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Soybean (Glycine max) is a major plant protein source and oilseed crop. However, plant-
parasitic nematodes (PPNs) affect its annual yield. In the current study, in order to better 
understand the regulation of defense mechanism against PPNs in soybean, we investigated 
the role of long non-coding RNAs (lncRNAs) in response to two nematode species, 
Heterodera glycines (SCN: soybean cyst nematode) and Rotylenchulus reniformis 
(reniform). To this end, two publicly available RNA-seq data sets (SCN data set and RAD: 
reniform-associated data set) were employed to discover the lncRNAome profile of 
soybean under SCN and reniform infection, respectively. Upon identification of unannotated 
transcripts in these data sets, a seven-step pipeline was utilized to sieve these transcripts, 
which ended up in 384 and 283 potential lncRNAs in SCN data set and RAD, respectively. 
These transcripts were then used to predict cis and trans nematode-related targets in 
soybean genome. Computational prediction of target genes function, some of which were 
also among differentially expressed genes, revealed the involvement of putative nematode-
responsive genes as well as enrichment of multiple stress responses in both data sets. 
Finally, 15 and six lncRNAs were proposed to be involved in microRNA-mediated regulation 
of gene expression in soybean in response to SNC and reniform infection, respectively. 
Collectively, this study provides a novel insight into the signaling and regulatory network 
of soybean-pathogen interactions and opens a new window for further research.
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INTRODUCTION

Soybean [Glycine max (L.) Merrill.], belonging to the Fabaceae family, is a highly nutritious 
leguminous crop (Massey et  al., 2001; Alghamdi et  al., 2018; Espina et  al., 2018) and a high-
quality protein source in human diet and livestock feed due to its well-balanced essential 
amino acids (Singer et  al., 2019) Furthermore, soybean, by making up around 59% of the 
overall world oilseed production, is also a major oilseed crop (El-Hamidi and Zaher, 2018). 
In recent years, soybean oil has been employed as an industrial ingredient for the production 
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of plastics, inks, papers, pesticides, varnishes, pharmaceutical 
compounds, and cosmetics (Alghamdi et  al., 2018). Besides, 
soybean oil is a promising source of biodiesel fuel to exploit 
as an alternative biofuel and renewable energy to decelerate 
toxic greenhouse gas emissions currently, the United  States, 
Brazil, Argentina, China, India, Paraguay, and Canada are 
leading producers of this commercially important crop in the 
world with an estimated annual production of ~341.1 million 
metric tonnes in 2020.1 However, multiple (a) biotic factors, 
including infectious disease agents, pests, and weeds, as well 
as extreme heat and cold, high salinity, drought, and waterlogging 
(Tran and Mochida, 2010; Bandara et  al., 2020), cause a large 
reduction in quality and productivity, as well as a serious 
economic loss in soybean crop. Among limiting factors, PPNs 
are one of the most important agents that significantly affect 
soybean performance and yield by 10–15% (Lima et  al., 2018).

In the midst of various nematode species associated with 
soybean, soybean cyst nematode (SCN; Heterodera glycines), 
reniform nematode (semi-endoparasitic nematode; Rotylenchulus 
reniformis), root-knot nematode (Meloidogyne incognita), and 
lesion nematode (Pratylenchus brachyurus) are the most 
deleterious pests (Lima et  al., 2017; Klepadlo et  al., 2018). 
For instance, 3–4 generations of SCN can reportedly parasitize 
soybean in a single growing season (Neupane et  al., 2019a). 
Nowadays, nematicide and nematode-resistant cultivars, rotating 
to non-host crops, and biological controls are the most common 
strategies to control nematode infection and limit its impact 
on soybean productivity (Engelbrecht et  al., 2020). However, 
it has been demonstrated that nematodes can develop very 
intricate parasitizing mechanisms to neutralize resistance 
strategies and establish the specific nematode feeding sites 
(NFSs) in host root cells via penetration into them and induction 
of the morphological, biochemical, and molecular change (Ali 
et  al., 2017). Indeed, nematode secretions contain effector 
proteins that can modulate plant gene signaling cascades to 
induce NFSs and circumvent the host’s defense responses 
(Gheysen and Mitchum, 2011; Hewezi, 2015). Therefore, 
comprehensive studies are required to neutralize the ruinous 
effects of nematodes and dissect the underlying resistance 
mechanism of soybean as a host plant. Until now, several 
studies, especially the ones based on comparative transcriptome 
analysis of resistant and susceptible soybean genotypes, have 
been accomplished on the nematode-soybean interactions and 
the complex molecular mechanisms in response to nematode 
infestation (Klink and Matthews, 2009; Rambani et  al., 2015; 
Tian et  al., 2017; Neupane et  al., 2019a). These studies have 
led to identification and characterization of various key genes 
involved in plant perception systems for parasite recognition, 
phytohormone-mediated defense responses, the mitogen-activated 
protein kinase (MAPK) signaling cascade, and WRKY-involved 
regulation (Beneventi et al., 2013; Wan et al., 2015; Yang et al., 
2017; Zhang et  al., 2017; Guo et  al., 2019).

1 https://www.statista.com/

Despite these findings, additional studies are needed to 
explore and confer the resistance mechanisms to nematodes 
in soybean plant. One of the complementary analyses that 
could be  applied to explore the potential pathways and novel 
components involved in plant-nematode interaction is the 
characterization and functional annotation analyses of the long 
non-coding RNAs (lncRNAs). LncRNAs are ≥200-nucleotide 
(nt) regulators that have multiple mechanisms of action via 
epigenetic, transcriptional, and post-transcriptional regulation 
of gene expression in response to various stress. For example, 
modulating the transcriptional machinery of plants has been 
proved by several lncRNAs. For instance, the regulatory role 
of two lncRNAs COOLAIR and COLDAIR on flowering locus 
C (FLC) expression (Heo and Sung, 2011), the regulatory role 
of lncRNA SVALKA on C-repeat/dehydration responsive element 
binding factor 1 (CBF1) under cold stress (Kindgren et  al., 
2018), and the regulatory role of ELENA1 on pathogenesis-
related 1 (PR1) gene against bacterial pathogens (Seo et  al., 
2017) have provided the compelling evidences of gene regulation 
by lncRNAs. LncRNAs can mediate chromatin modifications 
and thus promote or repress gene expression. They can also 
have a cofactor role along with transcription factors and control 
gene expression (Cabili et  al., 2011; Marchese et  al., 2017). 
Furthermore, although called non-coding RNA, they are shown 
to code for proteins that can be  involved in gene regulation. 
At the post-transcriptional level, lncRNAs can interfere with 
microRNAs (miRNAs) and neutralize their silencing role and 
thus upregulate the transcript level. For example, in Brassica 
juncea, the potential interaction between miR-172 and lncRNA 
TCONS_00047156 under heat stress, (Bhatia et  al., 2020), in 
cassava, the potential interplay between linRNA159 and 340, 
as two cold stress-related lncRNAs, and miR-164 and miR-169, 
respectively (Li et  al., 2017), and in tomato the interaction 
between lncRNA39026 and miR168a against Phytophthora 
infestans infection have been detected. Additionally, lncRNAs 
can recruit complementary small interfering RNAs (siRNAs) 
to regulate a gene expression (Wierzbicki, 2012; Böhmdorfer 
et al., 2014). Another mechanism is the regulation of expression 
of adjacent protein-coding genes in the genome, which is 
known as cis-regulation. Finally, lncRNAs can identify 
complementary mRNA sequences and interfere with the RNA 
editing and consequently with the expression of the paired 
gene (Kornienko et al., 2013; Zhao et al., 2019). In this regard, 
studying the structure and sequence of lncRNAs as well as 
prediction and functional enrichment analysis of their cis- and 
trans-target genes can be  performed utilizing accurate 
computational tools (Johnson and Guigó, 2014; Wan et  al., 
2020; Fort et  al., 2021). Besides, weighted gene co-expression 
network analyses (WGCNA) can be recruited to identify lncRNA-
mRNA interactions. This analysis, as a momentous system 
biology-based approach, integrates independent large-scale gene 
expression profiling data sets into gene co-expression modules 
based on similarities in their expression profiles (Amrine et al., 
2015; Li et al., 2018a). Since these modules are mostly enriched 
for genes that contributed to similar biological processes (BPs), 
it would be  possible to predict putative functions of genes 
and decipher the novel genes and lncRNAs associated with 

Abbreviations: RAD, Reniform-associated data set; dpi, Days post-infection; DAI, 
Days after inoculation; NFSs, Nematode feeding sites.
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the desired traits through modeling the lncRNA-mRNA 
co-expression network (Langfelder and Horvath, 2008; Serin 
et al., 2016; van Dam et al., 2018; Wang et al., 2019). Additionally, 
in each module, by measuring the intramodular connectivity, 
central players as hubs can be  screened (Langfelder et  al., 
2013) and exploited as the candidate biomarkers.

Getting advantage of the high-throughput RNA-seq data, the 
involvement of lncRNAs has already been demonstrated in diverse 
and fundamental BPs (Shafiq et  al., 2016; Singh et  al., 2018). 
Similarly, several studies have explicated the lncRNA-mediated 
gene regulation in different plant-pathogen interactions (Li et al., 
2018c,d; Yu et  al., 2020; Zhang et  al., 2020; Summanwar et  al., 
2021); however, only a few studies have investigated their regulatory 
roles in response to nematode invasion (Li et  al., 2018a,b; 
Muthusamy et  al., 2019). Since PPNs are one of the most 
threatening factors against soybean production, more in-depth 
studies are required to expand our knowledge on signaling events 
mediating the interplay between this crop and nematodes. Hence, 
in this study, two previously published RNA-seq data of nematode-
infected soybean roots were employed to identify lncRNAs and 
conduct further analyses. Multi-filter lncRNA identification pipeline 
resulted in a total of 526 unique potential lncRNAs in two data 
sets. Various in silico analyses on these identified transcripts 
showed the extensive potential role of lncRNAs in nematode 
response via targeting multiple molecular pathways in soybean. 
Altogether, this research provided novel insights into the role 
of lncRNAs in biotic stress, as well as molecular signaling and 
regulation of nematode response in soybean.

MATERIALS AND METHODS

Transcriptomic Data
In this study, two previously published transcriptome data sets, 
available in the European Nucleotide Archive (ENA, https://
www.ebi.ac.uk/ena) under the BioProject accession numbers 
PRJNA306741 (Li et  al., 2018b) and PRJNA348534 (Redding, 
2018), were employed to identify nematode-related lncRNAs. 
In these experiments, cDNA libraries generated using NEBNext® 
Ultra™ RNA Library Prep Kit for Illumina® (NEB, United States) 
following the manufacturer’s instructions. Briefly, to construct 
libraries, first-strand cDNA was synthesized using mRNA purified 
from total RNA, random hexamer primers, and M-MuLV reverse 
transcriptase (RNase H-). Second-strand cDNA was synthetized 
using DNA polymerase I and RNase H. Next, after end repairing 
and 3′ end polyadenylation, NEBNext adaptor was ligated. PCR 
was performed using purified fragments with 150–200 bp in 
length, universal PCR primers, and index (X) primer. Finally, 
double-end sequencing was performed by HiSeq instrument 
(Illumina, San Diego, United  States). The first data set (SCN 
data set) contained 12 cDNA libraries representing the 
SCN-infected root samples of Glycine max Huipizhi Heidou, 
an SCN-resistant line (ZDD2315), at 5, 10, and 15 (N5, N10, 
and N15) days post-infection (dpi) and uninfected root samples 
at the same time points as the control in three biological replicates 
(Li et al., 2018b). The second data set (RAD: reniform-associated 
data set) consisted of 24 libraries, illustrating the infected (DAI3I, 

DAI6I, DAI9I, and DAI12I) and control (DAI3C, DAI6C, DAI9C, 
and DAI12C) root samples of Glycine max “Hutcheson” cultivar 
3, 6, 9, and 12 days after inoculation (DAI) with three biological 
replicates for each sample (Redding, 2018).

Identification of Unannotated Transcripts 
and lncRNAs
According to the workflow shown in Figure 1, in the beginning, 
the selected data sets were individually analyzed by the Galaxy 
website (version 21.01; Jalili et  al., 2021) for quality control, 
mapping, and identification of lncRNAs. The quality of sequences 
was assessed using FastQC (v.0.11.8; https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), and then, low-quality bases 
were dropped using the Trimmomatic tool (v.0.38; Bolger et al., 
2014). Trimmomatic parameters included trimming the bases 
with a quality score < Q20 and discarding reads with length < 50 bp. 
Then, high-quality clean reads were aligned to the reference 
genome of soybean (Wm82.a2.v1, https://soybase.org/
GlycineBlastPages/blast_descriptions.php) using STAR v.2.7.8a 
(Dobin and Gingeras, 2015). Transcripts aligned to the reference 
genome were assembled and quantified using StringTie v.2.1.1 
(Pertea et  al., 2015). The assembled transcripts were merged 
by StringTie’s merge tool to generate a consolidated annotation 
file to re-estimate transcript abundances.

To identify unannotated transcripts, transcriptome assemblies 
of each sample produced by StringTie were compared with the 
output of StringTie merge tool using gffcompare program. The 
output included the unannotated transcripts classified in different 
class codes of “u” (intergenic lncRNAs), “x” (antisense lncRNAs), 
“i” (intronic lncRNAs), “o” (generic exonic overlap lncRNAs with 
reference transcripts), and “e” (single exon transfrag overlapping 
a reference exon). Finally, using BEDTools v.2.29.2 (Quinlan and 
Hall, 2010), the names of unannotated transcripts were defined 
in a BED file and extracted from the soybean reference genome.

Since these identified unannotated transcripts may include 
potential coding genes, they were subjected to the following 
multi-step filtering approach:

 1. The unannotated transcripts with more than 200 nucleotides 
and counts per million (CPM) >1 were extracted.

 2. The output of the previous step was inputted into tRNAscan-SE 
2.0 (Lowe and Chan, 2016) and then Barrnap  0.92 to filter 
out possible transfer RNAs (tRNAs) and ribosomal RNAs 
(rRNAs).

 3. Coding potential calculator (CPC2) software (Kang et  al., 
2017) and FEELnc v.0.2 (Wucher et  al., 2017) with a shuffle 
mode (−m “shuffle”) were employed to evaluate the coding 
potential of predicted lncRNAs.

 4. CREMA, available at www.github.com/gbgolding/crema 
(Simopoulos et al., 2018), was used to improve the specificity 
and accuracy of lncRNA prediction and ranking.

 5. Ultimately, the transcripts with at least one significant (E-value, 
1e-5) hit against the UniProt release 2021-02, Pfam release 
34.0, and Rfam 14.5 database, which encoded a conserved 
protein/domain were excluded.

2 https://github.com/tseemann/barrnap

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://soybase.org/GlycineBlastPages/blast_descriptions.php
https://soybase.org/GlycineBlastPages/blast_descriptions.php
http://www.github.com/gbgolding/crema
https://github.com/tseemann/barrnap


Khoei et al. Insights Into the Nematode-Related lncRNAs in Soybean

Frontiers in Plant Science | www.frontiersin.org 4 December 2021 | Volume 12 | Article 779597

Identification of Differentially Expressed 
mRNAs and lncRNAs
The differential expression analysis was conducted on the gene 
read count data matrices produced by python script prepDE.
py. For this analysis, the generated matrices were uploaded 
onto the IDEAMEX website (Jimenez-Jacinto et  al., 2019), and 
then, DESeq2 (Love et  al., 2014) software was used to identify 
differentially expressed genes (DEGs) as well as the differentially 
expressed lncRNAs (DE-lncRNA) with screening parameters 
of FDR ≤0.05, log2 fold change (logFC) ≥2, and CPM = 1.

Identification of Monotonically Expressed 
lncRNAs
To identify monotonically expressed lncRNAs (ME-lncRNAs) 
whose expression patterns were highly correlated with the time 
series upon nematode infestation, MFSelector (monotonic feature 
selector) method (Wang et  al., 2015) was applied to the SCN 
data set and RAD. The significance level of these patterns was 
evaluated utilizing a permutation test. Two distinct sets of 

ME-lncRNAs (with corresponding p-values) were found with 
ascending or descending monotonic expression patterns. To 
meet the efficient level of stringency for monotonicity, we defined 
the parameters as permut = 100, svdetimes = 100, and 
svdenoise = 0.1, according to (Rajavel et  al., 2021). Eventually, 
ME-lncRNAs with a CPM >1 and sample variance for 
discriminating error value ≤1 were considered as significant 
ME-lncRNAs.

Functional Annotation and Enrichment 
Analysis
To get functional insights into identified lncRNAs, a series of 
computational approaches and tools were applied aiming at 
homology search and characterization of transposable element 
(TE) content of lncRNAs, functional enrichment analysis on 
the neighboring genes of lncRNAs, and prediction of interaction 
between DE-lncRNA and DEGs. Since many known lncRNAs 
have displayed sequence conservation among various plant 
species, the comparison between lncRNA sequences across 
different species can provide profound insights into the 

FIGURE 1 | Workflow of lncRNA identification from RNA-Seq data sets.
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evolutionary conservation of lncRNAs. Hence, we  compared 
the identified lncRNAs in this study with the lncRNAs available 
in CANTATAdb v.2.0 (http://cantata.amu.edu.pl/; Szcześniak 
et  al., 2019), Green Non-Coding Database (GREENC; http://
greenc.sequentiabiotech.com/wiki/Main_Page; Gallart et  al., 
2016), and Plant Long non-coding RNA Database (PLncDB 
v.2.0; http://plncdb.tobaccodb.org/; Jin et  al., 2021), using the 
BLASTN tool with the criteria of e-value 1e5, identity >70%, 
and query coverage >30%. In further assessment, we compared 
the lncRNAs to those lncRNA sets introduced by Golicz et  al. 
(2018) and Lin et  al. (2020) to further validate the pulled-out 
lncRNAs (Golicz et  al., 2018; Lin et  al., 2020).

Besides, we compared the identified lncRNAs to the soybean 
TE database obtained from SoyBase (SoyBase_TE_Fasta.txt), 
using BLASTN with the same criteria noted above. Due to 
the cis-mode regulation of lncRNAs, they are capable of targeting 
the neighboring genes. Accordingly, in this study, the biological 
function of genes located 100 Kbp upstream and downstream 
of lncRNAs as cis-regulated potential target genes was investigated 
via Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. Additionally, 
to unravel the interaction between lncRNA and DEGs, the 
trans-regulated target genes of lncRNA were predicted using 
LncTar (Li et  al., 2014) with default parameters.

Identification of lncRNAs as miRNA 
Endogenous Target Mimic
Owing to the presence of partial complementarity between 
lncRNAs and the miRNAs, lncRNAs can act as miRNA target 
mimics and negatively regulate and sequester the activity of the 
miRNAs. Regarding this ability, herein, utilizing all the identified 
lncRNAs of the SCN data set and RAD as well as soybean 
miRNAs downloaded from miRBase release 22.0, we  predicted 
miRNA mimic sites using psMimic software (Wu et  al., 2013). 
Furthermore, the plant miRNA target prediction software, psRobot 
toolbox (http://omicslab.genetics.ac.cn/psRobot/; Wu et al., 2012), 
was employed to identify the putative target genes of the miRNAs 
that exhibited mimicry with lncRNAs. The following parameters 
were set for this analysis: penalty score threshold = 2.5, 5′ boundary 
of essential sequence = 2, 3′ boundary of essential sequence = 17, 
the maximal number of permitted gaps = 1, and position after 
which with gaps permitted = 17.

Plant Materials and Validation by Real-
Time PCR
To confirm the expression levels of predicted lncRNAs, plant 
materials and nematodes were prepared according to Li et  al. 
(2018b) for SCN and Redding (2018) for reniform. For this purpose, 
first, a combination of 1% sodium hypochlorite and 70% (v/v) 
ethyl alcohol (EtOH) was used for 3 min to surface sterilize the 
seeds of the SCN-resistant Glycine max (Huipizhi Heidou) line 
ZDD2315 and reniform nematode-susceptible Glycine max cultivar 
“Hutcheson” (Redding et al., 2018; Li et al., 2018b). The sterilized 
seeds were then planted in pots filled with equal parts of sterilized 
soil and sand mixture and subsequently incubated in a growth 
chamber at 28 ± 2°C and 50% relative humidity with 14/10-h 

(light/dark) photoperiod. Then, the SCN race 3 was isolated 
from soil, hatched from the eggs, and matured to second-stage 
juveniles (J2) according to (Li et al., 2018b) protocol and introduced 
to soybean roots (Li et al., 2018b). The SCN-infected and uninfected 
root samples (as control) were harvested at the three time points 
including, 5, 10, and 15 dpi in three biological replicates. The 
reniform nematode inoculums were extracted according to 
Redding’s (2018) protocol and introduced to soybean roots. The 
infected and the control root samples were collected 3, 6, 9, 
and 12 DAI in three biological replicates (Redding et  al., 2018). 
Total RNA of root samples was extracted by the column RNA 
isolation kit (DENAzist Asia Co., Iran). The first-strand cDNA 
was synthesized using 1 μg of total RNA per sample and random 
hexamer primers by RevertAid First Strand cDNA Synthesis Kit 
(Thermo Fisher Co., United States), according to the manufacturer’s 
instructions. Using SYBR Green PCR Master Mix (BioFACT, 
Korea) and specific primers (Supplementary Table S1), the Real-
Time PCR (qPCR) reaction was performed in a final volume 
of 15 μl on the ABI system with three technical replicates per 
each biological replicate (ABI ViiA 7 Real-time PCR). The qPCR 
program included a single step of initial denaturation at 95°C 
for 10 s, followed by 40 cycles of 95°C for 5 s and 60°C for 20 s. 
EF1B and UKN2 (Ma et  al., 2013) housekeeping genes were 
used as internal reference genes to normalize the expression 
data. Finally, the relative expression levels of lncRNAs were 
calculated using the 2-ΔΔCt method (Livak and Schmittgen, 2001).

Coding/Non-coding Gene Co-expression 
Study
The WGCNA (Langfelder and Horvath, 2008) R package was 
employed to identify the regulatory lncRNA-mRNA co-expression 
networks through unveiling similar expression patterns between 
lncRNAs and mRNAs in response to SCN and reniform nematode 
invasion. To run WGCNA analysis, the normalized fragments 
per kilobase of transcript per million fragments mapped (FPKM) 
values of DE-lncRNAs and DEGs were imported. Then, to generate 
a similarity matrix, Pearson’s correlation between the log2 
(FPKM + 1) values of all gene pairs was calculated. Next, the 
similarity matrix was transformed into an adjacency matrix. The 
soft threshold power (β) of 9 was determined based on the 
scale-free topology criterion (Zhang and Horvath, 2005). Afterward, 
the adjacency matrix was used to compute the topological overlap 
measure (TOM) and corresponding dissimilarity (1-TOM). 
Subsequently, the clusters of densely interconnected genes (modules) 
were detected using hierarchical clustering of 1-TOM and the 
DynamicTree Cut algorithm (Langfelder and Horvath, 2008). 
Besides, as the phenotypic trait, we  calculated the correlations 
among gene expression modules and “days after nematode infection.”

RESULTS

Identification and Characterization of 
lncRNAs
To identify nematode-related lncRNAs in soybean, we  used 
two transcriptome data sets, namely, SCN data set and RAD. 
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In the SCN data set, ~711.2 million raw reads resulting from 
the sequencing of 12 cDNA libraries were available. Since reads 
in each library exhibited high-quality bases, trimming operation 
was skipped, and they were directly mapped to the soybean 
reference genome. Following the mapping, on average, over 
85% of reads were aligned to the genome. In RAD, a total 
of 619 million raw reads with an average of 25.8 million reads 
per sample were obtained from the sequencing of 24 libraries. 
After trimming low-quality bases (score < Q20), high-quality 
reads with a minimal length of 50 bp were mapped to the 
soybean reference genome. The mapping rate of reads in each 
library ranged between 88 and 94%.

After reconstructing the transcriptome for each sample and 
combining assemblies using StringTie (Pertea et  al., 2015), a 
total of 106,215 and 119,916 transcripts were assembled in 
SCN data set and RAD, respectively. Of those, 2,275 (related 
to SCN data set) and 2,746 (related to RAD) transcripts were 
selected as unannotated transcripts (belonging to the class code 
of “u,” “x,” “i,” “o,” or “e”) and subjected to the lncRNA 
identification pipeline (Figure  2A). In the first step of lncRNA 
discovery, 1,331 and 1,359 unannotated transcripts were screened 
with CMP >1  in SCN data set and RAD, respectively. Out of 
these transcripts, respectively, 1,285 and 1,286 potential lncRNAs 
were identified using FEELnc software (Wucher et  al., 2017). 
Subsequently, the potential lncRNAs were assessed to filter out 
the potential coding transcripts and possible rRNAs and tRNAs, 
remaining 791 and 801 transcripts in SCN data set and RAD, 
respectively. Next, using CREMA, respectively, 590 and 435 
transcripts with a prediction score > 0.5 were chosen as candidate 
lncRNAs. The last filtration was conducted to remove the 
transcripts homologous to the protein-coding genes and known 
protein domains documented in the Pfam database, as well 
as the transcripts homologous to the housekeeping RNAs 
(including tRNAs, rRNAs, snRNAs, and snoRNAs) in the Rfam 
database. This filtration resulted in 384 and 283 potential 
lncRNAs in SCN data set and RAD, respectively. The output 
of each filtering step in the lncRNA identification pipeline is 
presented in Table  1. Sequences of the identified lncRNAs, 
along with their genomic locations, are provided in Data S1.

As shown in Figure  2A, most of the identified lncRNAs 
in both data sets belonged to the “u” class code with 304 
(79%) and 212 (74.9%) lncRNAs, respectively. The “o” class 
was the second dominated class, containing 73 (19%) and 67 
(23.67%) lncRNAs in SCN data set and RAD, respectively. In 
both data sets, the least amount of lncRNAs fell into the “i” 
and “x” classes. Further investigation on the length distribution 
of lncRNAs indicated that the length density distribution of 
lncRNAs in SCN data set was not much different from those 
of RAD, and the majority of lncRNAs were shorter than 2,500 nt 
(Figure 2B). However, in a specific length (200–7,967 nt), SCN 
data set’s lncRNAs appeared in a higher density than the RAD’s 
lncRNAs (Figure  2B).

Homology Search
To get a deeper understanding about the evolutionary 
conservation of lncRNAs, here we aligned all identified lncRNAs 
with previously predicted plant lncRNA sequences available in 

the CANTATAdb v.2.0, GreeNC, and PLncDB v.2.0. According 
to the BLAST search results, 188 SCN-related lncRNAs  
(~ 49% of all identified lncRNAs in the SCN data set) had 
at least one significant hit (Supplementary Table S2) in at 
least one of the non-coding databases, whereas, of 283 putative 
lncRNAs identified in the RAD, 132 lncRNAs (~ 47%) showed 
at least one significant hit (Supplementary Table S3). In detail, 
7.29 and 8.13% of detected lncRNAs in SCN data set and 
RAD had significant hits only in the CANTATAdb database. 
Around 12% of lncRNAs in SCN data set and 8.83% in RAD 
showed significant homology with lncRNA sequences in the 
GreeNC database. In contrast, a higher proportion of lncRNAs, 
13.54 and 14.49%, respectively, in SCN data set and RAD, 
had significant hits in PLncDB. Finally, only 2.86% of lncRNAs 
in SCN data set (Figure  2C) and 3.53% in RAD (Figure  2D) 
showed significant hits in all three databases.

To further verify the reliability of identified lncRNAs, 
we  compared the pulled-out lncRNAs to those provided in 
soybean (Golicz et  al., 2018; Lin et  al., 2020). The results 
indicated that 81 lncRNAs found in the SCN data set had 
significant homology with 76 loci in the study of Golicz et  al. 
(2018), while 236 lncRNAs were homologous to 229 loci detected 
by Lin et  al. (2020) (Golicz et  al., 2018; Lin et  al., 2020). 
Among RAD lncRNAs, 51 lncRNAs were matched to 48 loci 
identified by Golicz et  al. (2018), while 173 lncRNAs had 
homology with 166 loci in the study of Lin et  al. (2020). In 
a further assessment using the expression profile data provided 
by Golicz et  al. (2018), the lncRNAs that had significant 
homology with lncRNAs in Golicz’s study and were highly 
expressed in roots were identified and visualized via heatmaps 
(Supplementary Figures S1, S2). Their expression patterns in 
our data sets were also investigated. Among these identified 
lncRNAs, only two lncRNAs (MSTRG1600.1 and MSTRG1206.1) 
were found to be expressed in the SCN data set. The expression 
of MSTRG1600.1 was detected in infected samples so that the 
incremental changes in the expression of this lncRNA were 
observed from N5 toward N15. Likewise, an increased expression 
was detected for MSTRG1206.1  in N15 compared to N10. 
This remarkable upward expression trend of these two lncRNAs 
can reveal their potential role in soybean immune response 
to SCN. On the other hand, our results demonstrated the 
expression of two RAD lncRNAs (MSTRG.17157.1 and 
MSTRG.16268.1) in different control and infected samples. The 
remarkable upregulation of MSTRG.17157.1 was observed in 
the last time point after nematode inoculation (DAI12I) compared 
to DAI6I and DAI9I treatments. In contrast, MSTRG.16268.1 
was only expressed in DAI9I and DAI3I, with a downregulation 
in DAI9I compared to DAI3I. Following these results, these 
two lncRNAs can be considered as potential lncRNAs responsive 
to the reniform nematode invasion.

Characterization of TE Composition of 
lncRNAs
The evolution and biological function of lncRNAs can be directly 
linked to the existence and composition of TE insertions within 
different sites of lncRNA sequences. TEs are repetitive mobile 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Khoei et al. Insights Into the Nematode-Related lncRNAs in Soybean

Frontiers in Plant Science | www.frontiersin.org 7 December 2021 | Volume 12 | Article 779597

elements in the genome, and their composition in lncRNAs 
is proposed to affect the lncRNA functionality (Johnson and 
Guigó, 2014). Identification of TE composition of lncRNAs 
can thus unveil the link between structure and function of 
lncRNAs. Therefore, we  used BLAST tools to compare the 
lncRNA transcripts with TEs in the SoyBase database. According 
to the classification system based on the transposition mechanism, 
sequence homology, and structural relationships suggested by 
(Wicker et  al., 2007), several TE families belonging to class 
I (retrotransposons) and II (DNA transposons) were identified. 
Among lncRNAs of both studied data sets, LTR Copia (Ty1/
copia; RLC) and LTR Gypsy (Ty3/Gypsy; RLG) families of 
TEs in class I  were found in higher abundance compared to 
families grouped in class II (Figure  3). Furthermore, RLC 
with 23 TEs and RLG with 14 TEs were recognized as the 
largest families within SCN and RAD lncRNAs, respectively. 
In class II, mutator (DTM) and CACTA (DTC) families were 
identified with low abundance in both data sets, and no TEs 

belonging to PIF/Harbinger (DTH) and Tc1–Mariner families 
were detected among RAD lncRNAs.

Functional Enrichment Analysis of lncRNA 
Potential Target Genes
To identify the function of the lncRNA cis-regulated potential 
target genes, GO enrichment and KEGG pathway enrichment 
analyses were conducted on the genes located 100 Kbp upstream 
and downstream of lncRNAs. GO enrichment analysis of 
cis-target genes revealed that the major PPN response-associated 
GO terms including, “response to salicylic acid,” “cellular 
response to salicylic acid,” “response to jasmonic acid,” “response 
to unfolded protein,” “regulation of plant-type hypersensitive 
response,” and “regulation of cellular response to stress” were 
found in both SCN data set and RAD. Among these key 
enriched BPs, “response to salicylic acid,” “response to jasmonic 
acid,” and “regulation of cellular response to stress” exhibited 

A

B

C

D

FIGURE 2 | Characteristic features of lncRNAs identified in SCN data set and RAD. (A) Subdivision of lncRNAs according to the class codes (“u,” “x,” “i,” “o,” and 
“e”) determined by StringTie. (B) Length distribution of lncRNAs. Venn diagrams depicting the BLAST results of lncRNAs in (C) SCN data set and (D) RAD against 
CANTATAdb 2.0, GreeNC, and PLncDB v.2.0 databases.
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the highest number of lncRNA cis-regulated potential target 
genes in SCN data set. In general, the GO analysis demonstrated 
that lncRNA potential target genes in SCN data set and RAD 
were enriched similarly, but the number of genes enriched in 
a certain pathway was disparate. In RAD, “glyceraldehyde-3-
phosphate metabolic process,” “isopentenyl diphosphate 
biosynthetic/metabolic processes,” and “isopentenyl diphosphate 
biosynthetic process, methylerythritol 4-phosphate pathway,” 
while in SCN data set, “seed germination” and “response to 
jasmonic acid” were the specifically enriched GO terms 
(Figure 4). According to the KEGG pathway enrichment analysis, 
“glycolysis/gluconeogenesis” and “carotenoid biosynthesis” were 
significantly enriched among upstream and downstream mRNAs 
under both SCN and reniform nematode infestation (Figure 5).

Mining of DE-lncRNAs and ME-lncRNAs
To identify DE-lncRNAs, the differential expression analysis was 
carried out using DESeq2 package on the IDEAMEX web server, 
resulting in 42 and 111 potential DE-lncRNAs in SCN data set 
and RAD, respectively (Supplementary Tables S4 and S5). Among 
all identified lncRNAs, 141 lncRNAs were commonly shared 
between data sets (co-lncRNAs), in which 14 and 54 co-lncRNAs 
were DE-lncRNAs in SCN data set and RAD, respectively. The 
higher number of DE-co-lncRNAs in RAD can represent a more 
prominent role of lncRNAs in the reniform nematode defense 
response compared to SCN. To evaluate the expression pattern 
of DE-lncRNAs across all samples, a correlation analysis was 
performed using FPKM values. According to the heatmap of 
SCN DE-lncRNAs (Supplementary Figure S3), biological replicates 
of each time point were clustered together, suggesting the distinct 
expression profile of DE-lncRNAs under different time points. 
Comparing the expression level of DE-lncRNAs between infected 
and control samples displayed that the expression pattern of the 
DE-lncRNAs between N15 and control samples was highly distinct. 
The heatmap of RAD DE-lncRNAs indicated two completely 
segregated clusters, in which related replicates and samples were 
clustered together (Supplementary Figure S4).

Furthermore, the expression distribution of all identified 
lncRNAs, DE-lncRNAs, and mRNAs was investigated based 
on log2 fold change (logFC) values across all samples in both 
data sets, where mRNAs showed a higher range of logFC 
(−15 < logFC < 15) compared to lncRNAs. In the SCN data set, 
the highest density of mRNAs was observed under the 
approximate logFC range of −1 to −3 and 2 to 3. A large 
proportion of lncRNAs displayed logFC between −2 and 2. 
Unlike all lncRNAs, DE-lncRNAs showed a higher expression 
distribution, and the highest density of DE-lncRNAs represented 
the approximate range of logFC between 2 and 4. In RAD, 
a large proportion of mRNAs appeared with −1 < logFC < 3, 
while the logFC of all lncRNA and DE-lncRNAs was similarly 
distributed in the range of −2 to 2 (Figure  6).

Using the MFSelector method, the ME-lncRNAs with strong 
monotonically changed patterns over time were separately identified 
in the SCN data set and RAD. The obtained ME-lncRNAs with 
the descending and ascending expression pattern are provided 
separately for SCN data set and RAD in Supplementary Tables S6 
and S7. According to results, among 384 SCN-associated lncRNAs, 
81 lncRNAs were expressed in descending order, among which 
three were DE-lncRNAs. In addition, 117 lncRNAs were expressed 
in ascending order, six of which were DE-lncRNAs. Among 
lncRNAs identified in the RAD database (283), 31 and 35 lncRNAs 
were expressed in ascending and descending order, respectively, 
within control samples. Four and seven ME-lncRNAs were also 
shared with DE-lncRNAs in the list of ascending and descending 
lncRNAs. Among infected RAD samples, we found 45 ME-lncRNAs 
expressed in descending order, of which six were also DE-lncRNAs. 
Furthermore, out of 36 lncRNAs expressed in ascending order, 
two ME-lncRNAs were found to be  DE-lncRNAs.

LncRNA Expression Study by Real-Time 
PCR
The real-time PCR analysis was utilized to confirm the expression 
patterns of nine lncRNAs (Figure 7) including seven DE-lncRNAs 
from RAD and SCN data set, and two lncRNAs predicted to 
be  target mimics of nematode-responsive miRNAs. LncRNAs 
were selected according to their target genes, whose pivotal 
roles were previously demonstrated in response to nematode 
infection. The results of examined lncRNAs by qPCR were almost 
concordant with the RNA-seq results, reflecting the accuracy 
of the RNA-seq data. Interestingly, some lncRNAs, including, 
MSTRG.18099.1, MSTRG.17118.1, MSTRG.8304.1, and 
MSTRG.12578.1, rendered a similar trend of expression in 
response to both SCN and reniform infection, suggesting a 
general lncRNA-mediated defense response in soybean against 
PPNs. On the other hand, some lncRNAs exhibited nematode 
type-dependent regulatory behavior. For instance, in response 
to SCN, MSTRG.20884.1 was upregulated over different time 
points, while under the reniform treatments, it was downregulated. 
Contrariwise, MSTRG.19778.1 appeared with a negative regulatory 
role under SCN infection, whereas, in response to reniform 
nematode, its expression indicated a positive regulatory role. In 
addition, the expression pattern of two lncRNAs predicted to 
be target mimics of nematode-responsive miRNAs was validated 

TABLE 1 | Performance of each filtering step in the lncRNA identification pipeline 
in SCN data set and RAD.

Step SCN data set RAD

Total transcripts assembled by 
StringTie

106,215 119,916

Potential novel transcripts (class code: 
i, u, x, o, e)

2,275 2,746

Filter transcripts with CPM >1 1,331 1,359
Coding potential prediction by FEElnc 1,285 1,286
Filter transcripts with length > 200 bp, 
and <10,000 bp

1,174 1,194

Coding potential prediction by CPC2 804 814
Removal of rRNAs and tRNAs 791 801
Prediction of lncRNAs by CREMA 590 435
BLAST against UniProt, Pfam, and 
Rfam databases and removal of the 
significant hits

384 283

Potential lncRNAs with differential 
expression

51 111

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Khoei et al. Insights Into the Nematode-Related lncRNAs in Soybean

Frontiers in Plant Science | www.frontiersin.org 9 December 2021 | Volume 12 | Article 779597

by qPCR. These lncRNA-miRNA pairs, MSTRG.17076.2-gma-
miR156aa/z and MSTRG.11150.1-gma-miR319p, should be further 
investigated for their potential role in the regulation of response 
to nematodes in soybean.

Predicting the lncRNAs Interaction With 
DEGs
In addition to lncRNA-mediated transcriptional regulation of 
the adjacent genes (cis-regulated target genes), lncRNA-mediated 

FIGURE 4 | GO enrichment (BP: biological process) of genes located 100 Kbp upstream and downstream of lncRNAs.

FIGURE 3 | Barplot of the number of TEs by their family found within SCN- and RAD-associated lncRNAs.
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regulation is also carried out by base pairing with complementary 
mRNAs (Yan et  al., 2020). Hence, we  employed LncTar3 to 
predict lncRNA trans-regulated target genes. According to the 

3 http://www.cuilab.cn/lnctar

results, a total of 23 and 32 DEGs were found to be  potential 
lncRNA target genes in SCN data set and RAD, respectively. 
Regarding the annotation of these identified DEGs (DE target 
genes), the potential PPN-responsive genes, including, 
Glyma.01G007100.1 (ABS3), Glyma.01G008200.1 (ABCB15), 

FIGURE 5 | KEGG enrichment of genes located 100 Kbp upstream and downstream of lncRNAs.

FIGURE 6 | The expression distribution of the lncRNA and mRNA transcripts under SCN and reniform infestation. The width of the bean diagram represents the 
density (frequency) of the transcripts under a certain logFC (expression) value.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://www.cuilab.cn/lnctar


Khoei et al. Insights Into the Nematode-Related lncRNAs in Soybean

Frontiers in Plant Science | www.frontiersin.org 11 December 2021 | Volume 12 | Article 779597

Glyma.10G269400.5 (BBX27), Glyma.10G269700.1 (BAT1), 
Glyma.13G029200.1 (scpl40), Glyma.13G210100.1 (AT1G49330.1), 
and Glyma.19G106700.1 (XTH5), were identified in SCN data 
set. Similarly, the DE target genes were found in RAD to 
be  involved in the soybean immune responses to PPNs. These 
DEGs included Glyma.02G059400.1 (GATL2), Glyma.02G248500.1 
(ATEXP4), Glyma.07G070200.1 (CDKB2;2), Glyma.07G089000.2 
(VIL1), Glyma.08G091500.1 (GAD), Glyma.13G069900.1 
(GASA14), and Glyma.14G075800.2 (EXA1). Among the DE 
target genes detected in SCN data set, no annotation was found 
for Glyma.10G052400. Additionally, in RAD, Glyma.02G265200, 
Glyma.02G265300, and Glyma.02G265500 were not annotated. 
These genes can potentially be  specific players of the PPN 
immune response in soybean.

The expression profile of SCN DE targets across all samples 
displayed that infected samples were clustered together, while 
control samples were separated (Supplementary Figure S5). Similar 
to lncRNAs, the heatmap of RAD-DE targets displayed two distinct 
clusters in which related samples were clustered together 
(Supplementary Figure S6). A comparison between the expression 
pattern of the potential PPN-associated DE targets and their 
regulatory lncRNAs exhibited an opposite pattern in infected 
samples compared to the controls. For instance, this negative 
correlation was observed between Glyma.10G052500.1 (CRPK1) 
and MSTRG.18338.1  in N5 compared to control, and between 
Glyma.10G269400.5 (AT1G68190.1; B-box zinc finger family 

protein) and MSTRG36158.1, Glyma.10G269700.1 (BAT1) and 
MSTRG.4058.1, and also between Glyma.13G029200.1 (scpl40) 
and MSTRG.27380.1 in N10, compared to control samples. Besides, 
the opposite expression pattern between Glyma.11G091400.1 
(ATFP6) and MSTRG.36158.1 and MSTRG.36243.1 lncRNAs, 
Glyma.13G210100.1 (AT1G49330.1; hydroxyproline-rich glycoprotein 
family protein: HRGP) and MSTRG.11812.1, MSTRG.11233.1, and 
MSTRG.36158.1, and between Glyma.19G106700.1 (EXGT-A4) and 
MSTRG.36158.1, demonstrated the strong correlation between the 
aforesaid lncRNAs and their related targets. The functional 
relationship could be  inferred from this association, although 
further analysis is needed to validate. Likewise, in the RAD, these 
opposite expression patterns were deciphered between lncRNAs 
and their PPNs-related DE targets. For instance, the probable 
lncRNA-mediated regulation was detected for Glyma.02G248500.1 
(ATEXP4; by MSTRG.12578.1), as well as for Glyma.08G091500.1 
(GAD; regulated by MSTRG.38154.1), and Glyma.13G069900.1 
(homolog of AT5G14920.1; Gibberellin-regulated family protein; 
regulated by MSTRG.19778.1) in the infected samples compared 
to the control.

Prediction of miRNA Mimics Using 
lncRNAs
To decipher the crosstalk between lncRNAs and miRNAs in 
soybean against nematode infection, lncRNAs that may act as 

FIGURE 7 | Relative expression of lncRNAs by qPCR Transcript levels of nine selected lncRNAs in roots of soybean plants under similar conditions to SCN data 
set and RAD and in three biological replicates. Bars show mean values of these replicates (+/− standard deviation).
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eTMs were predicted using psMimic algorithm (Wu et  al., 
2013; Supplementary Table S8). According to the results, a 
total of 15 lncRNAs identified in the SCN data set were 
predicted to be  potential eTMs for 17 miRNAs. Among them, 
only one lncRNA (MSTRG.26464.1) was found to be DE-lncRNA. 
Searching for eTMs in RAD revealed six lncRNAs as potential 
eTMs for seven miRNAs. Four lncRNAs were among DE-lncRNAs 
(MSTRG.2711.1, MSTRG.17076.2, MSTRG.26588.1, and 
MSTRG.26609.1). Our results showed the presence of eTM 
sequences within some important classes of conserved miRNAs 
including miR156, miR319, and miR396, whose crucial role 
has been illustrated in response to nematode invasion (Hewezi 
et  al., 2012; Zhao et  al., 2015; Yin et  al., 2019). In this study, 
we  identified several eTM hits with different family members 
of miR156 (gma-miR156aa, gma-miR156z, gma-miR156g, and 
gma-miR156b in SCN data set; gma-miR156aa, and gma-miR156z 
in RAD), miR319 (gma-miR319p in SCN data set and RAD), 
and miR396 (gma-miR396a-3p in SCN data set), which can 
manifest the function of corresponding lncRNAs regarding 
PPN infection.

In further analysis, using psRobot toolbox, we  identified 
177 and 464 putative unique target genes for seven and 16 
miRNAs in SCN data set and RAD, respectively, that previously 
exhibited mimicry with lncRNAs (Supplementary Table S9). 
Among predicted target genes identified in SCN data set, genes, 
such as Glyma.01G050100 (AT-EXP1; gma-miR1533 target gene), 
Glyma.06G259800 (DSC1; gma-miR1533 target gene), 
Glyma.14G089090 (AtGRF1; gma-miR1535a target gene), 
Glyma.17G192000 (AAP6; gma-miR156g target gene), and 
Glyma.09G270000 (SCR; gma-miR9722 target gene), were found 
as the putative nematode-related genes. In RAD, the major 
target genes associated with nematode stress response included 
Glyma.02G255800 (AUX1; gma-miR5369 target gene), 
Glyma.20G047600 (ATMYB33; gma-miR319p target gene), and 
Glyma.14G078600 (AOS; gma-miR9725 target gene).

LncRNA-mRNA Co-expression Study 
Under PPN Infestation
In the current study, WGCNA analysis was applied to study 
the co-expression of lncRNAs and mRNAs in response to two 
main destructive PPN species, H. glycines and R. reniformis, 
in soybean. Using hierarchical clustering of 1-TOM and the 
DynamicTree Cut algorithm on 4,109 unique DEGs and 51 
DE-lncRNAs identified in SCN data set, 21 modules with 
distinct colors were identified. The dynamic clustering modules 
were merged based on the module eigengene (the most 
representative gene expression in a module) similarity (≥0.8) 
and reduced to eight modules ranging in size from 128 to 
976 genes in each module (Table  2). A similar analysis was 
performed on 2,400 unique DEGs and 111 DE-lncRNAs of 
the RAD, resulting in 14 modules that were labeled with 
different colors. Modules with highly correlated eigengenes 
were merged and lessened to 12 modules with a size range 
of 61 to 594 genes in each module (Table  2). Among 12 
identified co-expression modules, the brown ones with 50 
lncRNAs encompassed the highest number of DE-lncRNAs. 

After that, the green, black, and magenta modules with 15, 
10, and 8 lncRNAs were, respectively, recognized as modules 
with the maximum number of DE-lncRNAs.

The dynamic modules and the merged dynamic modules 
have been displayed in Supplementary Figure S7 and S8 for 
SCN data set and RAD, respectively. Based on this analysis, 
128 transcripts (including 127 DEGs and one DE-lncRNAs) 
obtained from SCN data set and 594 (including 589 DEGs 
and five DE-lncRNAs) from RAD were not assigned to any 
co-expressed module and classified into the grey module. The 
red module in SCN data set with 14 DE-lncRNAs, and the 
brown module in RAD with 50 DE-lncRNAs encompassed 
the largest number of DE-lncRNAs.

Further investigation among genes and lncRNAs of each 
module detected novel relationships between DE-lncRNAs and 
nematode-associated DEGs. For instance, in the red module 
of the SCN data set, the potential lncRNA/mRNA crosstalk-
mediated modification of cell wall structure in response to 
SCN infection was identified through co-expression of 14 
identified DE-lncRNAs with already known wall-modifying 
DEGs including a HRGP and xyloglucan endotransglycosylase/
hydrolase43 (XTH43). Furthermore, in the current study, the 
potential lncRNA/mRNA crosstalk-mediated signaling cascade 
against nematode infection was detected between lncRNAs and 
leucine-rich repeat receptor-like protein kinases (LRR-RLKs), 
CBL-interacting protein kinase (CIPK), and BRI1-associated 
receptor kinase (BAK1) as neighboring signal transduction-
related DEGs under nematode invasion. In green module, 
several associations were detected between 12 DE-lncRNAs 
and genes including a RING/U-box superfamily gene, HRGP, 
an aldolase-type TIM barrel family gene, laccase7 (LAC7), a 
copper transport protein family gene, auxin response factor8 

TABLE 2 | The number of DEGs and DE-lncRNAs in each co-expression 
module in SCN data set and RAD.

Total num. DEG num. DE-lncRNA num.

SCN data set

Cyan 976 968 8

Green 892 880 12
Grey 128 127 1
Light cyan 432 424 8
Midnight blue 137 135 2
Purple 160 159 1
Red 779 765 14
Royal blue 656 651 5

RAD

Black 93 83 10
Blue 395 392 3
Brown 285 235 50
Green 118 103 15
Green yellow 66 64 2
Grey 594 589 5
Magenta 554 546 8
Pink 85 83 2
Purple 80 77 3
Red 111 107 4
Salmon 61 56 5
Tan 69 65 4
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(ARF8), a MYB domain-containing gene, and several heat shock 
protein (HSP) genes. The co-expression of eight DE-lncRNAs 
with nitrite reductase and ACC oxidase genes in the lightcyan 
module, two DE-lncRNAs with galactinol synthase, a drought-
induced gene, NAC and MADS-box family genes in the midnight 
blue module, eight DE-lncRNAs with the pectin lyase-like 
superfamily gene and UDP-Glycosyl transferase in the cyan 
module, five DE-lncRNAs with UDP-D-galactose 4-epimerase5, 
plasma membrane intrinsic protein (PIP), WUSCHEL-related 
homeobox (WOX), and ABC transporter family gene in the 
royal blue module, and finally one DE-lncRNAs with several 
EXPs in the purple module unraveled the possible association 
between lncRNAs and important pathogenesis-related genes 
in soybean. Similar to SCN data set, In RAD, the novel 
associations among DE-lncRNAs and the major nematode-
responsive DEGs were elegantly recognized in all 12 identified 
modules. For instance, the potential associations were observed 
between 50 lncRNAs and nuclear transport factor 2 family 
gene (NTF2) and RING/FYVE/PHD zinc finger superfamily 
protein in the brown module. Besides, in the green module, 
the potential relationship was detected between 15 DE-lncRNAs 
and neighboring nematode resistance-related genes such as 
GRAS, bZIP, ABC1, and MEKK family members, as well as 
glutathione synthetase2 (GSH). In the rest of the modules, 
DEGs including glycosyl hydrolases family gene (in the black 
module), Aquaporin-like superfamily gene (in the blue module), 
signal peptide peptidase-like2 gene (in the greenyellow module), 
and CAP (cysteine-rich secretory proteins, antigen5, and 
pathogenesis-related1 protein) superfamily gene (in the magenta 
module) were some of the nematode response-associated genes 
identified in RAD.

To find significantly correlated modules with the nematode 
infestation response, Pearson’s correlation coefficients between 
module eigengene values in each module and the dpi traits 
(as the individual gene expression values under CR, N5, N10, 
and N15 treatments related to SCN data set) were calculated. 
According to the heatmap of the module-trait relationship 
(Figure 8), significantly correlated modules generally displayed 
low correlation coefficient values. The green module was 
correlated negatively with CR and positively with N10. The 
red module was also inversely correlated with CR while positively 
correlated with N15. This positive correlation suggests the 
presence of upregulated eigengenes under N10 and N15 
treatments in the green and red modules, respectively. The 
purple module had a significant positive correlation with N5 
while conversely had a significant negative correlation with 
N10. These opposite correlation coefficient values can represent 
the remarkable changes in the gene expression profiles between 
N5 and N10 treatments. Besides, a similar analysis was performed 
between module eigengenes and DAI traits (DAI12C, DAI12I, 
DAI3C, DAI3I, DAI6C, DAI6I, DAI9C, and DAI9I) in RAD 
(Figure  9). In this data set, the salmon module positively 
correlated with DAI3C while negatively correlated with DAI3I. 
This negative correlation represents the presence of downregulated 
eigengenes under DAI3I treatment. The brown module was 
inversely correlated with DAI3I, as well. The significant positive 
correlation observed in the modules including tan (under 

DAI12I), blue (under DAI3I), red (under DAI12I), magenta 
(under DAI6I), and purple (under DAI9I) demonstrated the 
presence of upregulated genes that can regulate soybean immune 
response to PPNs.

DISCUSSION

PPNs are the most ruinous pathogens in soybean that lead 
to serious damages and severe yield loss (Bandara et al., 2020). 
Due to their sophisticated parasitizing strategies, comprehensive 
assessments are required to get meticulous insight into the 
underlying resistance mechanisms in soybean. In recent years, 
novel regulatory pathways involved in plant-nematode interplay 
have been revealed through genome-wide characterization of 
nematode-responsive lncRNAs (Li et  al., 2018c). In addition, 
novel regulatory layers of gene expression in several plant 
species have been identified via unraveling the interaction 
between miRNAs and lncRNAs (Meng et  al., 2021). Although 
some of the potential pathways, networks, and associated 
components that are involved in nematode response and modulate 
nematode resistance in soybean have been detected through 
various transcriptome analyses, lncRNA-mediated nematode 
defense responses are poorly understood in this species. Hence, 
in the present study, we  undertook genome-wide identification 
of lncRNAs linked with two nematode species (SCN and 
reniform nematode) followed by (1) assessment of the 
evolutionary conservation of identified lncRNAs, (2) 
characterizing TE content of lncRNAs, (3) the differential 
expression analysis, (4) characterization of the ME-lncRNAs 
with a strong monotonic pattern among different time points, 
(5) functional annotation of lncRNAs via prediction of potential 
cis- and trans-target genes, (6) detection of the crosstalk between 
lncRNAs and miRNAs under nematode invasion, and finally, 
(7) construction of soybean’s lncRNA-mRNA co-expression 
networks using WGCNA analysis. At the end, the probable 
regulatory mechanisms of lncRNAs and their potential and 
well-studied target genes in response to SCN and reniform 
infection in soybean were proposed in network models 
(Figure  10).

Upon application of a multi-step pipeline, lncRNAs and 
DE-lncRNAs were detected in SCN data set and RAD, respectively. 
The number of lncRNAs, co-lncRNAs, DE-lncRNAs, and co-DE-
lncRNAs could reveal the specific function of lncRNAs in 
response to particular nematode species, additionally highlight 
SCN-/RAD-associated lncRNAs for further confirmation-based 
experiments. The conservation of lncRNAs was further evaluated 
using homology search against the three plant lncRNA sequences 
database; CANTATAdb, GreeNC, and PLncDB, and recently 
reported lncRNAs in soybean (Golicz et  al., 2018; Lin et  al., 
2020). The results of this analysis deciphered the potential 
role of MSTRG.12060.1  in SCN immune response. Regarding 
the functional annotation of lncRNAs provided by (Golicz 
et al., 2018), the involvement of MSTRG.12060.1 in the benzene-
containing compound metabolic process was predicted. This 
BP is recognized as the defense-related pathway in wheat under 
cereal cyst nematode (CCN; Heterodera avenae) infestation 
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(Kong et  al., 2015). Moreover, the potential role of 
MSTRG.17157.1  in RAD immune response was detected in 
the current study. This lncRNA was previously suggested to 
have a role in the endocytosis process (Golicz et  al., 2018). 
Once the pathogenic organisms invade host cells, the endocytosis 
process is activated to induce signal transduction through 
surface-localized immune receptors. Thereupon, the polarized 
secretion delivers antimicrobial compounds, components of the 
cell wall, and defense proteins to invasion sites (Gu et  al., 
2017). Therefore, MSTRG.17157.1 might participate in plant 
immune activation in the early hours after nematode invasion.

In this study, the identified lncRNAs in SCN have shown 
to contain 14.1% of TEs sequences with LTR Copia and LTR 
Gypsy as the most abundant families (42.6%). In RAD, 9.9% 
of lncRNAs contained TE sequences highlighting an 
overrepresentation of LTR Gypsy (50%) followed by LTR Copia 
(35.7%). TE-derived sequences proportion of lncRNAs detected 
in this study was compared with other species, and their 
contribution found to be  very variable depending on the 
considered lncRNA under different conditions. Some plant 

species represented the remarkable proportion of TE-lncRNAs. 
For instance, 65% of Zea mays lncRNAs (Lv et  al., 2019) and 
53% of Oryza sativa lncRNAs (Zhou et  al., 2021) contained 
sequences that appear to be  derived from TEs. On the other 
hand, some plant species, such as Brachypodium distachyon 
with 8% (De Quattro et  al., 2017), Aegilops tauschii with 19%, 
and Triticum urartu with 27% (Pieri et  al., 2018), exhibited 
less proportion of lncRNAs which can be  attributed to TEs. 
Regarding these findings, these differences can demonstrate 
that TEs are likely to be leading actors of the swift evolutionary 
turnover of lncRNAs among various species (Etchegaray et  al., 
2021). Despite the differences between the species, LTR Gypsy 
elements contribute TE-lncRNAs at a highest proportion. For 
example, LTR Gypsy with 62.5% in Zea mays, 59% in Oryza 
sativa, and 80.5% in Brachypodium distachyon reflected its 
predominance compared to other TE families. Unlike protein-
coding genes, in which a newly discovered loci can be  easily 
annotated through homologous genes of known function, in 
lncRNAs, due to lack of characterized homologs, the annotation 
is delimited (Smith and Mattick, 2017; Golicz et  al., 2018). 

FIGURE 8 | The heatmap of module-traits relationships in SCN data set. The heatmap illustrates correlations between module eigengenes and dpi traits. The 
numbers represent Pearson’s correlation coefficients and p-values. The color legend represents the strength and direction of correlations.
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Hence, we  implemented the functional enrichment analysis of 
lncRNA cis-target genes to explore the potential functions and 
relevant regulatory mechanisms of lncRNAs. GO enrichment 
analysis of neighboring genes detected enrichment of BPs that 
are involved in nematode infection responses, among which, 
“response to salicylic acid” and “response to jasmonic acid” 
BPs were recognized as significantly enriched nematode response-
related pathways. Nematodes are able to trigger complicated 
alterations in hormone biosynthetic and signaling pathways 
(Kammerhofer et  al., 2015). On the other hand, crosstalk 
between different hormone signaling pathways leads to immune 
responses in plants (Klessig et  al., 2018), and both salicylic 
acid (SA)- and jasmonic acid (JA)-dependent systemic acquired 
resistance (SAR) are shown to be induced in nematode-infected 
Arabidopsis thaliana (Arabidopsis) roots (Hamamouch et  al., 
2011). Several studies indicated that JA and SA pathways shape 
the backbone of the plants’ immune signaling network (Mbaluto 
et  al., 2021). It is indicated that the induction of resistance 
to phytonematodes in tomato is correlated with the SA content 

(Zinov’eva et  al., 2011). Additionally, the probable involvement 
of the endogenous SA has been remarked in Mi-1-mediated 
defense responses and in lesion formation in sites directly 
exposed to root-knot nematode (RKN) invasion (Molinari and 
Loffredo, 2006). Likewise, the functional annotation of DEGs 
in sweet potato (Lee et  al., 2021) and in cotton (Kumar et  al., 
2019) demonstrated “response to salicylic acid” as the key 
enriched BP against nematode infestation. The role of JA, as 
another plant signaling compound, has been investigated upon 
nematode infection in different plant species (Hamamouch 
et  al., 2011; Fan et  al., 2015; Regis, 2015; Singh et  al., 2020). 
JA-mediated tolerance against RKN infection is reported through 
alteration in the photosynthetic and antioxidative defense 
mechanisms in tomato plants (Bali et  al., 2018).

In the current study, “endoplasmic reticulum unfolded protein 
response” was also found as one of the enriched GO terms. 
Different stressors, including PPNs, usually lead to the 
accumulation of unfolded proteins in the endoplasmic reticulum 
of plant cells, following which the drastic need for protein 

FIGURE 9 | The heatmap of module-traits relationships in RAD. The heatmap illustrates correlations between module eigengenes and DAI traits. The numbers 
represent Pearson’s correlation coefficients and p-values. The color legend represents the strength and direction of correlations.
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folding is signaled (Kandoth et  al., 2011) and the unfolded 
protein response (UPR) as a conserved stress response is 
activated (Bao and Howell, 2017). “Pyruvate metabolic process” 
was recognized as another significantly enriched nematode 
response-related pathways. Although the obvious involvement 
of pyruvate metabolic process has not reported in response 
to phytonematodes, it has been displayed that pyruvate directly 
and indirectly associated with diminishing oxidative damages 
induced by various stresses (Savchenko and Tikhonov, 2021). 
“Isopentenyl diphosphate metabolic/biosynthetic processes” were 
another detected enriched BPs against PPNs infestation. 
Isopentenyl diphosphate (IPP) has been identified as the precursor 
for terpenoids biosynthesis which is involved in plant direct 
defense (Vieira et  al., 2019). The inhibitory role of these 
metabolites has been found against the RKN larvae (Ohri and 
Pannu, 2009). GO analysis was revealed enrichment of 
“establishment of protein localization to membrane.” This term 
contains direct descendants terms including, “protein targeting 

to membrane,” “protein transport out of plasma membrane 
raft,” and “protein transport into membrane raft” which contribute 
in defense response through major membrane transport proteins 
such as ATP-binding cassette (ABC) proteins, identified as the 
predicted target for MSTRG.36158.1 in this study. The members 
of this protein family found to be  involved in detoxification 
pathways to reduce toxic compounds through pumping of 
PPN’s xenobiotic metabolites. These proteins have also been 
also recognized as potential target to control PPNs (Kooliyottil 
et  al., 2020).

Results of the KEGG enrichment analysis indicated the 
significant enrichment of “glycolysis/gluconeogenesis” among 
lncRNA’s neighboring protein-coding genes. Since the female 
nematodes need a large amount of energy, genes involved in 
glycolysis/gluconeogenesis are upregulated during nematode 
feeding. This has been reported in soybean roots infected by 
SCN (Matthews et  al., 2011). The “carotenoid biosynthesis” was 
another significantly enriched pathway under both SCN and 

A B

FIGURE 10 | The schematic representation of probable regulatory mechanism in response to PPNs infection in soybean. The proposed model illustrating the SCN-
associated pathways (A) and reniform-associated pathways (B) in which lncRNAs regulate their nematode-responsive target gene expression (including protein-
coding genes and TFs). Additionally, in this model, the involvement of lncRNAs in miRNA-mediated regulation of gene expression under nematode infection has 
been displayed. The heatmaps represent the expression patterns of lncRNAs and their potential target genes in each sample.
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reniform nematode invasion. A positive correlation between rice 
susceptibility to RKN and accumulation of chlorophyll/carotenoid 
precursors was detected (Kyndt et  al., 2017). The authors 
hypothesized that accumulation of chlorophyll and carotenoid 
precursors might be advantageous to nematode infection, which 
leads to enhanced susceptibility of rice against RKN.

To elucidate the interaction between lncRNAs and DEGs, 
trans-regulated target genes were predicted using lncTar, and 
their expression profile was compared with lncRNA’s expression 
profile across all samples. Among predicted DE targets, there 
were genes whose expression pattern was opposite to their 
complementary lncRNAs. For instance, a protein kinase 
superfamily (Glyma.10G052500) gene and a B-box zinc finger 
family (Glyma.10G269400) gene were detected as DE targets, 
which might be  negatively regulated by MSTRG.18338.1 and 
MSTRG.36158.1, respectively. Rambani et  al. (2015) showed 
that SCN infection induces the formation of multinucleated 
feeding sites or syncytium, whose etiology includes DNA 
methylation and expression changes of genes. In detail, genes 
involved in signal transduction and regulation including B-box 
zinc finger and protein kinases were found as syncytium 
differentially methylated genes (Rambani et al., 2015). Regarding 
these observations and the results of SCN data set analysis, 
we  suggest that both SCN-dependent differential methylation 
and lncRNA-mediated regulation can modulate the expression 
of protein kinase superfamily and B-box zinc finger family genes.

Bidirectional amino acid transporter1 (GmBAT1) was identified 
as another DE target that was potentially suppressed by 
MSTRG.4058.1. Due to the lack of aspartate kinase in nematodes, 
they are not capable of synthesizing lysine, threonine, methionine, 
and isoleucine amino acids. Hence, they have to supply amino 
acids from host plants by manipulating their metabolism (Frey, 
2019). Arabidopsis AtBAT1 has been detected to export glutamate 
and lysine (Guo et  al., 2019). Until now, there is no evidence 
about how nematodes reprogram BAT1 expression to deliver 
required amino acids. The downregulation of this gene in infected 
samples (N5 and N10), may imply that MSTRG.4058.1 (suppression 
of BAT1) can inhibit providing essential amino acids to SCN’s 
feeding sites. Serine carboxypeptidase (SCP)-like40 (GmSCPl40)/
MSTRG.27380.1 is another potential trans-target/lncRNA pair. 
The SCP family encodes a disparate range of enzymes involved 
in the degradation and processing of proteins, and several SCP 
proteins are involved in the production of secondary metabolites 
(Fraser et  al., 2005). The role of SCPs in the parasitic process 
of the Radopholus similis PPN was functionally investigated by 
(Huang et  al., 2017), and the notable induction of SCP was 
reported by (Puthoff et  al., 2007) across different time points 
in SCN-inoculated soybean roots (Puthoff et  al., 2007; Huang 
et  al., 2017). In the current study, the significant upregulation 
of SCPl40, probably mediated by MSTRG.27380, in N10 compared 
to control samples, suggests the probable positive role of SCPl40 
in soybean immune response to SCN. HRGP (target of 
MSTRG.11233.1), as the essential cell wall-associated protein, 
was an overexpressed gene in N15 compared to N5. The 
involvement of HRGP in cell wall resistance and inhibition of 
pathogen’s spatiotemporal ramification through arresting pathogen 
at the invasion site has been reported in multiple studies (Deepak 

et  al., 2010; Xie et  al., 2011; Hijazi et  al., 2014; Rashid, 2016). 
Additionally, the role of HRGP in conferring SCN resistance 
to soybean plants has been displayed (Zhao et  al., 2017). In 
our study, the HRGP/MSTRG.11233.1 interaction can approve 
lncRNA-mediated cell wall resistance against SCN in soybean. 
Xyloglucan endotransglucosylase/hydrolase (XTH) is recognized 
as a cell wall-modifying gene, and its downregulation was detected 
in SCN-colonized root pieces (Tucker et  al., 2010). In line with 
this, the descending expression pattern was found for this gene 
over the course of time series. Interestingly, elevated expression 
was observed for MSTRG.36158.1 (potential regulatory lncRNA 
of XTH) over time up to 10 days after infection. XTH5 has 
been turned out to be  involved in the construction of cell wall 
during growth and differentiation through cleavage of xyloglucan 
polymers, a substantial constituent of the primary cell wall 
(Worthington et  al., 2021). Since improving the root cell wall 
resistance is one of the defense mechanisms to restrict nematode’s 
stylet penetration into cells (Sato et  al., 2019), we  can assume 
that modification of cell wall structure might occur through 
MSTRG.36158.1-mediated suppression of XTH5.

Similar to the SCN data set, in RAD, the interplay between 
lncRNAs and DE target genes was investigated. Among target 
genes, homolog of Arabidopsis Expansin4 (AtEXP4) was found 
to be  potentially regulated by MSTRG.12578.1. Expansin genes 
encode cell wall loosening agents and regulate root growth by 
influencing the non-covalent bonds between cellulose and 
hemicellulose (Samalova et al., 2020). Expansins not only participate 
in cell wall modification but also appear to induce and suppress 
host defenses (Ali et al., 2015). The induced expression of soybean 
homolog of AtEXP4 by MSTRG.12578.1  in the infected samples 
compared to control may explain the effect of reniform nematode 
on lncRNA/ATEXP4 expression reprogramming. Another 
PPN-associated DE target gene in RAD, which might be regulated 
by MSTRG.38154.1, was glutamate decarboxylase (GAD). This 
gene positively regulates the resistance against the northern RKN 
in tobacco (McLean et  al., 2003). This gene is involved in the 
synthesis of γ-aminobutyric acid (GABA), whose metabolism 
is activated following the invasion of various groups of pathogens 
and pests. The inhibitory effect of GABA on the neuronal 
transmission of insects as well as its regulatory role on the 
hypersensitive response has proved its capacity in host defense 
response (Tarkowski et  al., 2020). In our study, GAD appeared 
with an upward expression trend over the course of time series. 
This result suggests the positive regulatory role of GAD in 
response to the reniform nematode in soybean.

Apart from the independent regulatory role of each miRNA 
and lncRNA on mRNAs, lncRNAs can also act as eTMs to 
neutralize the gene silencing effect of miRNAs. The lncRNA-
miRNA interaction can modulate the transcriptome under different 
conditions (López-Urrutia et  al., 2019). In the current study, 
among target genes predicted by psRobot several genes were 
found to be  validated by degradome sequencing in different 
studies (Shamimuzzaman and Vodkin, 2012; Xu et  al., 2016; 
Zhou et  al., 2020) including, Glyma.12G032600 (gma-miR319 
target gene), Glyma.02G121300 (gma-miR156 target gene), 
Glyma.02G177500 (gma-miR156 target gene), Glyma.05G019000, 
(gma-miR156 target gene), Glyma.06G168600, Glyma.17G080700 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Khoei et al. Insights Into the Nematode-Related lncRNAs in Soybean

Frontiers in Plant Science | www.frontiersin.org 18 December 2021 | Volume 12 | Article 779597

(gma-miR156 target gene), Glyma.07G256700 (gma-miR1535 
target gene), and Glyma.13G159700 (gma-miR396a-3p target 
gene). In addition to deciphering crosstalk between conserved 
nematode-related miRNAs (miR156, miR319, and miR396) and 
lncRNAs, the novel potential regulatory components, including 
MSTRG.11794.1/MSTRG.15729.1-gma-miR1533, 
MSTRG.30640.1-gma-miR1535a, and MSTRG.10837.1/
MSTRG.33217.2-gma-miR9722 under SCN infection, were 
introduced. According to the psRobot results, gma-miR1533 is 
predicted to regulate soybean EXP1. This gene, as one of the 
cell wall-modifying genes under nematode infection, participates 
in nematode-induced syncytia formation in Nicotiana benthamiana 
roots (Liu et al., 2016). Homolog of Arabidopsis growth-regulating 
factor1 (AtGRF1) is predicted to be  targeted by gma-miR1535a. 
The pivotal role of AtGRF1 has been demonstrated in the 
reprogramming of root cells during SCN infection (Hewezi 
et  al., 2012). A GRAS family transcription factor (SCR: 
SCARECROW) is predicted as the target of gma-miR9722. In 
watermelon, the regulatory role of homolog of this gene has 
been revealed in red light-induced systemic resistance against 
RKN infection (Lv et  al., 2021). In RAD, MSTRG.2711.1-
gma-miR5369 and MSTRG.26588.1-gma-miR9725 are introduced 
as novel potential regulatory components in response to reniform. 
Auxin influx transporter (AUX1; gma-miR5369) is suggested to 
have a role in the establishment and maintenance of the nematode 
feeding sites by auxin transporting. Since auxin is essential for 
syncytia formation, levels of auxin have been found to be increased 
in nematode-infected roots (Hammes et  al., 2005; Ng et  al., 
2015; Lv et al., 2021). Allene oxide synthase (AOS; gma-miR9725 
predicted target gene) which is involved in oxylipin JA biosynthesis 
was detected to be induced by nematode infestation. The regulatory 
role of this gene in response to nematodes has been functionally 
investigated. For instance, loss of AtAOS gene function in 
Arabidopsis resulted in improved nematode resistance (Naor 
et al., 2018). The downregulation of AOS gene in infected samples 
of RAD supports the role of this gene in nematode resistance.

In this study, identified DE-lncRNA and DEG sets were 
employed to construct lncRNA-mRNA co-expression networks 
of soybean under SCN and reniform invasion using WGCNA. 
Under SCN infection, novel relationships were detected between 
the DE-lncRNAs and neighboring key nematode-associated genes 
in different modules, which can decipher lncRNA/mRNA interplay-
mediated immune response under nematode infection in soybean. 
For instance, co-expression of DE-lncRNAs with already known 
nematode-associated DEGs involved in modification of cell wall 
structure in response to SCN infection, such as HRGP and 
XTH43, and signaling cascade genes, such as LRR-RLKs, CIPK, 
and BAK1, was found. This was in agreement with previous 
studies on the involvement of these genes in soybean responses 
to (Jain et  al., 2016; Tang et  al., 2017; Zhao et  al., 2017; Ma 
et  al., 2020; Niraula et  al., 2020). In addition to nematode-
responsive protein-coding genes, the identification of co-expressed 
TFs could reveal the potential involvement of neighboring 
co-expressed lncRNAs in immune response. In this regard, TFs, 
such as SCR and TCP4, as well as bZIP and WRKY TF family 
members, were found with a known protective regulatory role 
against nematode infection in soybean and other species (Zhao 

et al., 2015; Neupane et al., 2019a,b; Lv et al., 2021). The potential 
association between DE-lncRNAs and a RING/U-box superfamily 
gene, an Aldolase-type TIM barrel family gene, laccase7, ARF8, 
a MYB domain-containing gene, and several HSPs, which are 
involved in resistance to SCN (Zhao et  al., 2017; Ul Haq et  al., 
2019; Cheng et  al., 2020; Hishinuma-Silva et  al., 2020), brings 
new insights into the SCN-soybean interaction. Moreover, the 
association between lncRNAs and nitrite reductase as a major 
gene in reactive nitrogen species (RNS) metabolism and plant 
defense against the beet cyst nematode (Labudda et  al., 2020), 
ACC oxidase which is involved in ethylene-based signal 
transduction and regulates the attractiveness of soybean roots 
to SCN (Tucker et al., 2010; Hu et al., 2017), galactinol synthase 
and drought-induced gene as neighboring nematode defense-
related protein-coding genes (Kandoth et  al., 2011), and NAC 
and MADS-box as key TFs involved in soybean defense response 
under RKN invasion (de Sá et  al., 2012) provides important 
notes for further characterization of SCN resistance genes in 
soybean. The possible association between DE-lncRNAs and the 
pectin lyase-like superfamily protein as a pectin-degrading enzyme 
suggests pectin lyase-like superfamily gene/DE-lncRNA 
interaction-mediated defense signals via modification of cell wall 
integrity and lignin content, which is consistent with the obtained 
results in previous studies (Gallego-Giraldo et al., 2020). UDP-D-
galactose 4-epimerase5 which confers resistance to the cyst 
nematode Heterodera schachtii (Wubben et  al., 2004), PIP and 
WOX which turned out to be  involved, respectively, in auxin-
dependent cell elongation and modulating developmental pathways 
after pathogen attachment (Maure et  al., 2008; Olmo et  al., 
2020), the ABC transporter family gene which participates in 
the inhibition of hatch and repulsion of potato cyst nematodes 
(Globodera pallida and G. rostochiensis) through modulating root 
composition (Ochola et  al., 2021), EXPs as cell wall-modifying 
genes functioning in host defense suppression (Ali et  al., 2015; 
Samalova et  al., 2020), and ANNAT8 and histidine kinase 
demonstrated to be altered by nematodes for feeding site formation 
(Dowd et  al., 2017; Zhao et  al., 2019) were the most important 
nematode-responsive genes which showed the potential 
relationship with DE-lncRNAs identified in this study.

Similar to SCN data set, In RAD, the novel associations 
among DE-lncRNAs and the major nematode-responsive DEGs 
were elegantly recognized. NTF2 as overexpressed regulators 
in infected resistant soybean roots (de Sá et al., 2012), RING/
FYVE/PHD zinc finger superfamily protein as positive regulator 
of downstream targets under nematode infection to establish 
resistance at transcriptional level (Song et  al., 2019), GSH 
introduced in the modulation of giant cell metabolism and 
manipulation of ROS pathway (Baldacci-Cresp et  al., 2012; 
Wu, 2019), glycosyl hydrolases family with a cell wall-modifying 
role (Nyaku et  al., 2013), Aquaporin-like superfamily gene 
as a membrane transport protein-coding gene and nematode-
induced gene (Hammes et al., 2005), signal peptide peptidase-
like2 as a defense response inducer (Harrison et  al., 2021), 
and CAP superfamily gene as highly induced protective gene 
(Hamamouch et  al., 2011) were some nematode response-
associated DEGs identified modules of RAD which showed 
interaction with DE-lncRNAs.
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CONCLUSION

Nematodes are the most damaging biotic stressors to soybean. 
Understanding the defense mechanism of soybean plants against 
nematodes is thus important to take effective biotechnological 
strategies against them. The role of lncRNAs in the signaling 
and regulation of diverse plant physiological traits has been 
revealed in recent years. In the current study, their potential 
role via multiple cis and trans-regulatory mechanisms against 
SCN and reniform nematodes was predicted in soybean. Over 
500 potential lncRNAs were identified in the soybean genome 
which showed expression under the infection of these two 
nematode species. Our bioinformatic investigations showed 
that already known nematode-responsive genes can 
be  cis-targets of these lncRNAs, which are adjacent genes to 
these sequences in the genome and their expression can 
be  controlled by these >200-nt RNA molecules. Moreover, 
expression pattern analyses, co-expression studies, and sequence 
complementation discovered putative nematode-responsive 
genes among potential trans-targets of soybean lncRNAs. 
Finally, we  identified ~20 lncRNAs as miRNA endogenous 
target mimics in response against SCN and reniform nematodes. 
These findings imply an extensive and sophisticated role of 
lncRNAs in signaling and regulation of biotic responses in 
plants and can facilitate improving suitable approaches to 
defeat pathogens in agriculturally important crops. Besides, 
the potential lncRNAs introduced in this study could further 

investigate in planta to verify their function in response 
to pathogens.
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