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Fruit color is one of the most important external qualities of pear (Pyrus pyrifolia) fruits.
However, the mechanisms that control russet skin coloration in pear have not been
well characterized. Here, we explored the molecular mechanisms that determine the
russet skin trait in pear using the F1 population derived from a cross between russet
skin (‘Niitaka’) and non-russet skin (‘Dangshansu’) cultivars. Pigment measurements
indicated that the lignin content in the skin of the russet pear fruits was greater than that
in the non-russet pear skin. Genetic analysis revealed that the phenotype of the russet
skin pear is associated with an allele of the PpoRus gene. Using bulked segregant analysis
combined with the genome sequencing (BSA-seq), we identified two simple sequence
repeat (SSR) marker loci linked with the russet-colored skin trait in pear. Linkage analysis
showed that the PpRus locus maps to the scaffold NW_008988489.1: 53297-211921
on chromosome 8 in the pear genome. In the mapped region, the expression level
of LOC103929640 was significantly increased in the russet skin pear and showed a
correlation with the increase of lignin content during the ripening period. Genotyping
results demonstrated that LOC703929640 encoding the transcription factor MYB36 is
the causal gene for the russet skin trait in pear. Particularly, a W-box insertion at the
PpMYB36 promoter of russet skin pears is essential for PoMYB36-mediated regulation
of lignin accumulation and russet coloration in pear. Overall, these results show that
PpMYB36 is involved in the regulation of russet skin trait in pear.

Keywords: Pyrus pyrifolia, russet skin, lignin biosynthesis, SSR markers, PopMYB36

INTRODUCTION

Pear (Pyrus pyrifolia) is highly valued as a cultivated fruit crop around the world. Fruit color is one
of the most vital external qualities of pear that determines market acceptance by consumers (Ma
etal., 2018a). The color of pear fruit skin can be divided into two types: a ground color that includes
green and yellow, and a cover color with russet (red-brown) and red colors (Heng et al., 2016).
Different pear cultivars have distinct coloration, which can result from genetic or environmental
factors (Heng et al., 2014). Previous studies on pear coloration have mainly explored the red skin
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which depends on anthocyanin biosynthesis (Wang et al., 2017;
Liu et al., 2019). In addition, the russet skin is an important trait
that protects pear fruits from environmental stresses caused by
diseases, insects, and unfavorable weather, as well as shipping
(Inoue et al., 2006). Therefore, exploring and using the genetic
resources for russet skin is critical for progress in pear breeding.

Transcriptomic and proteomic approaches have been used to
explore genes responsible for russet skin color in pears (Legay
et al., 2015; Shi et al., 2019a). In particular, the russet skin is
related to the biosynthesis of lignin, and is regulated in vivo by
many structural and regulatory genes (Wang Y. Z. et al., 2016; Shi
et al., 2019b). The structural genes that are directly involved in
the biosynthesis of lignins encode phenylalanine ammonia-lyase
(PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA
ligase (4CL), shikimate/quinate hydroxycinnamoyl transferase
(HCT), coumarate 3-hydroxylase (C3H), cinnamoyl CoA
reductase (CCR), cinnamyl alcohol dehydrogenase (CAD),
caffeoyl CoA O-methyltransferase (CCoAOMT), and caffeic
acid/5-hydroxyferulic acid O-methyltransferase (COMT) (Lam
et al, 2017; Liu et al., 2018). Transcription factors in the
R2R3-MYB family regulate the lignin biosynthesis pathway in
plants (Ohtani and Demura, 2019; Geng et al., 2020). AtMYBs
specifically activate lignin biosynthesis genes, which control
defense-induced lignification and basal immunity in Arabidopsis
thaliana (Chezem et al,, 2017). CsMYBs were also found to
regulate fruit juice sac lignification through fine-tuning of the
expression of Cs4CL in orange (Citrus sinensis) (Jia et al., 2018).
However, the contribution of MYB family members to russet
skin coloration in pear is unclear.

In many horticultural fruit species, marker-assisted selection
(MAS) for major agricultural traits has been developed. For
example, molecular markers associated with pear scab resistance,
harvest time, and dwarf tree architecture have been developed
and applied to pear breeding programs (Terakami et al., 2006;
Yamamoto et al., 2014; Wang C. H. et al., 2016). In our previous
study, the gene that determines fruit russet skin was localized
to linkage group 8 (LG8) of the pear consensus genetic map
using simple sequence repeat (SSR) markers (Song et al., 2010).
However, no candidate genes have been identified that control
the pear russet skin trait on LG8. Rapid advances in DNA
sequencing of the pear genome and pear haploid cell genotyping
technology have provided invaluable new resources for genetics
and biological research (Wu et al, 2013; Shi et al., 2019c).
Recently, bulked segregant analysis combined with genome
sequencing, known as BSA-seq, has proven successful for rapidly
mapping genes in several vegetable and fruit species (Huo et al.,
2016; Dougherty et al., 2018). Using BSA-seq, the ABAI/ZEP
gene for thermal tolerance was efficiently identified in lettuce
(Lactuca sativa), four major genome-wide quantitative trait loci
responsible for fruit acidity were mapped on chromosomes 8
and 16 of apple (Malus domestica), and CcPRR2 (PSEUDO-
RESPONSE REGULATOR 2) was identified as a candidate gene
for the control of fruit color in pepper (Capsicum chinense) (Huo
et al., 2016; Jia et al., 2018; Lee et al., 2020).

In the present study, we aimed to elucidate the molecular
mechanisms that determine the russet skin trait in pear. SSR
markers were identified and mapped in the pear genome based

on gene location using BSA-seq analysis. This research enhances
our understanding of the molecular mechanisms underpinning
russet skin coloration in pear.

MATERIALS AND METHODS

Plant Materials

An F; population of 150 individuals was derived from crossing
‘Niitaka® (NTK, russet skin pear cultivar) with ‘Dangshansu’
(DSS, non-russet skin pear cultivar). The trees were 17 years old
and were planted at a density of 2.5 x 0.5 m at the Fruit Research
Station of Qingdao Agricultural University (Laiyang, Shandong
Province, China). Ripening fruit samples were collected at 25, 50,
75, 100, and 125 days after full bloom (DAFB) for lignin and
chlorophyll measurements and gene expression analysis. Each
sample consisted of 12 fruits, and three biological replicates were
harvested per time point. Young leaf samples were collected from
each tree in the spring. Fruit peel was collected with a peeler,
immediately frozen in liquid nitrogen, and stored at —80°C prior
to its use in the experiments.

Mature ‘Korla’ pear fruits were used for infection of transgenic
analysis according to Bai et al. (2019). Pear calli were induced
from the flesh of young ‘Clapp’s Favorite’ (P. communis) fruits
on NN69 (NITSCH and NITSCH 1969) solid medium. The
first-generation calli were subcultured several times, and the
rapidly growing soft calli were screened and maintained on
Murashige-Skoog (MS) solid medium in the dark according
to the protocol of Bai et al. (2019). Nicotiana benthamiana
plants were grown in vitro at 25°C on solid MS medium
(Murashige and Skoog, 1962).

Chlorophyll and Lignin Measurements
Measurement of total chlorophyll content was performed as
described previously (Lichtenthaler and Wellburn, 1983). In
brief, pear skin tissue (0.5 g) was homogenized in 5 mL
of 80% acetone and then left in the dark for 24 h. After
centrifugation for 20 min at 13,000 x g, the absorbance of the
supernatant was measured at 663 and 645 nm using a UV-2550
ultraviolet spectrophotometer (Shimadzu Corp., Kyoto, Japan).
The chlorophyll concentration was calculated according to the
protocol of Ma et al. (2018a). Total lignin was extracted from
pear skin using the Lignin Content Determination Kit (Geruisi,
Suzhou, Jiangsu Province, China). Three independent biological
replicates were performed for each experiment.

DNA Extraction and BSA-Seq

Leaf tissues (0.5 g each) of F; plants with extreme phenotypic
traits (russet or non-russet fruit skin) were ground to a
powder in liquid nitrogen. DNA was isolated using the
cetyltrimethylammonium bromide (CTAB) method (Ma et al,
2018a). DNA quality and concentration were assessed by
electrophoresis on a 1% (w/v) agarose gel and an ultra-
micro spectrophotometer (Thermo Fisher, Wilmington, DE,
United States), respectively. A total of 50 individual plants,
25 with russet skin and 25 with non-russet skin, were chosen
from the NTK x DSS F; population for BSA-seq analysis.
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Two pools of genomic DNA from plants with the two extreme
fruit skin phenotypic coloration traits were used to construct
the segregant bulks. Each parental or bulked DNA sample was
sequenced to > 30 x genome size depth using a paired-end 150
base strategy (Illumina x 10, Illumina)." After quality filtering,
clean reads were mapped to the pear genome® using Burrows-
Wheeler alignment software (Li and Durbin, 2009). SAMtools
was used to obtain the read depth of the genome (Li et al,
2009). A modified G’ value method was used for the statistical
analysis of allelic variations between the two bulks (Magwene
et al, 2011). Venn diagrams of variants identified in different
samples were constructed according to Imerovski et al. (2019).
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was used to identify biological processes and
functions enriched for genes with variants (Xu et al., 2021).

Simple Sequence Repeat Marker

Detection

Based on the BSA-seq results, SSRs were screened using the SSRIT
website.” Primers for SSR markers were designed with Primer
premier 5.0 (PREMIER Biosoft International, Inc., Palo Alto,
CA, United States) (Supplementary Table 3). Polymerase chain
reaction (PCR) amplification assays were performed in 20 pL
volumes containing 60 ng of genomic DNA, 10 pL 2 x Taq
Plus Master Mix II (Vazyme, Nanjing, Jiangsu Province, China),
and 0.25 M SSR primer. Reactions were subjected to an initial
denaturation at 95°C for 5 min, with 35 cycles of 94°C for 30 s,
58°C for 30 s, and 72°C for 60 s followed by a final extension
step at 72°C for 10 min. Amplifications were performed in
a T100™ Thermal Cycler (Bio-Rad Laboratories, Hercules,
CA, United States). The amplified products were separated by
electrophoresis on 3.5% (w/v) agarose gels.

Linkage Map Construction

The segregation of SSR marker loci associated with the russet skin
phenotype in pear were analyzed in the 150 F; offspring of the
NTK x DSS cross. Genetic distances between each of the marker
loci and the russet skin locus were calculated. JoinMap 4.0* with
the Kosambi mapping function was used for linkage analysis.

Quantitative Real-Time PCR Analysis

Total RNA was extracted from pear tissues as described
previously (Ma et al., 2018b). First-strand cDNA was synthesized
using the PrimeScriptTM RT reagent kit (Takara, Dalian,
Liaoning Province, China). LightCycler® 480 SYBR Green Master
(Roche, Mannheim, Germany) was used for the qRT-PCR
assays with the LightCycler® 480 II system (Roche, Rotkreuz,
Switzerland). The Actin gene (GenBank: AB190176) was used
as the internal control for gene expression normalization. Gene-
specific primers were designed using Primer 5 (Supplementary
Table 5). Data were analyzed using the 2722CT method
(Livak and Schmittgen, 2001).

Uhttps://www.illumina.com/
Zhttps://www.ncbi.nlm.nih.gov/assembly/GCF_000315295.1/
3https://archive.gramene.org/db/markers/ssrtool
“https://joinmap.software.informer.com/4.0/

PpMYB36 Genomic Sequence Cloning

The names and sequences of primers used for amplification of
the PpMYB36 genomic sequence are given in Supplementary
Table 5. DNA fragments were amplified using high-fidelity DNA
polymerase (Takara) using reaction conditions recommended
by the manufacturer. The PCR products were purified and
cloned into the PMD 19-T vector (Takara). Nucleotide sequences
of 10 independent clones of each fragment per sample were
determined. BLAST analysis of the amino acid sequence
of PpMYB36 was performed in the Arabidopsis information
resource,” and a phylogenetic tree was constructed using MEGA
5.2 (Tamura et al, 2011). Promoter sequence analysis was
performed using the PlantCARE online database.®

PpMYB36 Subcellular Localization

To determine the subcellular localization of the PpMYB36
promoter, the PpMYB36 coding region without the stop
codon was subcloned into the pMDC83 vector to generate
a 358:PpMYB36-GFP fusion plasmid. The plasmid was then
introduced into Agrobacterium tumefaciens strain GV3101. The
leaves of 5-week-old N. benthamiana plants were infiltrated with
GV3101 harboring 358:PpMYB36-GFP or mCherry (control).
Subcellular localization was observed with a laser confocal
microscope (x40) (FV10-ASW, Olympus, Tokyo, Japan) 3 days
after transformation (Zhang et al., 2019).

Vector Construction and Transformation
The coding sequence of PpMYB36 was cloned and ligated into
the pBII21 vector in the sense and anti-sense directions to
generate 35S:PpMYB36 and 35S:anti-PpMYB36, respectively.
The primers used are given in Supplementary Table 6.
The 35S:PpMYB36 and 35S:anti-PpMYB36 plasmids were
transformed separately into A. tumefaciens strain EHA105, and
the plasmid-bearing strains were then infiltrated into fruit
skin using a needleless syringe. The agro-infiltrated samples
were incubated overnight in the dark at room temperature,
then exposed to white light (540 pwmol-m~2-s71) with a 16 h
photoperiod at 25°C in a growth chamber as previously described
(Ma et al., 2019).

PpMYB36 Promoter Activity Assay

B-Glucuronidase (GUS) and luciferase (LUC) assays were
performed as previously described (Zhao et al, 2016).
A. tumefaciens strain GV3101 cultures harboring the PpMYB36
promoter from russet skin pear (ProR) and non-russet skin pear
(ProNR) together with the Super empty vector (pCAMBIA1300)
were co-infiltrated into pear calli. Super:LUC was added as
an internal control. GUS and LUC activities were quantified
after 3 days, and the GUS/LUC ratio was used for the final
quantification of the relative GUS activity. To further analyze
the relative activities of the different promoters on PpMYB36
expression, ProR:PpMYB36 and ProNR:PpMYB36 were
cloned into pBII21 to replace 35S:GUS. A. tumefaciens

Shttps://www.arabidopsis.org/
Chttp://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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FIGURE 1 | Changes in skin color and pigment contents in Fy plants from the cross between ‘Niitaka’ (russet skin pear cultivar, NTK) and ‘Dangshansu’ (non-russet
skin pear cultivar, DSS). (A) Color development in pear skin of F1 progeny from 25 to 125 days after full bloom. (B) Chlorophyll and (C) lignin contents in pear skin of
F4 progeny from 25 to 125 days after full bloom. NR: non-russet skin fruits; R: russet skin fruits. Different lowercase letters above bars mean significant differences
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GV3101 harboring ProR::PpMYB36 and ProNR::PpMYB36 were
transiently transformed into pear skin.

Statistical Analysis

All experiments were repeated three times. SPSS 22.0 (IBM Corp.,
Armonk, NY, United States) was used to conduct an analysis
of variance (ANOVA) followed by Fisher’s least significant
difference or Student’s t-test analysis. Statistically significant
differences were tested by Tukey’s post hoc tests (p < 0.05).

RESULTS

Phenotypic Evaluation and Color
Development in Fruit Skins of F1 Pear
Plants

Pear fruits expressing the russet and non-russet skin phenotypes
segregated in the F; population obtained from the NTK x DSS
cross. The russet skin fruits gradually turned russet in color after
full bloom, whereas the non-russet skin fruits did not change
color (Figure 1A). Among the 150 F; progeny, there were 78
russet and 72 non-russet skin individuals. Based on a chi-square
test (x2 = 0.24), the segregation of the phenotypes fitted a 1:1
ratio (p > 0.05), indicating the pattern of genetic inheritance of
this quality trait.

Furthermore, the lignin and chlorophyll contents in the
skins of the two types of fruits from the F; plants (russet and
non-russet) after full bloom were measured. The lignin contents

in the russet skin fruits increased and were significantly higher
than those in the non-russet skin fruits (Figure 1B). At 75 DAFB,
the lignin content in the russet skin fruits was 0.24 mg-g~ !, which
was approximately 1.20-fold higher than that in the non-russet
skin fruits. In addition, mRNA levels of nine structural genes
involved in lignin biosynthesis, PpPAL, PpC4H, Pp4CL, PpCCR,
PpCAD, PpbHCT, PpC3H, PpCCoAOMT, and PpCOMT, were
basically higher in the russet skin fruits than in the non-russet
skin fruits during the ripening period (Supplementary Figure 1).
However, the chlorophyll contents did not significantly differ
between the russet- and non-russet skin fruits (Figure 1C). These
results suggest that the enhanced russet pigmentation in pear skin
can be attributed to lignin accumulation.

Locating the Major Scaffolds to Linkage
Groups Using BSA-Seq Analysis

After trimming and adapter removal, 352,649,438 paired-end
clean reads from Illumina high-throughput sequencing were
mapped to the pear genome (Supplementary Table 1). Small
variant calling for the datasets and subsequent variant filtering
generated 3, 071,265, 3,591,714, 4,337,289, and 4,163,476 variants
(SNPs and Indels) for DSS, NTK, the non-russet skin fruit bulk
(B1), and the russet skin fruit bulk (B2), respectively, that were
uniformly distributed throughout the genome (Supplementary
Table 2). G’ value association algorithms mapped the locus
to the NW_008988425.1 and NW_008988489.1 scaffolds
(Figure 2A), both of which are located on pear chromosome
8. Venn diagrams of all variants in the skin samples of
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the B1 vs. B2 and DSS vs. NTK comparisons are shown in
Figure 2B. Sixty-six variant genes in the intersection of the
Venn diagram in NW_008988425.1 and NW_008988489.1 were
also identified (Figure 2C). The significantly enriched KEGG
pathways were related to protein processing in the endoplasmic
reticulum, glucosinolate biosynthesis, and plant-pathogen
interaction (Figure 2D).

Simple Sequence Repeat Markers and
Genetic Linkage Map of the PpRus

Locus

On the basis of the BSA-seq results, approximately 50 SSR
primer pairs designed from sequences of NW_008988425.1 and
NW_008988489.1 were analyzed (Supplementary Table 3). By
screening these primer pairs on the F; progeny (150 plants)
from the NTK x DSS cross, two SSR markers (PpSSRal9
and PpSSRa60) were found to be linked to the PpRus locus.
The amplification profiles of PpSSRal9 and PpSSRa60 are
shown in Figure 3A. Linkage analysis revealed that the

PpRus locus is flanked by the PpSSRal9 and PpSSRa60 loci,
both of which were the nearest marker loci to the PpRus
locus, with genetic distances of 8.3 and 15.5 cM, respectively
(Figure 3B). Both of these marker loci flanking PpRus were
located on the same scaffold (NW_008988489.1), which
means that PpRus maps to scaffold NW_008988489.1 (53297-
211921) in the pear genome (Figure 3C). There were eight
genes  (LOCI03929635, LOC103929636, LOCI103929637,
LOC103929638, LOC103929640, LOC103929641,
LOCI103929642, and LOC103929643) among the 66 variant
genes (Figure 2C) identified within the region between the
marker loci PpSSRal9 and PpSSRa60 (Figure 3D).

Expression Patterns of the Candidate
Genes for Russet Skin Color in Pear

Fruits

To determine whether the predicted genes are involved in
the trait differences between russet and non-russet skinned
fruits, we quantified the expression of the eight candidate
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FIGURE 3 | Simple sequence repeat (SSR) markers and genetic linkage
mapping of the PpRus locus. (A) Two SSR markers co-segregate with PpRus.
M: DNA size marker DL2000; B1: non-russet skin fruit bulk; B2: russet skin
fruit bulk; 1-10: non-russet skin individuals; 11-20: russet skin individuals. The
polymorphic DNA fragments are indicated by arrows. (B) Genetic linkage map
around the PpRus locus created from a segregating F1 progeny population of
150 plants from the cross between ‘Niitaka’ (russet skin pear cultivar) and
‘Dangshansu’ (non-russet skin pear cultivar). (C) The physical positions of
SSR marker loci linked to the PpRus locus in the pear genome. (D) The eight
predicted genes within the region flanked by the two marker loci that are the
most tightly linked to PpRus.

genes (Figure 3D) by qRT-PCR. The overall trends of gene
transcription in the russet skin fruits showed that the genes were
up-regulated (Figure 4). The LOCI103929635, LOC103929636,
LOC103929637, LOC103929638, and LOCI103929642 transcript
levels in the russet skin fruits reached peak levels at 50
DAFB, and were 1. 25-, 47. 1-, 1. 16-, and 1.43-fold higher,
respectively, compared to the genes in the non-russet skin fruits.
Additionally, the expression of LOC103929640, LOC103929641,
and LOC103929643 reached their highest levels at 75 DAFB,
and were higher by 1. 39-, 1. 84-, and 1.31-fold, respectively,
in the russet skin fruits compared to the non-russet skin
fruits. Interestingly, the LOC103929640 transcript levels followed
almost the same trend as the lignin contents in the russet- and
non-russet fruit skins (Figures 1C, 4).

LOC103929640 Is Orthologous to the
AtMYB36 Transcription Factor From
Arabidopsis thaliana

The coding sequences of LOC103929640 were cloned from both
russet and non-russet skin pears. There were no differences in
the amino acid sequences of the LOC103929640 proteins between
the two different fruit types (Figure 5A). To further analyze

the function of LOC103929640, we performed BLAST analysis
using the amino acid sequence of LOC103929640 as a search
query. The result showed that LOC103929640 belongs to a MYB
domain-containing protein family. Moreover, to determine the
similarity and relationship of the LOC103929640 sequence to the
MYBs of Arabidopsis, we constructed a phylogenetic tree based
on an alignment of the amino acid sequences of 25 AtMYBs.
The result indicated that LOC103929640 is most closely related
to AtMYB36 (Figure 5B). Therefore, we named LOC103929640
PpMYB36. In addition, to determine the subcellular location of
PpMYB36, we transiently expressed PpMYB36 fused to green
fluorescence protein (GFP) in N. benthamiana leaf cells and
observed that the PpMYB36-GFP fusion protein localized to the
nucleus (Figure 5C).

Phenotypes of
PpMYB36-Overexpressing and

RNAIi-Silenced Pear Fruit Skins

To investigate the function of PpMYB36 in the regulation of
russet fruit skin coloration in pear, the constructs 35S::PpMYB36
and 35S:anti-PpMYB36 were introduced into pear skins by
agroinfiltration. Fruits infiltrated with 35S::PpMYB36 displayed
enhanced russet pigmentation around the injection sites, while
35S8::GUS (control) and 35S8::anti-PpMYB36 fruits basically did
not change color (Figure 6A). The PpMYB36 transcription level
and lignin content in pear skin expressing with 35S:PpMYB36
was significantly higher than in the control and skin infiltrated
with 35S::anti-PpMYB36 (Figures 6B,C). Furthermore, the
expression of nine structural genes, PbPAL, PbC4H, Pb4CL,
PbCCR, PbCAD, PbHCT, PbC3H, PbCCoAOMT, and PbCOMT,
that are involved in lignin biosynthesis, showed significantly
higher levels in pear skin infiltrated with 35S::PpMYB36
compared to the control and 35S::anti-PpMYB36 infiltrated skins
at 6 and 12 days after treatment (Supplementary Figure 2). These
results indicate that PpMYB36 is responsible for the increased
accumulation of lignin and russet coloration in pear skin.

Cloning and Activity Analysis of the
Promoter Region of PoMYB36

We characterized the PpMYB36 upstream regions in order to
determine whether the sequence polymorphisms could possibly
explain the different coloration patterns in the skins of the
two types of pear. Genomic DNA fragments encompassing
approximately 1.8 kb of the promoter region were isolated from
both russet and non-russet skin pears. We found a W-box
element (—904 bp) insertion in the promoter of PpMYB36 in
russet skin pears but not in the PpMYB36 promoter in non-
russet skin pears (Figure 7A). To evaluate the relationship
between the different PpMYB36 promoter sequences and gene
expression levels in russet skin and non-russet skin fruits, we
first performed a dual-LUC reporter assay. ProR and ProNR
were cloned into the corresponding sites of pBI121. LUC under
the control of the Super promoter was the internal control
for infiltration efficiency. Three days after transforming the
genes into callus, the GUS and LUC activities were detected,
and the GUS/LUC ratio of ProR was significantly higher

Frontiers in Plant Science | www.frontiersin.org

November 2021 | Volume 12 | Article 776816


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Ma et al.

Russet-Skinned Pear Gene PoMYB36

204 8004

EINR  10C103929635
R a3
600

400

200

LOC103929638

Relative mRNA level

50
Days after full bloom (d)

multiple range tests (p < 0.05).

IhOC103929636

LOC103929643

FIGURE 4 | Relative expression levels of LOC7103929635, LOC103929636, LOC103929637, LOC103929638, LOC103929640, LOC103929641, LOC103929642,
and LOC103929643 in fruit skins of Fy progeny from the cross between ‘Niitaka’ (russet skin pear cultivar, NTK) and ‘Dangshansu’ (non-russet skin pear cultivar,
DSS). NR: non-russet skin fruits; R: russet skin fruits. Different lowercase letters above bars mean significant differences between NR and R groups by Tukey’s

LOC103929637

ab 2
abc

50 75 100

LOC103929641
a

75 100 125

than that of ProNR (Figure 7B). To test the function of
the PpMYB36 promoter, we constructed ProR::PpMYB36 and
ProNR::PpMYB36, which were then transiently expressed in
pear skin. Fruits infiltrated with ProR::PpMYB36 displayed
enhanced russet coloration compared with fruits infiltrated
with ProNR::PpMYB36 (Figure 7C). Additionally, PpMYB36
expression and lignin content, which were driven by ProR, were
significantly higher than when driven by ProNR (Figures 7D,E).
These results suggest that transcription of PpMYB36 and lignin
accumulation in the russet skin pear are influenced by the
promoter sequence.

DISCUSSION

Russet skin is a vital trait affecting both fruit quality
and stress tolerance in pear. Although several studies on
russet pear have enabled a better comprehension of the
mechanical causes responsible for this phenomenon (Heng
et al, 2016; Shi et al., 2019b), the genetic and molecular
mechanisms underpinning russet skin coloration have not been
thoroughly investigated.

Genetic Mapping of the PpRus Locus
That Determines the Russet Skin Trait in

Pear

In this study, the field phenotypes determined by visual
observation of the NTK x DSS hybrids during the ripening
period showed that the segregation of russet and non-russet skin
fruits fitted the hypothesis of a single major gene controlling
the trait. Previously, we used 121 F; pear trees from the
cross of ‘Whangkeumbae’ x DSS for marker screening and
PpRus mapping; the gene locus that determines the fruit russet
skin trait was localized to LG8 in pear (Song et al, 2010).
Here, using 150 F; pear trees from the NTK x DSS cross,
we found that the PpRus locus was located in two scaffolds,
NW_008988425.1 and NW_008988489.1 on chromosome 8 of
the pear genome (Figure 2A). These results further suggest that
the locus associated with the russet skin trait is located on
chromosome 8 in pear. Furthermore, pear cultivar breeding is
a lengthy process, largely because the trees have long juvenile
stages. The MAS approach would improve the efficiency of pear
breeding (Kumar et al., 2019; Fiol et al.,, 2021). The mapped
region of the pear genome containing PpRus, which contains
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two PpRus-linked SSR marker loci, is useful for future pear
breeding programs.

Fine Mapping of the PpRus Locus and
Identification of a Candidate Gene for
the Pear Russet Skin Trait

Genes involved in the formation of fruit russet skin in pear
are clustered into two groups: biosynthesis genes and stress-
responsive genes (Legay et al, 2016). No candidate genes
have been identified that control the russet skin trait on pear
chromosome 8. Fine mapping of the PpRus locus is critical to the
identification of such candidate genes. By identifying marker loci
that are tightly linked to and that flank a desired gene locus, the
position of the gene can be narrowed down to a small region in
the chromosome or contig. Using this strategy, some candidates
for the pear PcDw gene have been identified from the most
probable region (Wang et al., 2011; Wang C. H. et al., 2016).
In the present study, we predicted eight genes as candidates
for PpRus in the region between PpSSRal9 and PpSSRa60
(Figure 3D and Supplementary Table 4). This is the first report

that identifies a candidate gene possibly associated with russet
skin coloration in pear. Notably, among these variant genes,
LOC103929640 (PpMYB36) generally exhibited an expression
pattern similar to the trend in lignin contents in the two types
fruits during the ripening period (Figures 1C, 4). Therefore, we
suspect that PpMYB36 plays a crucial role in the russet skin
coloration phenotype in pear fruits.

Relationship Between Lignin
Accumulation and Russet Skin

Coloration in Pear

Previous studies have shown that lignin biosynthesis can regulate
russet skin formation in the russet skin mutant DSS of pear
(Heng et al., 2016). Here, we observed considerably higher
lignin contents in russet skin fruits than in non-russet skin
fruits (Figure 1C), yet chlorophyll contents were not significantly
different between the two fruit types (Figure 1B). Accordingly,
the change in chlorophyll content may be not the main reason for
russet skin coloration in pear fruits; rather, the enhanced russet
pigmentation can be mainly attributed to lignin accumulation.
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These results are similar to observations in apple (Malus pumila
Mill.) and grape (Vitis vinifera) (Legay et al., 2016; Huang
et al.,, 2020). In addition, the crucial genes involved in lignin
biosynthesis have been shown to participate in russet skin
coloration in pear (Wang et al., 2014; Zhang et al., 2021). In
the present study, we observed much higher expression levels
of the PpPAL, PpC4H, Pp4CL, PpCCR, PpCAD, PpHCT, PpC3H,
PpCCoAOMT, and PpCOMT genes in russet skin fruits than
in non-russet skin fruits (Supplementary Figure 1), which also
suggests the indispensable role of lignin accumulation in russet
skin coloration in pear fruits. Hence, the mechanisms that
regulate lignin biosynthesis, which in turn leads to coloration
differences in pear fruit skins, require further research.

PpMYB36 Controls the Coloration of
Russet Skin Pear

As essential transcription factors, MYBs are involved in vital
regulatory networks that regulate plant development, responses
to biotic and abiotic stresses, and lignin biosynthesis (Dubos et al.,
2010; An et al., 2019). A recent study has shown that CsMYB36
is involved in the formation of yellow green peel in cucumber
(Cucumis sativus) (Hao et al., 2018). In addition, MdMYB93
regulates suberin deposition in russeted apple fruit skins (Legay
et al,, 2016). In the present study, russet pigmentation was

enhanced while a remarkable increase in lignin accumulation was
induced in pear fruits infiltrated with 35S::PpMYB36 (Figure 6).
This result suggests that PpMYB36 is crucial for regulation of
lignin accumulation and russet coloration in pear. Moreover,
the MYB transcription factors MYB20, MYB42, MYB43, and
MYBS5 are transcriptional regulators that directly activate lignin
biosynthesis genes in Arabidopsis (Geng et al., 2020). Here, the
expression levels of the nine structural genes involved in lignin
biosynthesis substantially increased in pear skin infiltrated with
358::PpMYB36, and the expression patterns of these genes were
basically consistent with PpMYB36 transcription levels after the
infiltration treatment (Figure 6B and Supplementary Figure 2).
It would be interesting to investigate whether PpMYB36 is
involved in the activation of these structural genes that mediate
lignin biosynthesis, thereby influencing the russet coloration of
fruit skin in pear. Such work will further illustrate the regulatory
role of PpMYB36 in the russet skin trait of pear.

Variation in the PoMYB36 Promoter
Sequence Affects Lignin Accumulation

To explore the reasons for the differential expression levels of
PpMYB36 in russet and non-russet skin pears, we compared the
deduced protein sequences of PpMYB36 and found no difference
between the two types fruits (Figure 5A). Nonetheless, we found
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FIGURE 7 | Functional analysis of the PoMYB36 promoter region. (A) Diagrammatic representation of cis-elements present in the PoMYB36 promoter (not drawn to
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a W-box (—904 bp) insertion in the promoter sequence of
PpMYB36 in the russet skin type compared to the non-russet
skin type (Figure 7A; Higo et al., 1999). The results of promoter
activity assays indicated that ProR had higher activity than ProNR
(Figure 7B). Pear fruits infiltrated with ProR::PpMYB36 showed
enhanced russet pigmentation and also a substantial increase
in lignin accumulation compared to fruits infiltrated with
ProNR::PpMYB36 (Figures 7C,E). Hence, the higher expression
levels of PpMYB36 in russet skin pears is due to the W-box
insertion in the promoter region. The W-box is a WRKY protein
binding element (Xie et al., 2021). Several recent studies have
shown that WRKY transcription factors can bind to the promoter
regions of MYB genes that regulate physiological and biochemical
functions in plants (Lloyd et al., 2017; Liu et al., 2019). However,
whether PpPWRKY activates PpMYB36 expression by binding to
the W-box element remains to be determined. Further studies are
required to reveal the mechanisms behind the activities of the
different PpMYB36 promoters and their roles in the coloration
of russet fruit skin in pear.

CONCLUSION

By combining BSA-seq analysis and SSR marker identification,
we mapped the PpRus locus that determines the russet fruit skin

trait in pear to the scaffold NW_008988489.1: 53297-211921 on
chromosome 8 of the pear genome. Eight candidate genes were
predicted in the mapped region, among which PpMYB36 was
experimentally confirmed to control russet skin coloration in
pear. Moreover, a W-box (—904 bp) insertion in the PpMYB36
promoter was found to be essential for PpMYB36-mediated
regulation of lignin accumulation and russet coloration in pear
skin. This study reveals a novel mechanism for determining
russet skin coloration in pear, which is crucial for basic research
and breeding applications.
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