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SQUAMOSA Promoter-binding protein-Like (SPL) genes affect a broad range of plant
biological processes and show potential application in crop improvement by genetic
modification. As the most widely planted forage crop in the world, biomass and
abiotic stresses tolerance are important breeding targets for alfalfa (Medicago sativa L.).
Nevertheless, the systematic analysis of SPL genes in alfalfa genome remains lacking.
In the present study, we characterized 22 putative non-redundant SPL genes in alfalfa
genome and uncovered the abundant structural variation among MsSPL genes. The
phylogenetic analysis of plant SPL proteins separated them into 10 clades and clade J
was an alfalfa-specific clade, suggesting SPL genes in alfalfa might have experienced
gene duplication and functional differentiation within the genome. Meanwhile, 11 MsSPL
genes with perfect matches to miRNA response elements (MREs) could be degraded
by miR156, and the cleavage sites were gene specific. In addition, we investigated the
temporal and spatial expression patterns of MsSPL genes and their expression patterns
in response to multiple treatments, characterizing candidate SPL genes in alfalfa
development and abiotic stress tolerant regulation. More importantly, overexpression
of the alfalfa-specific SPL gene (MsSPL20) showed stable delayed flowering time, as
well as increased biomass. Further studies indicated that MsSPL20 delayed flowering
time by regulating the expression of genes involved in floret development, including
HD3A, FTIP1, TEM1, and HST1. Together, our findings provide valuable information
for future research and utilization of SPL genes in alfalfa and elucidate a possibly
alfalfa-specific flowering time regulation, thereby supplying candidate genes for alfalfa
molecular-assisted breeding.
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INTRODUCTION

Over the past two decades, SQUAMOSA Promoter-binding
protein-Like (SPL) genes, which encode a class of plant-
specific transcription factors, have been shown to affect a broad
range of plant biological processes (Chen et al., 2010). These
processes include the timing of vegetative phase changes and
floral induction, the rate of leaf initiation, shoot regeneration
and branching, anthocyanin and trichome production, stress
responses, carotenoid biosynthesis, and lateral root development
(Gou et al., 2011; Jung et al., 2012; Cui et al., 2015; Zhang
et al., 2015; Ioannidi et al., 2016; Preston et al., 2016). SPL
proteins are characterized by the presence of a highly conserved
SQUAMOSA-PROMOTER BINDING PROTEIN (SBP) domain
which is consisted of approximately 78 amino acid residues
containing a nuclear localization signal (NLS) motif and two Zn
finger-like structural motifs (Yang et al., 2008). SPL genes regulate
the transcription of downstream genes through the binding of
the SBP domain to GTAC core motif, thereby participating in the
regulation of plant growth and development (Birkenbihl et al.,
2005). In addition, most SPL genes can be degraded by miRNAs
and the miRNA Responsive Element (MRE) lie downstream of
the conserved SBP domain (Gandikota et al., 2007; Molnar et al.,
2007).

Since the cloning and investigation of the first two SPL genes,
AmSBP1 and AmSBP2, in Antirrhinum majus (Klein et al., 1996),
SPL genes have been identified and characterized from various
plant species, including Arabidopsis, rice, wheat, maize, cotton,
soybean, etc. (Cardon et al., 1999; Xie et al., 2006; Zhang et al.,
2014; Tripathi et al., 2017; Cai et al., 2018; Wei et al., 2018). The
classification of the SPL family has been contentious, with six
to nine major clades identified by various researchers through
neighbor-joining phylogenetic analysis (Guo et al., 2008).
Nevertheless, phylogenetic evidence supports the derivation of
multiple SPL paralogs from the ancestral SPL genes following
gene duplication and speciation, which have been maintained
in the genome by positive Darwinian selection (Preston and
Hileman, 2013; Zhong et al., 2019). These findings indicate the
vital roles of SPL genes in plants, as positive Darwinian selection
reflects adaptation to novel ecological conditions.

Recent studies have suggested that SPL genes participate in
the regulation of multiple agronomic traits and demonstrated
their potential application for crop genetic modification (Wang
and Wang, 2015). The most elucidated SPL genes, OsSPL14/IPA1
(Ideal Plant Architecture1), have been found to directly activate
the expression of OsTB1 (Teosinte Branched1) and OsDEP1
(Dense and Erect Panicle1), which regulate rice tilling and
panicle morphology, respectively (Wang J. et al., 2017).
Moreover, OsSPL14 acts on OsD53 (Dwarf53) via a feedback
regulatory mechanism to mediate strigolactone (SL)-regulated
tiller development (Song et al., 2017). On the other hand,
SPL genes play critical roles in the regulation of plant
biotic and abiotic stress tolerance. SPL9 has been found
to balance reproduction and survival by directly regulating
the biosynthesis of anthocyanin through PAP1 (production of
anthocyanin pigments1) and DFR (dihydroflavonol-4-reductase)

(Cui et al., 2015). Over-expressing of BpSPL9 in birch (Betula
platyphylla Suk.) improves the scavenging of ROS under abiotic
stress, thus indicating the strong contribution of this gene to salt
and drought resistance (Ning et al., 2017).

Alfalfa (Medicago sativa L.) is the most important, widely
grown forage plant in the world because of its high biomass,
notable adaptability, exceptional nutritive value, and remarkable
biological nitrogen fixation capacity (Russelle et al., 2007; Gou
et al., 2018). Given the critical roles of SPL genes in plants,
several SPL genes in alfalfa have been reported to participate in
the regulation of multiple developmental processes and abiotic
stress tolerance (Gao et al., 2018; Gou et al., 2018; Feyissa
et al., 2019, 2021; Lorenzo et al., 2019). For instance, transgenic
alfalfa silencing MsSPL13 displays more lateral branches and
delayed flowering time, and the shoot branching genes were
significantly down-regulated in SPL13 RNAi plants (Gao et al.,
2018). In shaded alfalfa plants, the expression level of MsSPL3 is
significantly down-regulated; and overexpression of MsSPL3 in
Arabidopsis resulted in an early flowering phenotype (Lorenzo
et al., 2019). Research on an enhanced branching mutant of
Medicago truncatula reveals that the loss of function of spl8
increases biomass, while the over-expression of SPL8 inhibits
branching by suppressing axillary bud formation; the latter is
also true for MsSPL8 in alfalfa (Gou et al., 2018). Despite
all of factors, a systematic analysis of SPL genes in alfalfa
genome still remains lacking. As an important trait in alfalfa,
the timing of flowering (TOF) guides the determination of
harvesting time since farmers often cut alfalfa at the early
bloom stage, which helps to balance forage quality and biomass
(Adhikari et al., 2019). Recently, information on the genome
of autotetraploid alfalfa has been made public, allowing us to
perform a detailed systematic analysis of SPL genes in alfalfa
and helping us to understand the genetic and genomic basis of
alfalfa flowering time regulation (Chen et al., 2020; Shen et al.,
2020).

In the present study, we characterized 22 putative non-
redundant SPL genes in alfalfa. We uncovered abundant
structural variation among the 22 MsSPL genes, and a
phylogenetic analysis of plant SPL proteins separated them
into 10 clades with an alfalfa-specific clade (J). Moreover, we
found that 11 MsSPL genes with perfect matches to MRE
could be degraded by miR156, and the cleavage sites were
gene specific. We also investigated the temporal and spatial
expression patterns of MsSPL genes. In addition, the expression
patterns of MsSPL genes under normal growth conditions
and in response to multiple treatments were also measured.
More importantly, transgenic alfalfa over-expressing MsSPL20
(a alfalfa-specific SPL gene) showed a stable delayed flowering
time phenotype, as well as increased biomass. Further RNA-
seq analysis demonstrated the possible molecular mechanism
of MsSPL20 in alfalfa flowering time regulation. The detailed
results presented here provide valuable information for future
research and utilization of SPL genes in alfalfa, and contribute
to elucidating the genetic basis of flowering time regulation in
alfalfa, thereby supplying candidate genes for alfalfa molecular-
assisted breeding.
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MATERIALS AND METHODS

Plant Materials and Treatments
Alfalfa seeds (Medicago sativa L. cultivar Zhongmu No. 1) were
surface sterilized with 70% (v/v) ethanol for 5 min, swilled
with ddH2O several times, and then sown in pots with soil.
The seedlings were grown at 25◦C (14 h/10 h of light/dark)
in a greenhouse and watered every 5 days. The investigated
tissues, including root, stem, head, leaf, flower, and seedpod,
in various growing stages were sampled for tissue-specific
expression analysis.

The seeds of Zhongmu No. 1 were surface sterilized and
germinated on filter paper for 7 days; then, seedlings with a
primary root length of 1.5 cm were transferred to a hydroponics
system with 1/2 MS nutrient solution and grown in a greenhouse
until the third compound leaf unfolded. The seedlings were,
respectively, watered with 200 mM NaCl, 18% (w/v) PEG 6000,
and exposed to 4◦C for simulating saline, drought, and cold
treatments. For plant hormone treatments, GA3, GR24, IAA, and
ABA at 0.1 mM concentration were added to the culture solution.
The seedlings in each treatment were collected at 0, 2, 12, and
24 h. All samples were immediately frozen in liquid nitrogen and
stored at –80◦C for subsequent RNA extraction.

RNA Extraction and Gene Expression
Analyses
Total RNA was extracted using an EastepTM Super Total
RNA Extraction Kit (Promega; code LS1040) and the first-
strand cDNA synthesis was performed with TransScript
One-Step gDNA Removal and cDNA Synthesis SuperMix
(TransGen; code AT311) according to the manufacturer’s
instructions. Quantitative real-time PCR was conducted on an
ABI QuantStuio 7 Flex RT-PCR instrument with SYBR Premix
Ex Taq (Tokoya; code RR820A) according to the manufactures’
instructions. The relative expression levels of target genes were
calculated using the –2MMCT method. The specific primers used
for qRT-PCR are listed in Supplementary Table 1.

Identification and Gene Structure
Analyses of SQUAMOSA
Promoter-Binding Protein-Like Family
Members in Alfalfa
Two strategies were used to search for the members of the SPL
family genes in XinJiangDaYe genome.1 First, the SBP domain
(PF03110) protein sequence was used as query sequence to carry
out BLASTP search with an E-value cutoff of 1E−4. Additionally,
SPL genes from other species were used as query sequences
to perform BLASTN searches to find out SPL genes in alfalfa.
The redundant sequences were subsequently removed from
the obtained sequences. Finally, domain analysis programs in
SMART2 were applied to confirm that if the obtained sequences
were likely to be SPL proteins. The molecular weight (MW)
and isoelectric point (PI) of each protein were calculated using

1https://alfalfatoolbox.org/blast/
2http://smart.embl-heidelberg.de/

ExPASy.3 The exon/intron structure of SPL genes was determined
based on the alignment of the open reading frame (ORF)
sequences with their corresponding genomic sequences, and the
corresponding structure diagrams were acquired by using the
Gene Structure Server (GSDS 2.0).4

Chromosomal Distribution and
Collinearity Analyses
The schematic diagram of chromosomal distributions of MsSPL
genes were drawn by using MG2C software, based on their
location information and chromosomal length of alfalfa.5

Collinearity analysis of the SPL genes in alfalfa genome was
performed by using multiple collinear scanning toolkits (MCScan
X) with an E-value set to 10−5 (Wang Y. P. et al., 2012).

Phylogenetic and Conserved Motif
Analyses of SQUAMOSA
Promoter-Binding Protein-Like Proteins
A total of 57 SPL proteins of related plants, including 19 from
rice (Xie et al., 2006), 16 from Arabidopsis (Cardon et al., 1999),
and 22 from alfalfa, were selected for phylogenetic analysis. An
un-rooted phylogenetic tree was constructed by using MEGA
7.06 followed by multiple sequence alignments via the neighbor-
joining method (NJ), and the bootstrap analysis was conducted
using 1,000 replicates and gaps/missing data were treated by
complete deletion. MEME Suite Version 4.12.07 was used to
detect the conserved domains of SPL proteins with the following
parameters: width of each motif was 20–200 amino acid residues;
the maximum number of motifs was 3; and other parameters
were set to default values.

Validation of miRNA Cleavage Site by
RNA Ligase-Mediated 5′RACE Assay
A previously reported RNA ligase-mediated 5′RACE (RLM-5′-
RACE) assay was employed to validate miRNA cleavage sites
by using a modified RLM-RACE kit (Invitrogen; code D315) in
alfalfa (Li et al., 2015). Briefly, approximately 2 µg of total RNA
was used for the ligation of an RNA oligo adaptor without calf
intestinal phosphatase treatment. For the first round of PCR, the
5′RACE outer primer together with gene-specific outer primer
was used, and a nested PCR amplification was then carried
out using the 5′RACE inner primer together with gene-specific
inner primer. The obtained PCR products were then cloned into
vector for sequencing.

Subcellular Localization and
Trans-Activation Activity Assay
The full-length coding sequence of MsSPL20 without the stop
codon was fused upstream of the green fluorescent protein
(GFP) under the control of the CaMV 35S promoter to generate

3http://web.expasy.org/compute_pi/
4http://gsds.cbi.pku.edu.cn/
5http://mg2c.iask.in/mg2c_v2.0/
6https://megasoftware.net
7http://meme-suite.org/tools/meme
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pCAMBIA1302:MsSPL20-GFP. The recombinant plasmid was
confirmed by sequencing and transferred into Agrobacterium
strain GV3101 using the freezing/heat-shock method. The sub-
cellular localization of the fusion protein was investigated with a
tobacco transient expression system (Liu et al., 2017). For trans-
activation activity assays, full-length MsSPL20 was cloned into
the pGBKT7 vector to construct BD-MsSPL20. The detailed assay
was performed according to a previous report (Ma et al., 2019).

Transformation and Transcriptome
Assays
For transformation assay, the coding sequence of MsSPL20
was obtained through PCR amplification using MsSPL20-F
and MsSPL20-R and inserted into the modified pBI121 vector
(GUS deletion) through seamless cloning (Aidlai, Lot: CV1901).
The verified construct pBI121:MsSPL20 was transferred
into Agrobacterium strain GV3101 using the freezing/heat-
shock method. Transgenic alfalfa plants were obtained by
Agrobacterium-mediated transformation as previously reported
(Wang X. M. et al., 2017).

For transcriptome assay, the selected transgenic alfalfa and
control plants were propagated using shoot cuttings. Total RNA
samples from three biological replicated of OE and control plants
were isolated from the mixed leaves and heads tissues which were
cultured as consistent as possible. RNA-seq and the following data
analysis were completed by Genedenovo Biotechnology Co., Ltd.
(Guangzhou, China).

RESULTS

Genome-Wide Identification and
Bioinformatic Analyses of MsSPL Genes
Through BLAST searches and domain conformation analyses,
we identified 84 putative SPL gene sequences in XinJiangDaYe
genome (see text footnote 1). After confirming the SBP domain
in SMART, 72 of them contained SBP domain and distributed
in alfalfa chromosomes except Chr1.4, 4.3, 5.2, 6.1, 6.2, 6.3,
and 6.4 (Supplementary Figure 1). We subsequently clustered
these 72 putative SPL genes and obtained 22 non-redundant
MsSPL genes, including their CDSs and genomic sequences
in alfalfa (Supplementary Figure 2). These 22 MsSPL genes
were randomly distributed on 7 chromosomal groups and
were designated as MsSPL1–MsSPL22 on the basis of their
chromosomal locations (Figure 1). The molecular weight of these
22 MsSPL proteins ranged from 16.58 kD (MsSPL8) to 130.58 kD
(MsSPL7), and their isoelectric points varied from 5.66 (MsSPL3)
to 9.23 (MsSPL17) (Supplementary Table 2).

Exon/intron and conserved motif analyses showed that MsSPL
genes varied in gene structure and motifs. Ten MsSPL genes
(MsSPL1, 5, 11, 12, 15, 17–20, and 22) had the classical SPL
gene structure, namely, three exons and two introns, while
the remaining genes contained 2 (MsSPL3, 4, 8, 9 and 21),
4 (MsSPL10 and 14), 9 (MsSPL13), 10 (MsSPL6, 7 and 16),
and 11 (MsSPL2) exons (Supplementary Figure 3). Moreover,
we detected three conserved motifs among 22 MsSPL proteins.

Motif I corresponded to the conserved SBP domain, which was
commonly existed in all MsSPL proteins. In particular, MsSPL13
contained two independent SBP domains (Motif I). Motif II, a
type of transmembrane region, was detected in MsSPL2, 6, and
16. Motif III was the conserved ANK domain, which presented in
MsSPL2 and MsSPL16 (Supplementary Figure 4).

Phylogenetic Analyses of the
SQUAMOSA Promoter-Binding
Protein-Like Gene Family
To evaluate the evolutionary relationships of plant SPL genes,
we constructed the phylogenetic tree based on the alignment of
amino acid sequences of 57 SPL proteins. The 57 SPL proteins
included 22 MsSPL proteins as well as SPL proteins from the
representative dicot Arabidopsis (16) and monocot rice (19). In
the phylogenetic tree, the 57 SPL proteins were divided into
ten clades: A (9 members), B (5), C (2), D (6), E (2), F (8),
G (10), H (3), I (10), and J (2) (Figure 2). SPL proteins from
dicotyledonous and monocotyledonous plants were found in
all groups except for clade J, indicating that SPL genes existed
before the divergence of dicots from monocots and then evolved
independently. Moreover, clade J was consisted solely of two
SPL proteins from alfalfa suggesting that MsSPL5 and MsSPL20
were alfalfa-specific SPL genes. These results demonstrate that
SPL genes in alfalfa might have experienced gene duplication and
functional differentiation within the genome (Figure 2).

Furthermore, we constructed another phylogenetic tree of
MsSPL genes based on the alignment of the CDSs of 22 MsSPL
genes followed by multiple sequence alignment via the neighbor-
joining method in MEGA 7.0. The inferred evolutionary
relationships of the 22 MsSPL genes were consistent with the
results of the phylogenetic analysis of the 57 SPL proteins
(Supplementary Figure 3). Taking the results of the gene
structural analysis into additional consideration, and assuming
that SPL genes with similar gene structures and conserved
motifs have similar functions, we hypothesize that the specific
motifs harbored by SPL genes are likely the main reason
for the variations in functions observed among members of
this gene family.

Prediction and Validation of miRNA
Cleavage Sites in MsSPL Genes
Since small RNAs and their targets are evolutionarily conserved
among plant species, we predicted potential MREs in MsSPL
genes using psRNATarget.8 As a result, 13 MsSPL genes were
predicted to be degraded by miR156. Among these predicted
targets, MsSPL14 and MsSPL18 showed one and two mismatches
with the middle portion of miR156a sequence, respectively. Ten
MsSPL genes (MsSPL1, 3, 5, 10–13, 15, 17, and 20) had sequences
consistent with that of miR156a; and the remaining MsSPL19 was
predicted to be degraded by miR156e (Supplementary Table 3).

To verify in vitro that miR156 mediates the cleavage of its
target MsSPL genes, we performed the RLM-5′-RACE assay
modified for use in alfalfa. Total RNA was extracted from a

8http://plantgrn.noble.org/psRNATarget/
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FIGURE 1 | Chromosomal distribution of MsSPL genes with the alfalfa genome. Gray lines in the background indicate the collinear blocks in alfalfa genome. Red
lines highlight the synthetic relationship of MsSPL genes.

mixture of alfalfa tissues, and gene-specific outer and inner
primers were designed for 13 putative miR156-targeted MsSPL
genes (Supplementary Table 3). After sequencing 10 positive
clones obtained by nested PCR amplification, we determined that
the 11 MsSPL genes with perfect matches to miR156 could be
degraded by miR156 and that the cleavage sites were gene specific
(Figure 3). In contrast, we were unable to detect the predicted
miR156 target cleavage fragments in MsSPL14 and MsSPL18,
which had one and two mismatches to miR156, respectively,
suggesting that these two SPL genes are not degraded by miR156.

Temporal and Spatial Expression
Patterns of MsSPL Genes in Alfalfa
To clarify the roles of MsSPL genes in alfalfa growth and
development, we used qRT-PCR to investigate the expression
profiles of these genes in 25 different alfalfa tissues: stems,
heads, and leaves at different developmental stages (seedling,
re-greening, branching, squaring, and flowering stages); roots
at seedling and re-greening stages; neck at the seedling stage;
stem nodes at the branching, squaring and flowering stages;
inflorescences at flowering stages; and seedpods at 0, 3 and 5
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FIGURE 2 | Phylogenetic relationships among SPL genes in alfalfa, Arabidposis, and rice. The phylogenetic tree was constructed using MEGA (Molecular
Evolutionary Genetic Analysis) 7 based on ML (maximum likelihood) method; bootstrap was 1,000 replicates.

d after fertilization (Supplementary Table 4). According to the
qRT-PCR analysis, all MsSPL genes were constitutively expressed
in all 25 tissues with distinct expression patterns (Figure 4).

The expression patterns of these 22 MsSPL genes could be
clustered into three types. In detail, three genes (MsSPL4, 7,
and 14) were particularly highly expressed in one or two tissues,
suggesting their specific roles in these tissues (Figure 4). Eight
genes (MsSPL8, 9, 11, 12, 17, 20, 21, and 21) were highly expressed
in most tissues, and several of them showed consistently high
expression during specific developmental stages. For instance, the
transcript abundances of MsSPL9, 11, and 17 exhibited high levels
at seedling, branching, and squaring stages; while MsSPL8, 12, 20,

21, and 22 exhibited significantly higher transcript abundances
in tissues experiencing active cell proliferation, such as apical
meristem tissue at the branching, squaring, flowering stages and
seedpods at 0, 3, and 5 d after fertilization (Figure 4). The
remaining 11 genes (MsSPL1, 2, 3, 5, 6, 10, 13, 15, 16, 18,
and 19) showed another expression pattern, which was highly
expressed in several tissues, but lowly expressed in most tissues.
Among these genes, MsSPL18 was predominantly expressed in
leaves at different stages; interestingly, all of the genes had their
highest transcription levels in roots at the re-greening stage
(Figure 4). The various expression patterns of the 22 MsSPL
genes suggest that they harbor multiple functions during alfalfa
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FIGURE 3 | miR156 targets a group of MsSPL genes. The red arrows indicate the cleavage sites, and numbers below the arrows show the frequency of clones with
matching 5′RACE product from this site out of total clones confirmed by sequencing.

growth and development. In particular, the expression patterns
of the two alfalfa-specific SPL genes were distinct. Among them,
MsSPL5 was highly expressed in heads at various stages, while
MsSPL20 was predominantly expressed in several tissues with
active cell proliferation, suggesting the extensive function in
alfalfa of the latter.

Expression Profiles of MsSPL Genes in
Response to Abiotic Stress
Abiotic stresses always induce gene expression to protect plant
cells from abiotic injury. To decipher the roles of MsSPL genes in
response to abiotic stresses, we analyzed the expression profiles of
22 MsSPL genes upon NaCl, 4◦C and PEG treatment to simulate
saline, cold, and drought conditions, respectively, as well as ABA
treatment (Supplementary Table 4). All SPL genes except for
MsSPL5–7, 10, 17, 19, and 22 were dramatically up-regulated
(more than three times) under NaCl treatment. Most of them
(except for MsSPL2, 14, and 18) reached their peak transcript
levels at 12 h. Moreover, the transcript abundances of MsSPL1,
13, 14, 20, and 21 under salinity stress were more than 18 times
higher than those in untreated alfalfa (Figure 5A). In regard
to cold stress, 11 genes (MsSPL1, 2, 4, 5, 6, 9, 10, 13, 14, 15,
and 22) were dramatically up-regulated (more than two times),
while four genes (MsSPL7, 19, 20, and 21) were down-regulated.
Three genes (MsSPL2, 6, and 22) reached their peak transcript
levels at 2 h, and six genes (MsSPL1, 4, 9, 13, 14, and 15) had
their maximum expression at 24 h after cold stress treatment

(Figure 5B). Under PEG treatment, MsSPL2, 5, 8, 14, and 21 were
significantly sequentially up-regulated in 24 h, while MsSPL1,
3, 20, and 22 were significantly down-regulated. Additionally,
MsSPL7, 9, 10, and 13 showed their peak transcript levels at 2 h,
after which they decreased sharply; In particular, the expression
level of MsSPL14 was decreased at 2 h and dramatically increased
at 24 h (Figure 5C). Under ABA treatment conditions, most SPL
genes (MsSPL1, 2, 4–6, 8, 9, 11–13, 15–17, 19, and 22) reached
their maximum transcript levels at 2 h and then decreased. In
contrast, two genes (MsSPL10 and 18) showed steadily increased
expression for 12 h after treatment, while two genes (MsSPL20
and 21) were significantly decreased at 2 h and then increased
sharply or slightly (Figure 5D).

In addition, we compared the significant changes of SPL
genes induced by NaCl, PEG, and ABA treatment. We found
that several critical SPL genes (MsSPL2, 8, 13, and 15) were
simultaneously induced by salinity, drought, and ABA. Five
(MsSPL2, 8, 13, 15, and 21), four (MsSPL2, 8, 13, and 15),
and twelve (MsSPL1, 2, 4, 8, 9, 11, 12, 13, 14, 15, 16, and 22)
genes were induced by various combinations of two of these
stresses (Supplementary Figure 5). Moreover, different stresses
induced unique SPL genes. For instance, MsSPL3, 18, and 20
were only induced by salinity; MsSPL7 was only induced by
drought; and MsSPL5, 6, 17, and 19 were only induced by ABA
treatment (Supplementary Figure 5). The significantly different
transcript abundances of MsSPL genes in response to abiotic
stress suggest their vital regulatory roles in the prevention of
abiotic injury in alfalfa.
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FIGURE 4 | The spatiotemporal expression patterns of MsSPL genes. 1–25, respectively, represent various tissues of alfalfa, namely root, stem, neck, leaf, and head
at seedling stage; root, stem, leaf, and head at re-greening stage; stem, stem node, head, and leaf at branching stage; stem, stem node, head, and leaf at squaring
stage; stem, stem node, head, inflorescence, and leaf at flowering stage; seedpods at 0, 3, and 5 days after fertilization. The heatmap was constructed by relative
expression data measured by qRT-PCR.

Response Patterns of MsSPL Genes to
Different Plant Hormones
Plant hormones extensively participate in a variety of plant
growth and developmental processes. Studying the expression
patterns of MsSPL genes under hormone treatments should thus
help elucidate the functions of MsSPL genes. We investigated
the transcript abundances of MsSPL genes in response to GA3,

GR24, IAA, and MeJA treatment (Supplementary Table 4). We
found that 19 (MsSPL1–3, 6–9, 11–21, and 22) and 2 (MsSPL4
and 5) SPL genes were significantly up- and down-regulated,
respectively, in 12 h after treatment with GA3. Specifically, the
transcript abundances of five genes (MsSPL8, 9, 12, 14, and 20)
at 2 h were more than 7 times higher than those in untreated
alfalfa (Figure 6A). As for the GR24 treatment, the transcript
levels of 16 genes (MsSPL2, 4, 6–8, 10–19, and 20) reached their
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FIGURE 5 | Expression of MsSPL genes in response to abiotic stress. Plants
were treated with 0.3M NaCl (A), 4◦C (B), 17% PEG (C), and ABA (D).

peak in 12 h; and the expression of three genes (MsSPL4, 9, and
10) were significantly increased (more than 9 times) after GR24
treatment. Additionally, four genes (MsSPL1, 5, 21, and 22) were
significantly down-regulated at 24 h (Figure 6B). In IAA-treated
alfalfa, transcript abundances of nine genes (MsSPL1, 3–7, 10,
13, and 21) were decreased at 2 h and then steadily increased
to their maximum levels at 24 h; while four genes (MsSPL8, 9,
15, and 19) reached their peak expression at 2 h after treatment.
In addition, the expression levels of MsSPL14, 18, 20, and 22
were significantly decreased after IAA treatment (Figure 6C).
Under MeJA treatment condition, ten genes (MsSPL1, 2, 4, 7,
8, 15–17, 19, and 21) and six genes (MsSPL5, 6, 9, 13, 14, and
20) were dramatically up- and down-regulated (more than two

times). In particular, five genes (MsSPL4, 7, 8, 15, and 21) had
transcript levels four times higher than control, and the transcript
levels of others were slightly changed (Figure 6D). These results
demonstrate that MsSPL genes are involved in the plant hormone
regulatory network that controls alfalfa growth and development.

Overexpression of MsSPL20 Delayed
Flowering Time in Alfalfa
According to the above results from phylogenetic analysis and
expression profiles in various tissues, we hypothesized that
MsSPL20 might be involved in an alfalfa-specific regulation
pathway. Thus MsSPL20 was selected as the target for further
gene functional research. We obtained six clonally transgenic

FIGURE 6 | Expression of MsSPL genes in response to hormones. Plants
were watered with 0.3M GA (A), GR24 (B), IAA (C), and MeJA (D).
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alfalfa plants over-expressing MsSPL20 via Agrobacterium-
mediated transformation. The qRT-PCR analysis showed that
the transcript levels of MsSPL20 in six transgenic alfalfa plants
were 90 (OE1), 47 (OE2), 38 (OE3), 18 (OE4), 15 (OE8), and 58
(OE9) times greater than that in control. Among them, OE1 and
OE9 consistently showed 5–10 days delayed in flowering time
compared with control plants. Furthermore, we measured the
biomass of OE1 and OE9 by clipping them when they were at the
early bloom stage. The results showed that the transgenic plants
exhibited significantly 17–21% increased biomass compared
with control plants. In addition, the forage quality was also
determined and both plants showed no significant differences
(Supplementary Figure 6).

To perform further characterization, OE1, which showed a
more than 90-fold increase in MsSPL20 transcript levels was
propagated using shoot cuttings. These propagated transgenic
plants exhibited significant delays in the flowering time of 7–
10 days (Figures 7A–C). Moreover, we calculated the biomass of
transgenic and control plants by clipping them four times once
they were flowering to simulate the biomass in a harvest season
in a year. The results indicated that the biomass of the transgenic
plants was significantly higher than that of the control plants
by approximately 20%, as was their dry biomass (Figure 7D
and Supplementary Table 4). The biomass data collection time
for control plant was 125 days, which was much shorter than
that for the transgenic lines (157 days). Moreover, we compared
the biomass from each clipping and found that the individual
clipping contributed to 21.3, 22.6, 22.8, and 33.3% increased
biomass, respectively. These results suggest that the increased
biomass mostly results from the longer vegetative growth period.
Unsurprisingly, the forage quality was not significantly different
between control plants and transgenic plants (Supplementary
Table 5). These results strongly demonstrate that MsSPL20
regulates flowering time and forage biomass yield without
affecting forage quality in alfalfa.

MsSPL20 Regulates Flowering Time by
Delaying Floret Development
As the typical transcriptional factor, SPL proteins located in
nucleus and bind to cis-elements (GTAC box) in the promoters
of downstream genes to regulate their transcription (Birkenbihl
et al., 2005). The sub-cellular localization analysis in tobacco
epidermal cells showed that MsSPL20-GFP accumulated only
in nucleus, whereas the GFP alone was present throughout the
cell, indicating that MsSPL20 functions in nucleus (Figure 8A).
The trans-activation activity assays showed that MsSPL20
possessed strong transcriptional activation activity in yeast,
suggesting its potential roles in downstream gene regulation
(Figure 8B). To further elucidate the molecular basis of MsSPL20
in alfalfa flowering time regulation, we conducted RNA-seq
and deeply studied the differentially expressed genes (DEGs)
between control and transgenic plants. OE1, which showed
90 times higher MsSPL20 transcript levels than control plants,
was used for RNA-seq. The comparative transcriptome analysis
revealed that 129 and 342 genes were respectively, up- and
down-regulated in transgenic plants relative to control plants.

FIGURE 7 | Transgenic alfalfa showing delaying flowering time and increased
biomass. (A) The phenotype of control and OE1. (B) MsSPL20 relative
expression levels. (C) Flowering time of control and OE1. (D) Biomass of
control and OE1. ** indicates significant difference at P < 0.01.

Moreover, the change degree of down-regulation genes was
much higher than that of up-regulation genes (Supplementary
Figure 7). GO analysis demonstrated that DEGs were enriched
in terms including developmental process, cellular component
assembly, pollen development, gametophyte development, etc.,
implying that MsSPL20 was involved in floral organ development
(Supplementary Figure 8).

If these DEGs are indeed the direct targets of MsSPL20, their
promoters should contain the conserved GTAC box. In support
of our hypothesis, we scanned the promoters of DEGs and found
that the conserved cis-elements (GTAC box) were existed in
the promoters of almost all of the DEGs (471). Among these
DEGs, 38 were predicted to be involved in floret development
(Supplementary Table 6). Twelve DEGs were selected for
further qRT-PCR analysis, and the results showed that the
transcript levels of the 12 genes were consistent with the RNA-
seq results, indicating the reliability of transcriptome profiles
(Supplementary Figure 9 and Supplementary Table 7). Two
florigen related genes, HD3A (Heading date 3A, Ms.gene51913,
the homolog of FT) and FTIP1 (FT-INTERACTION PROTEIN
1, Ms.gene017959, the essential regulator for florigen transport),
were down-regulated in transgenic plants, suggesting the
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FIGURE 8 | Molecular characterization of MsSPL20. (A) Sub-cellular localization in tobacco epidermal cells. Scale bars, 25 µm. (B) Trans-activation activity assay in
yeast. BD, GAL4 DNA binding domain.

delaying formation and transportation of florigen, which is the
most important signal of floret development in plants (Komiya
et al., 2008; Liu et al., 2012). In addition, several flowering delay
factors were up-regulated in transgenic plants. For instance,
Ms.gene005871 (TEMPRANILLO 1, TEM1) was reported to
repress the production of FT and gibberellins, leading to delaying
in flowering time (Hu et al., 2021); Ms.gene055550 (HASTY-
like Protein 1, HST1) extends the vegetative phase by repressing
the FPIs, also resulting to delaying flowering (Matsoukas et al.,
2013). Overall, these results suggested that MsSPL20 might
regulate alfalfa flowering time by regulating gene involved in
floret development regulation through directly binding to the
promoters of floret development-related factors.

DISCUSSION

Functional Diversity of SQUAMOSA
Promoter-Binding Protein-Like Family
Genes in Plants
As an extensively elucidated gene family, SPL genes are
widespread in all green plants, including algae, mosses,

gymnosperms, and angiosperms (Preston and Hileman, 2013).
More and more studies demonstrated that SPL genes participate
in a broad range of plant biological processes (Chen et al., 2010;
Wei et al., 2018). In Arabidopsis, there are 16 SPL genes which
groups into two subfamilies based on their size and sequence
similarity (Guo et al., 2008). The large group consists of 5
SPL genes (SPL1, SPL6, SPL12, SPL14, and SPL16), whereas,
the remaining 11 SPL are addressed as the small group (Xing
et al., 2010). Except SPL8, SPL genes in small group could be
targeted by miR156; and showed multiply functions in plants,
such as developmental phase transition, shooting branching,
anthocyanin biosynthesis, abiotic stress tolerance, etc. (Gou et al.,
2011; Cui et al., 2015; Zhang et al., 2015). SPL genes in large
group are proved to participate in plant thermotolerance, innate
immunity, architecture regulation, etc. (Padmanabhan et al.,
2013; Chao et al., 2017).

Evidence is increasing that SPL genes are multifunctional in
plant growth and development and showed potential application
for crop genetic modification (Wang and Wang, 2015). In rice,
SPL genes associated with tiller/branching number (OsSPL7 and
OsSPL14), plant height (OsSPL7), grain number (OsSPL2 and
OsSPL17), grain size (OsSPL13 and OsSPL16), heading date, and
grain quality (OsSPL16) have been identified; and their molecular
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mechanisms have been extensively illustrated (Jiao et al., 2010;
Miura et al., 2010; Wang S. et al., 2012; Si et al., 2016; Yue
et al., 2017; Dai et al., 2018). In maize, SPL genes are proved to
regulate flowering time (ZmSPL25), plant/ear height and tiller
(UB2 and UB3), leaf angle (LG1), tassel and ear architecture
(UB3 and LG1), and grain size and shape (TGA1) (Chuck
et al., 2014; Du et al., 2017; Wei et al., 2018). Additionally,
SPL genes also play vital roles in the regulation of plant biotic
and abiotic stress tolerance. The Nicotiana SPL gene NbSPL6 is
essential for N-mediated resistance to tobacco mosaic virus, and
its Arabidopsis ortholog, AtSPL6, is required for TIR-NB-LRR-
mediated resistance against Pseudomonas syringae carrying the
avrRps4 effector (Padmanabhan et al., 2013).

In our study, we identified 22 MsSPL genes in alfalfa genome
and conducted phylogenetic analysis of SPL protein to investigate
the evolutionary relationships of SPL genes (Figures 1, 2).
Interestingly, we found that each AtSPL gene had one or three
orthologous genes in alfalfa, as well as two alfalfa-specific SPL
genes (MsSPL5 and MsSPL20), indicating the gene duplication
in this species. Combined with the results from RLM-5′-RACE,
we noticed possible gene functional differentiation between
orthologous genes. Evidence came from the different post-
transcriptional regulation between SPL3/SPL4 and MsSPL8/9.
AtSPL3, and AtSPL4 are targeted by miR156, whereas their
orthologous genes in alfalfa (MsSPL8 and MsSPL9) cannot be
targeted by miR156 (Figure 3). Previous researches indicated
that SPL genes in the same clade had similar functions. For
instance, AtSPL13, OsSPL16, and MsSPL12 in clade F were proved
to participate in flowering time regulation in different plants
(Martin et al., 2010; Wang S. et al., 2012; Gao et al., 2018).
Nevertheless, we cannot always predict the function of an SPL
gene based on its orthologous gene, as neo-functionalization
is widespread during speciation. For example, AtSPL3 in clade
A primarily promotes floral induction and/or floral meristem
identity; however, its ortholog in rice, OsSPL13, positively
regulates grain size by influencing cell proliferation (Cardon
et al., 1999; Si et al., 2016). Given the diverse functions of the
SPL genes in plants, the biological function of SPL genes in alfalfa
should thus be explored individually.

Furthermore, the alfalfa-specific SPL gene, MsSPL20, was
deeply functional characterized. Transgenic alfalfa plants
over-expressing MsSPL20 showed delayed flowering time
and increased biomass without affecting forage quality
(Supplementary Figure 6 and Supplementary Table 5).
Further researches showed that the majority effect on biomass
was caused by the extended vegetative growth period (Figure 7).
The subsequent transcriptome analysis illustrated that MsSPL20
delayed flowering time by regulating the expression of genes
involved in floret development, such as HD3A, FTIP1, TEM1,
and HST1. Among these four candidate genes, the expression
of HD3A and FTIP1 were down-regulated; while, TEM1 and
HST1 were up-regulated in transgenic plants (Supplementary
Figure 9). Previous studies have shown that the first two genes
positively regulate flowering time, and the regulations of the latter
two are negative (Komiya et al., 2008; Liu et al., 2012; Matsoukas
et al., 2013; Hu et al., 2021). Since several GTAC-box exists in the
promoters of these four genes, we inferred that MsSPL20 could

directly bind to these promoters to regulate flowering time in
alfalfa, which should be validated in further study.

Potential Application of MsSPL Genes in
Alfalfa Molecular Breeding
Over the past two decades, candidate gene-related markers for
molecular marker-assisted breeding have been rapidly developed
in major crops, and the concept of breeding by design has
gradually become reality (Peleman and van der Voort, 2003; Xu
et al., 2021). The rice cultivar Zhongke 804, which possesses
several favorable alleles (e.g., IPA4, Qsw5, GS3, Ghd8, TAC1, SSII-
1, DEP1, and SBE1) promoting the ideal plant architecture, high
yield, superior quality, and strong resistance to rice blast disease,
has recently become popular in northern China (Zeng et al.,
2017; Li et al., 2019). This successful application of molecular-
designed breeding in rice also demonstrates that rational design
is a powerful strategy for meeting the challenges of future crop
breeding, particularly the pyramiding of multiple complex traits.
Given that alfalfa is the most important and widely planted
forage crop in the world, the exploration of candidate genes for
molecular marker-assisted breeding is urgently needed to meet
the increased demands associated with this crop.

During the past few years, SPL genes have been shown
to influence forage biomass by controlling shoot branching,
delaying flowering time, and increasing tolerance to abiotic
stresses. The transgenic alfalfa over-expressing miR156 exhibits
elevated biomass and improved drought tolerance resulting from
the down-regulation of three SPL genes, indicating that miR156-
SPL module is a promising tool for alfalfa improvement (Aung
et al., 2015). Transgenic alfalfa silencing MsSPL13 displays more
lateral branches and delayed flowering time (Gao et al., 2018).
Additionally, Over-expression of MsSPL8 inhibits branching by
suppressing axillary bud formation, and down-regulation of
MsSPL8 has been found to enhance salt and drought tolerance
in alfalfa (Gou et al., 2018). These studies have revealed the vital
roles of known SPL genes in forage biomass development and
stress tolerance.

In this study, the expression profiling of MsSPL genes,
including their temporal and spatial expression patterns and
response to abiotic stresses and various phytohormones,
provided a referable basis for MsSPL gene functional research in
alfalfa (Figures 4–6). For instance, the expression of MsSPL12
(SPL13 described by Gao et al., 2018) was significantly elevated
after treatment with GR24, an important hormone in plant
branching, and silencing of this gene resulted in an increased
number of lateral branches. Moreover, the expression level of
MsSPL22 (SPL8 by Gou et al., 2018) was significantly changed
under abiotic stress. Functional research on this gene suggested
that the down-regulation of SPL8 expression improved abiotic
stress tolerance in alfalfa. The transcript abundances of the
previously reported genes in our study explained the observed
phenotypes of transgenic plants to some extent; therefore, we can
infer the functions of MsSPL genes in alfalfa from the expression
profiling we recorded.

To verify the hypothesis, MsSPL20 (an alfalfa-specific SPL
gene), which is predominantly expressed predominantly in
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several tissues with active cell proliferation, was selected as a
candidate gene for functional analysis. As expected, transgenic
alfalfa over-expressing MsSPL20 altered flowering time and
biomass (Figure 7). Nevertheless, some MsSPL genes with
markedly changed transcript abundances in our study remain to
be investigated. For example, the expression levels of MsSPL1,
6, 7, 11, 12, 13, 15, and 17 were sharply increased under NaCl
treatment, suggesting that these genes might be involved in alfalfa
salinity tolerance regulation (Figure 5). Expression profiling
of MsSPL genes in response to abiotic stresses is an effective
tool for the application of these genes to alfalfa abiotic stresses
tolerance breeding. In addition, the transcript abundances of
MsSPL6, 10, and 13, which peaked at the branching stage, were
significantly changed under GA3 and GR24 treatments could be
investigated as the candidate genes of alfalfa branching regulation
(Figures 4, 6). Overall, the expression profiling of MsSPL genes in
alfalfa provided the basic perspective on the biological functions
of MsSPL genes; and has supplied several candidate SPL genes for
alfalfa high-yield and abiotic stresses tolerance breeding.

CONCLUSION

In conclusion, we charactered 22 MsSPL genes in alfalfa genome
and found that 11 MsSPL genes with perfect matches to
miRNA response elements (MREs) could be degraded by miR156.
Meanwhile, we investigated the temporal and spatial expression
patterns of MsSPL genes and their expression profiling in
response to multiple treatments. More importantly, a candidate
gene, MsSPL20, was proved to delay flowering time and increase
biomass by regulating genes involved in floret development. This
study provides valuable information for future research of SPL
genes in alfalfa and supplies candidate genes for alfalfa molecular-
assisted breeding utilization.
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