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Climate change could negatively alter plant ecosystems if rising temperatures
exceed optimal conditions for obtaining carbon. The acclimation of plants to higher
temperatures could mitigate this effect, but the potential of subtropical forests to
acclimate still requires elucidation. We used space-for-time substitution to determine
the photosynthetic and respiratory-temperature response curves, optimal temperature
of photosynthesis (Topt), photosynthetic rate at Topt, temperature sensitivity (Q10), and
the rate of respiration at a standard temperature of 25◦C (R25) for Pinus taiwanensis
at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and
winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis
leaves to temperature at the five elevations followed parabolic curves, and the response
of respiration to temperature increased with temperature. Topt was higher in summer
than winter at each elevation and decreased significantly with increasing elevation. Q10

decreased significantly with increasing elevation in summer but not winter. These results
showed a strong thermal acclimation of foliar photosynthesis and respiration to current
temperatures across elevations and seasons, and that R25 increased significantly with
elevation and were higher in winter than summer at each elevation indicating that the
global warming can decrease R25. These results strongly suggest that this thermal
acclimation will likely occur in the coming decades under climate change, so the
increase in respiration rates of P. taiwanensis in response to climatic warming may be
smaller than predicted and thus may not increase atmospheric CO2 concentrations.

Keywords: carbon metabolism, climate change, thermal acclimation, temperature sensitivity, Pinus taiwanensis

INTRODUCTION

Climate change is becoming increasingly important as a global issue (Grosse et al., 2010; Sendall
et al., 2015; Reich et al., 2016). Warming caused by climate change could negatively alter plant
ecosystems if air temperatures exceed those optimal for obtaining carbon. Such changes may
threaten temperature-sensitive species, causing local extinctions and migrations (Morgan-Kiss
et al., 2006; Sendall et al., 2015). Photosynthesis and respiration are the two main physiological
processes that link the biosphere and atmosphere in the global carbon cycle (King et al., 2006).
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Plants influence climate by exchanging energy, water, and other
chemicals with the atmosphere (Lombardozzi et al., 2015). Future
climatic warming throughout the ranges of species may lead to
air and foliar temperatures that exceed current photosynthetic
thermal optima, which could reduce photosynthetic capacity
and carbon gain and thus negatively affect plant growth rates
and survival (Sage and Kubien, 2007; Valladares et al., 2014).
Understanding how these processes vary among different types
of climate is a major goal for plant ecology (Wang et al., 2019).

Evidence suggests that temperature optima of species occur
in parallel with latitudes and temperature isolines (Battaglia
et al., 1996, Reich and Oleksyn, 2004, Sendall et al., 2015 and
Kumarathunge et al., 2019). Several studies have reported that
plants have higher thermal optima at lower than higher latitudes
(Hill et al., 1988; Cunningham and Read, 2002), but others have
found no evidence for a relationship between thermal optima
and climatic distribution (Battaglia et al., 1996; Gunderson et al.,
2000, 2010; Huang et al., 2019). The ability of species to adjust
their photosynthetic optima to changes in temperature (i.e.,
acclimation) could limit reductions in gas-exchange rates (Berry
and Bjorkman, 1980; Gunderson et al., 2010; Kattge and Knorr,
2010; Dusenge et al., 2020). Species growing near their colder,
higher latitudinal limits may respond positively to warming,
and such responses may be enhanced by gene flow (Davis and
Shaw, 2001). Conversely, species growing near their warmer,
lower latitudinal limits may have limited potential to respond
to warming (Berry and Bjorkman, 1980; Tjoelker et al., 2008;
Gunderson et al., 2010), and such responses may be delayed
by the lack of gene flow from populations adapted to warmer
temperatures, because individuals do not survive or are out-
competed under the unfavorable conditions beyond their ranges
(Davis and Shaw, 2001).

Plant respiration releases an annual flux of carbon dioxide
(CO2) to the atmosphere, which will affect future climates (Slot
et al., 2014a; Reich et al., 2016). A warming world may increase
the respiratory release of CO2 because respiration responds
positively to temperature and hence further atmospheric
warming (Wang et al., 2020). Many studies have found that
plants can dynamically adjust their respiration in response to
temperature over the long term (weeks to years), even though
increases in respiration always accelerate when subjected to a
short-term (minutes to hours) increases in temperature, but the
degree of acclimation is uncertain (Atkin and Tjoelker, 2003;
Tjoelker et al., 2008; Slot and Kitajima, 2015). Observations of the
acclimation of plants at different elevations and growing seasons
are thus needed.

Elevational transects provide examples of plant trait variability
along environmental gradients (Jian et al., 2009). This variability
is partly related to the changes in air temperature with elevation
(Xu et al., 2021). Therefore, elevation provides a method of the
space-for-time substitution to predict trait variability in response
to temperature and elevation gradients. Pinus taiwanensis is the
dominant evergreen coniferous tree species that extends through
a wide latitudinal and altitudinal range and the Wuyi Mountains
is the most outstanding area for biodiversity conservation in
southern China (Lyu et al., 2021). Its wide distribution provides
a unique opportunity to study the physiological mechanisms

responsible for tree thermal acclimation of subtropical forest. We
assessed the capacity of P. taiwanensis in the Wuyi Mountains
in China, to acclimate to warmer temperatures in summer
and winter at five elevations along a gradient to advance our
understanding of carbon metabolism in a changing climate. We
measured the plasticity of thermal optima for photosynthesis
and respiration rates. We assessed the magnitude of acclimation
by comparing the photosynthetic and respiratory response
curves of plants at different elevations and seasons. We tested
the following hypotheses: (H1) P. taiwanensis would exhibit
a strong thermal acclimation of foliar photosynthesis and
respiration to temperature along the elevational gradient, (H2)
temperature acclimation would further modify the temperature
optimum of P. taiwanensis in response to seasonal changes,
and (H3) the increase in the respiration rates of P. taiwanensis
acclimated to climatic warming would not increase atmospheric
CO2 concentrations.

MATERIALS AND METHODS

Site Description and Sampling
The experiment was conducted at the National Natural Reserve
of the Wuyi Mountains (27◦48.11′–28◦00.35′N, 117◦39.30′–
117◦55.47′E) in southeastern China. The reserve is in the
humid warm subtropics and has a mean annual precipitation of
2583 mm and a mean annual temperature of 14.2◦C. The average
temperatures in July (summer) and December (winter) are 23.8
and 3.6◦C, respectively. The air temperature decreases by 0.45
and 0.56◦C with every 100-m increase in elevation in summer
and winter, respectively. P. taiwanensis is distributed >1100 m
a.s.l. We therefore established five sites along an elevational
gradient: E1, E2, E3, E4, and E5 at 1200, 1400, 1600, 1800, and
2000 m, respectively. The soil N concentrations did not vary
significantly with elevation. In contrast to soil N concentrations,
the soil P concentrations increased significantly with elevation,
from 0.19 ± 0.01 mg g−1 (mean ± standard error, SE) at E1
to 0.43 ± 0.02 mg g−1 (mean ± standard error, SE) at E5
(Lyu et al., 2021).

We selected the mature individuals about 30–50 years old.
Furthermore, to remove the biological influence of tree age
on decreasing growth at higher elevation, we selected current-
year branch (without apparent leaf area loss) and collected fully
mature needles to measure the carbon flux. We established
three 20 × 20 m plots at each elevation. Three trees were
selected in each plot. Three branches with tips at the outer
edge of the crown were randomly selected for each tree in
summer (July) and winter (December) in 2017. A total of 90
branches (five elevations × three plots × three trees × two
seasons) were selected.

Measurement of Foliar Gas Exchange
Fully mature needles were collected from each branch selected
(without apparent loss of foliar area). Photosynthetic and
respiration rates were measured using an LI-6800 portable
photosynthesis system (LI-COR, Lincoln, United States),
and temperature response curves were developed based on
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measurements at 17, 22, 27, 32, and 37◦C in summer and 5,
10, 15, 20, 25 and 30◦C in winter. The light level in the leaf
chamber was maintained at 2,000 µmol m−2 s−1, air flow was
set at 300–500 µmol s−1, and CO2 concentration was set at
400 µmol mol−1. Net assimilation rate was measured from
09:00 to 12:00. The rate of dark respiration (Rd) was measured
using needles shaded with a black cloth for 1 h. Rd under these
conditions is stable in detached leaves for several hours or longer
(Reich et al., 2016). Measurements were made in July (summer)
and December (winter) from 1200 to 2000 m. All plants were
measured in one elevation over 3–5 days.

Q10 of the temperature-response function for each leaf, and
the respiration rate at a standard measurement temperature
of 25◦C (R25), were calculated using the temperature-response
equations proposed by Slot et al. (2013, 2014b) and Reich et al.
(2016):

ln(R) = a+ bT (1)

where, a and b are, respectively the intercept and the slope of the
response curve. Q10 values were calculated from the slope of these
equations as:

Q10 = e10 b (2)

R25 was calculated for each of the 5–7 set cuvette temperatures of
each leaf as:

R25 = ea + bT +cT2
(3)

where, R25 is dark respiration measured at a leaf temperature of
25◦C, and a, b, and c are coefficients that describe the response of
the natural log of respiration to temperature.

Fitting Response Curves of
Photosynthetic Temperature
The photosynthetic thermal optimum for each leaf measured
was estimated using nonlinear regression of the data for
photosynthetic thermal response:

A(T) = Aopt − b(T-Topt)
2 (4)

where, A(T) is the measured net rate of CO2 assimilation (µmol
m−2 s−1) at foliar temperature T, b is a parameter for the
spread of the parabola (Battaglia et al., 1996), Topt is the
optimal temperature for photosynthesis, and Aopt is the rate of
photosynthesis at Topt.

Data Analysis
The foliar values were averaged. Mixed-effects analyses of
variance (ANOVAs) were used to compare Topt, Aopt, and
parameter b. The influence of elevation on Topt, Aopt, R25, and
Q10 was analyzed using LSD tests and multivariate analyses of
variance (multiple-comparisons ANOVAs) using the agricolae
package in R version 3.4.4. These variables were assessed using
IBM SPSS Statistics V.22.0 (International Business Machines
Corporation, Armonk, United States). The level of significance
for testing slope heterogeneity was P < 0.05 (i.e., slope
heterogeneity was rejected if P > 0.05). An LSD test and a

t-test were used to analyze the variance. The data for elevation
and season did not differ significantly when α was examined
to identify common scaling exponents using the standardized
major-axis package in R.

The allometric relationships between Topt and Aopt were
described after log 10-transformation. A scaling approach
consisted of y = βxα (Eq. 4), where y and x are Topt and Aop,
respectively, β is the normalization constant (intercept), and α is
the scaling exponent (slope). The equation describes an isometric
relationship when α = 1 and an allometric relationship when α 6=

1. Eq. 4 was log10-transformed to log10 y = log10 (β) + α log10 x
and then fitted using model II standardized major-axis regression
of the “smatr” package (Warton et al., 2006). A common scaling
exponent was calculated when the scaling exponents did not
differ significantly (P > 0.05) among the groups.

RESULTS

The temperature response curves of photosynthesis for
P. taiwanensis leaves at different elevations followed parabolic
curves for both summer and winter. The photosynthetic rate
increased with temperature and then decreased when the
temperature exceeded the optimum.

Elevation significantly negatively affected Topt in summer
(P = 0.014, Figure 1A) and winter (P< 0.001). In contrast to Topt,
Aopt increased significantly with elevation in summer (P = 0.005,
Figure 1B) but not winter (P = 0.651). Topt decreased by 1.62◦C
for every 1◦C decrease in growth temperature across of P.
taiwanensis five elevations in the Wuyi Mountains, accompanied
by increases in 1.34 µmol m−2 s−1 of Aopt (Table 1).

Topt and Aopt at each elevation were higher in summer than
winter. Aopt was significantly correlated with Topt in summer
(P = 0.01, Table 2) but not winter (P = 0.33. The scaling slopes of
Topt and Aopt in summer and winter did not differ significantly
across the five elevations and had a common slope of −0.74
(95% confidence intervals (CIs) = −0.95 and −0.57, P = 0.
46, Figure 2). The normalization constants for Topt vs Aopt,
however, varied significantly (P < 0.001), ranging from 1.73 (95%
CIs = 1.37 and 2.09) for winter to 1.91 (95% CIs = 1.60 to
2.21) for summer.

The respiratory temperature response curves displayed a
characteristic sustained increase with temperature (Figure 3).
The respiration rate increased slowly from 5 to 20◦C and then
increased rapidly when the temperature in the leaf chamber
exceeded 25◦C. The respiration rates were higher at high
elevations (E3–5) than low elevations (E1–3).

Q10 decreased significantly as elevation increased (P < 0.001,
Figure 4A) in summer (P = 0.008), but not winter (P = 0.18).
The mean values of Q10 was higher in winter (mean 1.86, range
1.72–1.97) than summer (mean 1.72, range 1.45–2.00), but did
not differ significantly between seasons (Table 3). R25 increased
significantly with elevation, from 1.1 ± 0.04 µmol m−2 s−1

(mean ± standard error, SE) at E1 to 1.92 ± 0.10 µmol m−2 s−1

(mean ± SE) at E5 in summer (P < 0.001, Figure 4B) and from
1.79 ± 0.06 µmol m−2 s−1 (mean ± SE) at E1 to 2.29 ± 0.03 mg
g−1 (mean ± SE) at E5 in winter (P < 0.001). We chose to use
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FIGURE 1 | Photosynthetic thermal optimum and rate of CO2 assimilation of Pinus taiwanensis sampled at five elevations in the Wuyi Mountains. (A) Mean foliar
photosynthetic thermal optimum (Topt), and (B) rate of CO2 assimilation at Topt (Aopt).

TABLE 1 | Mean ( ± standard error) foliar photosynthetic thermal optimum (Topt), rate of CO2 assimilation at Topt (Aopt) and the rate of respiration at a standard
temperature of 25◦C (R25) for Pinus taiwanensis sampled in growth temperatures (Tgrowth) at five elevations in the Wuyi Mountains.

Elevation (m) Tgrowth (◦C) Topt (◦C) Aopt (µmol m−2 s−1) R25 (µmol m−2 s−1)

1200 23.26 23.00 ± 1.54 8.35 ± 0.86 1.1 ± 0.04

1400 22.20 22.79 ± 1.45 9.79 ± 0.43 0.97 ± 0.03

1600 21.50 23.12 ± 1.05 11.52 ± 0.84 1.25 ± 0.07

1800 20.60 16.40 ± 2.73 12.07 ± 0.71 2.1 ± 0.11

2000 19.40 17.26 ± 2.00 13.16 ± 0.67 1.92 ± 0.10

R25 because it is widely reported in the literature and used for
comparison of respiration rates of plants from different biomes,
and 25◦C is above the average temperature of the sampling sites,
which had a mean annual temperature of 14.2◦C (Slot et al.,
2014b; Reich et al., 2016; Way et al., 2019; Lyu et al., 2021).

DISCUSSION

Potential of Photosynthesis to Acclimate
to Temperature
The relationship between temperature and photosynthetic rate
can generally be described with a parabolic curve, in which the

TABLE 2 | Summary of regression slopes and y-intercepts (α and log β,
respectively) for the relationship between foliar Topt and Aopt for Pinus taiwanensis
sampled at five elevations in the Wuyi Mountains.

Log y vs log x α (95% CIs) Log β (95% CIs) r2 P P−1.0 n

Summer −0.68 (−0.95, −0.48) 1.91 (1.60, 2.11) 0.21 0.01 0.02 30

Winter −0.82 (−1.19, −0.56) 1.73 (1.37, 2.09) 0.03 0.33 0.28 30

P−1.0 indicates a significant difference between the slope and a slope of 1.0 at
P < 0.05. 95% CIs, 95% confidence intervals.

rate increases before reaching the optimal temperature and then
decreases (Battaglia et al., 1996; Thuiller et al., 2005; Walker
et al., 2006). Our findings were consistent with this relationship;
P. taiwanensis had a higher photosynthetic rate under Topt
conditions. The ranges of Topt in our study were 19.25–23.6
and 10.68–17.63◦C in summer and winter, respectively, and the
average temperatures in summer and winter at our experimental
site were 23.8 and 3.6◦C, respectively (Lyu et al., 2021). These
conditions indicate that rising global temperatures (of 1.1–6.4◦C
by 2100) (Intergovernmental Panel on Climate Change [IPCC],
2013) could increase the photosynthetic rate in P. taiwanensis,
especially in winter. Optimal thermal acclimation could ensure
the maximum absorption of CO2 by plants and reduce CO2
concentration in the atmosphere (Sendall et al., 2015).

Topt was higher in summer than winter along the gradient
and decreased significantly as elevation increased (Figure 1A).
This suggests that temperature acclimation would further modify
the temperature optimum in response to seasonal changes
of P. taiwanensis. Elevation significantly affected Topt. Species
growing near their warmer, lower elevational limits, where
boundaries are partly determined by thermal limitations (Berry
and Bjorkman, 1980; Tjoelker et al., 1998, 2008; Davis and Shaw,
2001), Gunderson et al., 2010) or increased levels of competition,
may be constrained in their potential to acclimate to warming
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FIGURE 2 | Scaling relationships of Topt and Aopt for Pinus taiwanensis sampled at five elevations in the Wuyi Mountains. Lines are significant standardized
major-axis regressions (P < 0.05).

FIGURE 3 | Temperature response curves of respiration for Pinus taiwanensis sampled at five elevations in the Wuyi Mountains. (A) Summer and (B) winter. Error
bars indicate standard errors.

(Reich et al., 2015). In contrast, species growing near their
colder, higher elevational limits may respond more strongly to
environmental change. This finding provides further evidence
that species have capacities to acclimate relative to changing
temperatures. Under a future warming scenario P. taiwanensis
will move from lower to higher altitudes, probably ceding its

dominance at lower altitudes but expanding to higher altitudes
such is being observed in several sites along the world for other
forest species (Peñuelas and Boada, 2003; Peñuelas et al., 2007).

Aopt in winter did not differ significantly along the elevational
gradient, and Aopt was correlated with Topt in summer, but not
in winter. The scaling slopes of Topt and Aopt did not differ
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FIGURE 4 | Mean foliar (A) Q10 and (B) R25 for Pinus taiwanensis sampled at five elevations in the Wuyi Mountains. Error bars indicate standard errors.

significantly between summer and winter, but the normalization
constants varied significantly, perhaps because low temperatures
limit photosynthesis in alpine species in winter (Sendall et al.,
2015; Lyu et al., 2021). Many studies (Smith and Dukes,
2013; Sendall et al., 2015; Smith et al., 2015) have reported
that the photosynthetic rate of leaves are affected by low
temperatures. Photosynthesis can also be strongly influenced by
environmental factors such as light and water (Körner, 1998;
Valladares et al., 2014), which may also account for the lack of
significant differences in winter maximum photosynthetic rate
among the elevations.

Sensitivity of Pinus taiwanensis to
Temperature
Respiration rates is generally assumed to double with 10◦C
temperature increase; that is, it has a Q10 (the proportional
increase in respiration rates with 10◦C warming) of 2.0 (Slot
et al., 2014a). Many studies (Stockfors and Linder, 1998; Atkin
and Tjoelker, 2003; Tjoelker et al., 2008) have found that Q10
decreased with increasing temperature, inconsistent with our
study. Q10 in our study, however, was decreased with decreasing
temperature in summer. The mean Q10 value was higher in
winter than summer.

The respiration rate of plant leaves is extremely sensitive to
changes in temperature over short timescales (several minutes);
Ecosystems and plant environments, however, are controlled

TABLE 3 | Results of a two-way ANOVA of Q10 for Pinus taiwanensis leaves for
season, elevation.

Q10 F P

Season 1.46 0.29

Elevation 1.59 0.24

and regulated by the long-term threshold of the temperature
of the environment but also may be affected by their own
plant growth and development, including changes in foliar
morphology, matrix, and nutrient status.

Q10 decreased significantly with increasing elevation
in summer, indicating that the respiratory sensitivity of
P. taiwanensis leaves decreased significantly with decreasing
temperature. This finding is consistent with a previous study
on the foliar NSC concentrations where the rate decreased
significantly as elevation increased (Lyu et al., 2021).
P. taiwanensis is insensitive to low temperatures, which is
beneficial for increasing the storage of carbohydrates, thus
providing effective resource use for developing mechanisms to
acclimate to high levels of stress.

As plants become less sensitive to environmental changes
over time (i.e., they acclimate), the initial response can represent
the instantaneous characteristics of plants. Our results indicated
that P. taiwanensis could acclimate to environments with
low temperatures by reducing its instantaneous sensitivity to
temperature. It could thereby obtain the minimum amount of
carbon necessary for survival, which could be an important
strategy of carbon metabolism for survival at alpine treelines.

Do Increased Respiration Rates Increase
Atmospheric Carbon Dioxide
Concentrations?
Climatic warming may increase plant respiration, increasing the
release of CO2 from terrestrial ecosystems and further increasing
atmospheric warming. The respiratory response to temperature
in our study increased with temperature at the five elevations
in both summer and winter. R25, however, was highest at E5
(2,000 m) and decreased toward E1 (1,200 m), with 42.7 and
21.83% decreases between E5 and E1 in summer and winter,
respectively, indicating that the rate of respiration decreased with
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increasing temperature. Stress due to high temperatures can lead
to respiratory acclimation and thereby reduce respiration (Reich
et al., 2016). Plant respiration always increases in response to
a short-term increase in temperature, but responses can vary
over the long term (Teskey and Will, 1999; Smith and Dukes,
2013; Reich et al., 2016). A plant that has experienced warmer
temperatures will typically have a rate of respiration at a given
temperature lower than a plant that has experienced cooler
temperatures (Slot et al., 2014a; Wang et al., 2020).

As plant respiration responds positively to temperature, a
warming world may result in additional respiratory CO2 release,
and hence further atmospheric warming (Atkin et al., 2006;
Reich et al., 2016). In our study, R25 increased significantly with
elevation and was higher in winter than summer at each elevation
indicating that the warming can decrease of respiration.

Furthermore, Lyu et al. (2021) found that the respiration
rates for P. taiwanensis increased with elevation in summer. It
indicate that respiration rates of P. taiwanensis can acclimate
to altered temperatures and weakening the positive feedback
of plant respiration to rising global air temperature. Thus the
increase in respiration rates of P. taiwanensis in response to
climatic warming may be smaller than predicted and thus may
not increase atmospheric CO2 concentrations. The populations
acclimated to lower altitude thus to high temperatures have
lower Rd and thus a clear acclimation capacity to decrease Rd
when temperatures rise permanently and the population has had
time enough to acclimate by reducing Rd. Lombardozzi et al.
(2015) and Sendall et al. (2015) suggested that foliar respiratory
acclimation globally may have a larger ameliorating impact than
expected on CO2 losses with rising temperatures under climate
change. Such amelioration would be even larger if stems and roots
acclimated similarly to leaves, which require further research
(Reich et al., 2016).

CONCLUSION

Foliar carbon metabolism in P. taiwanensis strongly acclimated
to temperature across elevations and seasons. These findings
indicated that P. taiwanensis could adapt to low temperatures
by reducing its sensitivity to temperature and obtaining the
minimum amount of carbon necessary for survival, which is an
important strategy of carbon metabolism and has likely allowed
this species to be able to grow in high montane forests. Rising
global temperatures will probably increase the photosynthetic
rate of P. taiwanensis, but the increase in the respiration rate

in response to climatic warming may be smaller than predicted
and thus may not increase atmospheric CO2 concentrations.
Our results provide field evidence for the adaptation of plant
carbon metabolism in a changing climate. This information
could be used in models of climate change and contributes
to our understanding of the consequences of acclimation
on carbon cycling.
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