 μM AlCl3 for 24 h. The expression levels of NAC027, TRX SF, and R-R MYB were measured in the 
shoots of WT, STOP1-KO, and plc9 by qRT-PCR. An asterisk indicates a significant difference from WT (Student’s t-test, p < 0.05). (B) Recovery of the transcription 
of suppressed PGIP1 and TRX SF in STOP1-KO was analyzed in complemented line (AtSTOP1-comp.) after exposure to Al (25 μM AlCl3 for 24 h). Gene expression 
levels are relative to WT and fold changes from the control (-Al) are shown. An asterisk indicates a significant difference from STOP1-KO (Student’s t-test, p < 0.05). 
UBQ1 was used as an internal control. Average values of three biological replicates are presented with standard errors.
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expression (Figure  7A). In contrast, the expression of R-R 
MYB in the nac027 showed no difference compared with wild 
type (Figure 7B). In addition, the PlantPAN3.0 database (provides 
TF binding sites in genome-wide promoters based on DAP-seq 
analysis of various transcription factors) identified that R-R 
MYB directly binds to the promoter of NAC027 (Figure  7C).

Interestingly, we  found regulators of PGIP1 using the RnR 
database that is different from the eGWAS-identified factors. 
The RnR database indicated that overexpression of AT1G51070 
[BASIC HELIX-LOOP-HELIX 115 (BHLH115)], AT2G38090 

(duplicated homeodomain-like superfamily protein), and 
AT2G04780 [FASCICLIN-LIKE ARABINOGALACTAN 7 (FLA7)] 
upregulated PGIP1 expression, which was at the approximately 
99th percentile of expression regulation and about 1.3–2.0-fold 
expression compared with the control. In fact, we  confirmed 
the downregulation of PGIP1 expression in the KO or KD 
mutants of these three genes under Al stress (Figure  7D). 
Among them, AT2G38090 is a member of the R-R-type MYB 
family (Yanhui et  al., 2006) and is a close homolog of R-R 
MYB that we  found in the eGWAS. This TF also binds to 

A
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FIGURE 5 | Binding assay of STOP1 protein with PGIP1 and TRX SF promoters. Results of competitive binding assay of synthetic double-stranded promoter 
fragment of PGIP1 (−193 to −222 bp) and TRX SF (−2,694 to −2,723) to in vitro translated STOP1 protein using the PerkinElmer Amplified Luminescent Proximity 
Homogeneous Assay (AlphaScreen™) are shown. (A) Probe sequences used in AlphaScreen are shown. The STOP1-binding sites of the PGIP1 and TRX SF 
promoters were chosen from the Plant Cistrome Database (http://neomorph.salk.edu/dap_web/pages/index.php). The dotted boxes indicate the GGNVS 
sequences that represent the STOP1-ortholog ART1 binding minimum consensus. Known binding (cis-D) and non-binding (cis-A) sites of STOP1 on the AtALMT1 
promoter (Tokizawa et al., 2015) were used as positive and negative control probes, respectively. The mutated PGIP1 and TRX SF probes were designed by 
replacing the GGNVS consensus sequence with stretches of A/T (shown in red font). (B) Competitive binding assay where 450 nM competitor probes (shown in blue 
font) compete with 50 nM biotinylated positive probe (shown in red font) for binding with the STOP1 protein. The emitted light signal intensities, relative to those of 
the biotinylated probe without any competitor, are shown in the graph. Average values ± SD (n = 3) are presented. Lower emitted signal intensity signifies binding of 
the STOP1 protein to the respective competitor probe. Different letters indicate significant differences of emission intensity (Tukey’s test, p < 0.05).
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the NAC027 promoter as assessed by a PlantPAN3.0 database 
search, similar to R-R MYB (Figure  7C). Co-expression gene 
network analysis using the six genes (TRX SF, NAC027, R-R 
MYB, BHLH115, AT2G38090, and FLA7), whose PGIP1 
expression levels were decreased in these KO or KD lines, 
revealed that R-R MYB was co-expressed with AT2G38090 (R-R 
type MYB) and FLA7 (Supplementary Figure S11). These 
results suggest that these genes are involved in the direct/
indirect regulation of PGIP1 expression.

DISCUSSION

The transcription of Al-tolerance genes is regulated by a complex 
mechanism (Delhaize et  al., 2012) and involves STOP1 and 
cross talk with other mechanisms related to stress responses 
(Daspute et  al., 2017). In this study, TRX SF, R-R MYB, and 
NAC027 involved in the regulatory mechanisms of Al-inducible 
PGIP1 expression were identified through eGWAS of PGIP1 
expression levels under Al stress (Figure  3; Table  1). The 
STOP1-TRX SF pathway regulate PGIP1 expression through 
the PI signaling pathway via PLC9, while R-R MYB and NAC027 
regulate PGIP1 expression through a STOP1-independent 
NO-signaling pathway (Figures 4, 6, 8). In contrast, the regulation 
of ALS3 expression via STOP1  in the shoots was independent 
of these pathways, including TRX SF, R-R MYB, and NAC027 
(Figures  6, 8, Supplementary Figure S10). Taken together, 
the eGWAS of PGIP1 identified a portion of the complex Al 
signaling pathways in Arabidopsis shoots.

In the current study, we  found plausible causative genes 
involved in the regulation of PGIP1 expression through the 
candidate gene-based GWAS (Table  1). Many of these genes 

showed genomic polymorphisms, but further reverse  
genetic studies clearly revealed that three genes, TRX SF, 
R-R MYB, and NAC027, were involved in the regulation of 
PGIP1 expression. The polymorphism responsible for the 
variation could not be  determined in this study. However, 
using reliable DNA sequences from the 1,001 Genomes 
Project, we  searched for polymorphisms at the three genes 
in several high- and low-expression accessions. In this process, 
we  observed a haplotype containing polymorphisms in the 
intron sequences of TRX, associated with its expression 
levels. The only amino acid polymorphism caused by the 
detected SNPs was observed in R-R MYB. Another haplotype 
including a promoter deletion related to ELP was observed 
in NAC027 (Supplementary Figure S12). Promoter 
polymorphisms have been found to significantly impact gene 
expression level variation (Sadhukhan et  al., 2017; Meloa 
et  al., 2019; Nakano et  al., 2020b; Wang et  al., 2021). 
Functional analysis of the promoter sequence polymorphisms 
of NAC027 will shed light on their potential role in the 
differential regulation of gene expression.

A key regulatory transcription factor, STOP1, regulates 
the expression of various genes involved in Al tolerance 
along with PGIP1 (Sawaki et  al., 2009; Wu et  al., 2019), 
in which some genes are directly regulated. Our previous 
studies found that STOP1 directly regulates transcription 
of several downstream genes by binding to their promoters 
under not only Al but also other stress conditions: STOP1 
binds to the promoter of Al-inducible AtALMT1 (Tokizawa 
et al., 2015) and AtMATE (Nakano et al., 2020b), low-oxygen-
inducible HsfA2 (Enomoto et  al., 2019), and NaCl-inducible 
CPK23 (Sadhukhan et  al., 2019). In the present study, 
promoter analyses (i.e., Cistrome database and in vitro 

A B

FIGURE 6 | Relationship between Al stress and endogenous NO signaling. Ten-day-old seedlings were exposed to 25 μM Al solution containing 0 or 50 μM cPTIO 
(NO scavenger) for 24 h. (A) Expression analysis of NO marker genes in shoots after exposure to Al. (B) Effect of cPTIO on expression of the genes identified in 
eGWAS (NAC27, TRX SF, and R-R MYB), PGIP1, STOP1, and ALS3 in shoots after 24 h Al exposure. UBQ1 was used as an internal control. Average values of 
three biological replicates are presented with standard errors. Fold change was calculated from control (−Al). Primers used for qRT-PCR are listed in 
Supplementary Table S2. Different letters indicate a significant difference at p < 0.05 (Tukey test).
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promoter assays; Figure  5) identified a functional STOP1-
binding site in the promoters of PGIP1 and TRX SF. This 
indicates that STOP1 directly activates the Al-inducible 
expression of PGIP1 and TRX SF. The promoter regions of 
each gene commonly possessed the minimum consensus 
sequence of ART1/STOP1 [GGN(T/g/a/C)V(C/A/g)S(C/G); 
Tsutsui et  al., 2011; Tokizawa et  al., 2015], although the 
surrounding sequences of the consensus were different.

Similarly, we  found that STOP1 may directly regulate 
TRX SF expression (Figures  4, 5), while TRX SF affected 
the PGIP1 expression but not STOP1 expression (Figure  3, 
Supplementary Figure S10), whose regulation contributed 
to Al tolerance (Supplementary Figure S9). One possible 
function of TRX SF is to control regulatory proteins by 
oxidative protein modification, which is a common mechanism 
of thioredoxin superfamily proteins (Lemaire and Miginiac-
Maslow, 2004; Schmidtmann et  al., 2014; Mata-Perez and 

Spoel, 2019). The TRX family regulates gene expression 
through redox activation of receptors and transcription factors 
under salicylic acid (SA) and brassinosteroid signaling (Ding 
et  al., 2018; Tian et  al., 2018). We  previously revealed that 
TRX1 contributed to Al tolerance using GWAS for Al tolerance 
in Arabidopsis (Nakano et  al., 2020a). These results suggest 
that TRX-mediated redox signaling is involved in gene 
regulation related to Al tolerance. However, ALS3 was not 
involved in the signaling (Supplementary Figure S10), despite 
the fact that ALS3 expression in shoots is regulated by 
STOP1 under Al stress, similar to that of PGIP1 (Sawaki 
et  al., 2016).

We found that both NAC027 and R-R MYB (transcription 
factors respond to various biotic and abiotic stresses, Ascencio-
Ibanez et  al., 2008; Soitamo et  al., 2008; Fang et  al., 2018) 
responded to Al stress and were involved in STOP1-
independent regulation of PGIP1, where they function together 
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FIGURE 7 | Transcriptional regulation of the genes regulating PGIP1. (A) Relative expression levels of NAC027 in the shoots of WT and r-r myb. (B) Relative 
expression levels of R–R MYB in the shoots of WT and nac027. (C) AT5G58900 (R-R MYB; eGWAS detected) and AT2G38090 (R-R type MYB; RNR 
database detected) binding position to the NAC027 (AT1G64105) promoter region retrieved from PlantPAN 3.0 and the corresponding sequence. (D) Relative 
expression levels of PGIP1 in the shoots of WT and T-DNA insertion mutants of genes (at1g51070, at2g38090, and at2g04780) reported in RNR database 
that regulate PGIP1 expression. Approximately 100 seedlings of WT and independent homozygous T-DNA insertion mutants were grown for 10 days and 
treated with 25 μM AlCl3 for 24 h. For NAC027, R-R MYB, and PGIP1, expression was measured by qRT-PCR. Expression levels are expressed as relative 
fold changes compared to WT. Error bars indicate standard errors across three biological replicates. UBQ1 was used as an internal control. Significant 
reductions compared to the Al-treated WT sample are indicated by asterisks (Student’s t-test p < 0.05). Primers used for qRT-PCR are listed in 
Supplementary Table S2.
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in the NO signaling pathway via R-R MYB binding to the 
NAC027 promoter (Figures  3, 4, 6, 7). However, the 
contribution of NAC027 to regulation and Al tolerance does 
not seem to be  largely comparable to that of R-R MYB 
(Figure  3, Supplementary Figure S9), suggesting that R-R 
MYB, upstream of NAC027, also regulates other genes. NO 
signaling has been reported to be  a second messenger of 
Al-inducible expression of several Al-tolerance genes (He 
et  al., 2012). Additionally, PECTIN METHYLESTERASE 3, 
which is induced and activated by Al-dependent NO signaling 
(Sun et al., 2016; Ye et al., 2018), was detected as a co-expressed 
gene of R-R MYB and the close homolog of MYB regulating 
PGIP1 (Figure 7D, Supplementary Figure S11). These results 
suggest that the co-expressed module involved in NO signaling 
is related to the Al stress response. In contrast, STOP1 
regulated TRX SF along with ALS3 (Figure  6), which was 
independent of NO signaling not included in the 
co-expression network.

Furthermore, several genes involved in plant cell wall 
biogenesis, UDP-GLUCOSE DEHYDROGENASE 4, COTTON 
GOLGI-RELATED 3, and FLA7, were included in the 
co-expression network. The cell wall plays important roles 
not only in the regulation of plant growth and development, 
but also in the perception and expression of Al toxicity 
(Tabuchi and Matsumoto, 2001; Eticha et  al., 2005; Yang 
et al., 2011; Kobayashi et al., 2013; Zhu et al., 2014; Kochian 
et  al., 2015; Sun et  al., 2016). The PGIP1 was shown to 
be  included in Al tolerance (Supplementary Figure S9), 

but the details of its role in Al tolerance have not been 
studied yet; one possibility is that it can protect the binding 
of Al to negatively charged ligands [e.g., polygalacturonic 
acid (PGA)] induced by demethylation of cell wall pectin, 
which is enhanced by Al (Supplementary Figures S4, S13: 
the degree of pectin methylesterification in Al-treated seedlings 
decreased to 55% of that without Al treatment). It has been 
reported that PGIP1 can bind to the PGA region and support 
the formation of a normal pectin network under biotic stress 
conditions (Spadoni et  al., 2006). A similar alleviation was 
observed under proton-toxic conditions in the stop1, which 
showed very low expression of PGIP1 (Kobayashi et  al., 
2014). Under Al stress conditions, PGIP1 binding to the 
PGA region might reduce the formation of abnormal pectin 
networks, which might be  caused by unusual Al binding 
to the PGA region. Further characterization of these events 
would be  useful for identifying the role of PGIP1  in 
Al tolerance.

CONCLUSION

Through a candidate gene-based GWAS of PGIP1 expression, 
we  successfully identified complex signaling of PGIP1 in 
response to Al stress in A. thaliana. Furthermore, we propose 
a model to illustrate that PGIP1 expression is regulated by 
a STOP1-dependent Al-induced phosphoinositide (PI) signaling 
through AT5G38900 (TRX superfamily protein) and STOP1-
independent Al-induced endogenous NO signaling through 
AT1G64105 (NAC027 transcription factor) and AT5G58900 
(R-R type MYB transcription factor; Figure  8). In addition, 
our study demonstrates the utility of an eGWAS in 
understanding the genetic regulation of Al signaling by 
exploiting the natural variation in the expression levels of 
key Al-responsive genes. Although a limited number of 
accessions were used in the current study, a future eGWAS 
using denser SNP information and a larger accession set, 
available in recent years (Togninalli et  al., 2018), will open 
up new avenues for better understanding of Al stress signaling 
in plants.
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