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Stomata are integral to plant performance, enabling the exchange of gases between the 
atmosphere and the plant. The anatomy of stomata influences conductance properties 
with the maximal conductance rate, gsmax, calculated from density and size. However, 
current calculations of stomatal dimensions are performed manually, which are time-
consuming and error prone. Here, we show how automated morphometry from leaf 
impressions can predict a functional property: the anatomical gsmax. A deep learning 
network was derived to preserve stomatal morphometry via semantic segmentation. This 
forms part of an automated pipeline to measure stomata traits for the estimation of 
anatomical gsmax. The proposed pipeline achieves accuracy of 100% for the distinction 
(wheat vs. poplar) and detection of stomata in both datasets. The automated deep 
learning-based method gave estimates for gsmax within 3.8 and 1.9% of those values 
manually calculated from an expert for a wheat and poplar dataset, respectively. Semantic 
segmentation provides a rapid and repeatable method for the estimation of anatomical 
gsmax from microscopic images of leaf impressions. This advanced method provides a 
step toward reducing the bottleneck associated with plant phenotyping approaches and 
will provide a rapid method to assess gas fluxes in plants based on stomata morphometry.

Keywords: deep learning, gsmax – maximum stomatal conductance, high-throughput phenotyping, semantic 
segmentation, stomata

INTRODUCTION

Stomata are pores on a leaf that allow the exchange of gases between the atmosphere and 
the plant through their opening and closure (i.e., stomatal conductance – gs). Carbon dioxide 
(CO2) enters the plant in a trade-off against water vapour, which is simultaneously lost 
through transpiration. Stomata are found on almost all aerial plant organs and can be arranged 
in rows aligned with veins such as in monocotyledonous grasses or dispersed/clustered in 
dicotylodonous plants (Rudall et  al., 2013). Their function is mediated by a pair of specialised 
cells, the guard cells, that control the aperture of the pore and determines the potential gs. 
As such, stomata are key “gatekeepers” positioned between the atmosphere and the internal 
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plant tissue and are key in influencing photosynthetic rate, 
water loss, and water use efficiency (WUE) (Buckley, 2005; 
Berry et  al., 2010). Stomatal morphology is diverse, with 
patterning (such as clustering), size and density reflecting 
inter- and intra-specific differences (Franks and Farquhar, 2007; 
Dow et  al., 2014; McAusland et  al., 2016), growing conditions 
(Casson and Gray, 2007), and evolutionary selection pressures 
(Franks and Beerling, 2009; Mcelwain et  al., 2016). These 
anatomical characteristics have been shown to translate into 
functional diversity with, for example, size and density partly 
determining the leaf conductance capacity whilst the rapidity 
of guard cell movement determines the speed of response, 
or sensitivity, to environmental factors such as fluctuating light 
and water availability (Franks et  al., 2015; McAusland et  al., 
2016; Bertolino et  al., 2019). Indirect agronomic selection has 
been shown to lead to altered stomatal conductance in wheat 
(Fischer et  al., 1998).

A measurement of stomatal size allows a calculation of the 
potential maximal rate of gs to water vapour, known as anatomical 
maximum stomatal conductance (gsmax; previously termed gmax 
or gwmax; Equation 1).
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Eq. 1

Where d is the diffusivity of water in air (m2s-1, at 25°C), D 
is stomatal density for a single leaf surface (mm−2), and l is 
pore depth (μm) and is estimated as half the mean guard cell 
width. For elliptical (i.e., graminaceous) guard cells, maximum 
stomatal pore area (amax; μm2) is estimated as an ellipsis with 
the major length estimated as pore length and minor length 
estimated as half the length of the peristomatal groove. For 
circular guard cells, amax is calculated as the area of a circle with 
diameter corresponding to the pore length. Finally, v is the molar 
volume of air (m3 mol−1 at 25°C), and π is the mathematical 
constant taken as 3.142 (Parlange and Waggoner, 1970; 
Weyers and Johansen, 1990; Franks and Beerling, 2009).

Anatomical gsmax often exceeds operational gs by several fold 
(Sack and Buckley, 2016), but works in parallel with gs at a 
spatial and temporal scale to optimise stomatal responses to 
the prevailing environmental conditions (Murray et  al., 2020). 
High gsmax precludes high gs under yield potential conditions 
and can be used to predict gs under well-watered, light-saturated 
environments (Dow et  al., 2014; Murray et  al., 2020).

Improving the throughput and accuracy of measurements of 
stomatal size and density for the derivation of gsmax is essential, 
however, manual measurements of stomata are highly time 
consuming and small datasets are common when collecting 
images with few defects. Traditionally, stomatal density or index, 
the ratio of stomatal complexes to epidermal pavement cells, 
are collected through manual counting whereas measurements 
of pore and guard cell characteristics (morphometry) can 
be  obtained through scaled dimensions using image processing 
software such as ImageJ (Schindelin et al., 2012). Whilst manual 
counts and morphometries are sufficient for smaller sample sets, 
they are untenable for screening larger populations – for example 

for genome-wide association studies (GWAS) – which often 
consist of 100 s of lines with multiple replicates. Moreover, further 
issues arise in that they are susceptible to intra-rater or inter-
rater repeatability (the subjective differences in measurements 
between individuals, or from a single individual repeating the 
same task), consequently reducing accuracy. One such solution 
to the limitations of manual morphometry can come from the 
field of neural networks, namely, deep learning. In deep learning, 
a computer model learns to perform classification tasks from 
images, text, or sound with a high degree of accuracy, sometimes 
exceeding human-level performance. The training of a deep 
learning model requires a human annotated dataset, which the 
model learns from and once trained, can be  applied to future 
predictions, namely the same classification tasks on unseen data.

As of late, deep learning has received an increased amount 
of attention for both plant and stomatal phenotyping and various 
deep learning models have been proposed. With respect to 
stomata literature, the most common application of deep learning 
is for the detection and counting of stomata in images. Fetter 
et  al. (2019) use a deep convolutional neural network (DCNN), 
AlexNet (Hinton et  al., 2012), to generate a likelihood map for 
each input image followed by a thresholding and peak detection 
to localise and count stomata and achieved an accuracy of 94.2%. 
Zhu et  al. (2021) use a Faster R-CNN combined with a U-Net 
to automatically count stomata and epidermal cells for the 
calculation of stomatal index and achieve 98.03 and 95.03% 
accuracy for stomata and epidermal cells, respectively. In other 
instances smaller, shallower, networks are used for counting; a 
convolutional neural network (CNN), VGG (named after the 
Visual Geometry Group where the method was conceived), is 
commonly used to detect each stoma, encapsulating the detections 
in bounding boxes (Simonyan and Zisserman, 2015). Meeus 
et  al. (2020) use VGG19  in which the number (19) corresponds 
to the number of layers. Casado-García et  al. (2020) use an 
object detection network known as YOLO (Redmon and Farhadi, 
2018), to detect the bounding boxes of stomata with accuracy 
of 91%. Whilst good results are reported for detecting stomata 
using the VGG and YOLO networks, a considerable amount 
of post-processing is required if morphological measurements 
are to be  extracted, which is susceptible to error. Alternatively, 
deep learning approaches have been used for the classification 
of stomata types; Andayani et  al. (2020) created a CNN that 
determines whether the input image contains stomata from 
turmeric (also known as kunyit; Curcuma longa) or temulawak 
(also known as Java ginger; Curcuma zanthorrhiza). Using a 
small dataset of only ~300 images, they achieve classification 
accuracy of 93.1%. More recently DeepImageJ, a deep learning 
framework to plugin for ImageJ was released (Gómez-de-Mariscal 
et  al., 2021). DeepImageJ provides significant advances of 
traditional methods and improves the capabilities of ImageJ, 
incorporating support for deep learning networks. Outputting 
high quality, accurate, classification of data, however, the specific 
results depend upon user design and implementation.

Current methods to comprehensively calculate stomatal 
morphometry are lacking and the limited studies to do so using 
a combination of deep learning and image processing. These 
methods typically focus on stomata detection via bounding boxes 
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followed by image processing algorithms to obtain limited 
morphological data. However, these methods often require specific 
fine tuning where a change in intensity or blur within the image 
set will significantly reduce the accuracy. Toda et al. (2018) detect 
stomata, the pore and whether it is open or closed using a 
three-stage approach; (1) the use of the histogram of gradients 
(HOG) to detect stomata in the images and extract bounding 
boxes, (2) a CNN to classify the HOG detections as open or 
closed stomata, and (3) Pore quantification using a series of 
image processing algorithms, reporting accuracy of 92%. Bhugra 
et  al. (2019) propose a framework consisting of two neural 
networks; the first, a DCNN, is used detect stomata in images, 
the second is a fully convolutional neural network (FCNN) which 
accepts the detected bounding box as input and extracts the 
stoma from the bounding box. Ellipse fitting is applied to the 
resulting FCNN output to generate an estimate of pore shape. 
Whilst producing good results, accuracy of ~91% for detection, 
ellipse fitting can over- or under-fit the pore. Moreover, instances 
where the pore is not ellipse shaped will lead to significantly 
inaccurate results. (c) use AlexNet to detect stomata and estimate 
pore area using a series of image processing algorithms [such 
as Contrast Limited Adaptive Histogram Equalisation (CLAHE)], 
achieving up to 85% accuracy. To date, both guard cell and 
pore measurements have yet to be obtained from a single network.

Semantic segmentation, in which each pixel of an image 
is labelled with a corresponding class, allows the preservation 
of morphometry. Unlike bounding box algorithms, the output 
in semantic segmentation is the image mask; a high-resolution 
image (typically of the same size as input image) in which 
each pixel is classified. Previous applications of semantic 
segmentation include, but are not limited to, medical imaging 
analysis (Jiang et  al., 2018), autonomous driving (Siam et  al., 
2018), and classification of terrain from satellite imagery (Wurm 
et  al., 2019). Despite the ability for semantic segmentation to 
extract morphometric information, it has yet to be  applied to 
stomatal phenotyping.

Here, we aim to reduce the bottleneck associated with manually 
measuring morphometric traits of stomata and provide a proof 
of concept study for the determination of anatomical gsmax by 
the development of a high-throughput phenotyping method using 
semantic segmentation. We  incorporate aspects of existing deep 
learning models, such as the Attention U-Net architecture (Oktay 
et  al., 2018) and Inception Network (Szegedy et  al., 2016), 
discussed in the methods section, on a small dataset (<350 
images), whilst computational costs are reduced by restricting 
the number of the trainable parameters when compared to many 
of the existing deep learning methods for stomata. Through 
this method, we: (1) automatically differentiate between distinctive 
stomatal types, the dumbbell shaped Poacaea and dicotyledonous 
stomata, (2) count stomata, (3) extract multiple morphological 
traits, (4) calculate density, and (5) calculate anatomical gsmax 
as circular or ellipse based on the type of stomata. We  provide 
a substantial advance with the application of semantic segmentation 
to stomata and the first to show deep learning can produce 
high-throughput stomata phenotyping calculating anatomical 
gsmax. The tools developed here are freely available (See “Data” 
and “Data availability” sections).

MATERIALS AND METHODS

Data
In highly researched areas, such as object detection or handwriting 
recognition, existing datasets such as ImageNet (Deng et  al., 
2010), or MNIST (Deng, 2012), provide access to hundreds 
of thousands of annotated images. In the case of stomata, 
however, very few annotated datasets are freely available.

Two balanced datasets with distinctive stomata were chosen 
to evaluate our proposed model: a monocotyledonous Poaceae 
representative with dumbbell shaped stomata (wheat; Triticum 
aestivum) and dicotyledon with kidney shaped stomata (poplar; 
Populus balsamifera). For the wheat set, spring bread wheat 
cultivars were chosen from the Photosynthesis Respiration Tails 
(PS Tails) Panel and from the International Maize and Wheat 
Improvement Centre (CIMMYT); with eight genotypes selected 
for their contrasting plant architecture and aboveground biomass 
that were grown under yield potential conditions in a glasshouse. 
A subset of the data was used in this study, consisting of 348 
images captured at a resolution of 2,592 × 1,944px with a 10 × 40 
magnification. The stomatal impressions were collected using 
nail varnish and adhesive tape in the medium area of adaxial 
and abaxial sides of the main shoot flag leaf. Samples were 
left to dry for 10 min and then placed on a slide to be examined 
and photographed. Images were collected using a Leica DM 
5000 B microscope (Wetzlar, Germany). The poplar dataset in 
this study was first published by Fetter et  al. (2019) and is 
publicly available. A subset of the data was selected from an 
intraspecific collection of balsam poplar through random 
selection. A small subsample, totalling 114, images were 
annotated, which are of 2,048 × 2,048 px resolution with a 
10 × 40 magnification. Note: the reduced poplar dataset used 
in this study, along with the corresponding annotations, has 
been made publicly available with links to the original source. 
The impression quality does not directly impact the quality 
of results unless the impressions used to train the network 
differ significantly from those used to test it. However, the 
quality should be  good enough such that a human expert can 
manually annotate the images. Whilst the image set used for 
training was lower for the poplar, the increased density of 
stomata within each image led to a greater amount of stomata 
annotated overall (i.e., see Table  1).

An overview of the proposed method is given in Figure  1. 
For the annotation of both poplar and wheat datasets, a pixel 
level classification was performed where each pixel was labelled 
as guard cell, pore, or discard, to create the image mask using 
the Pixel Annotation Tool (Bréhéret, 2017). The discard refers 
to the background, noise (except that over the stoma), and 
subsidiary cells, which are not used in the calculation of gsmax. 
Similar annotation approaches could be used for other structures, 
such as epidermal cells, trichomes or, on the whole plant scale, 
yield components for example.

Data Augmentation
To increase the size and variation of the dataset, a series of 
augmentations were applied to manipulate the images prior to 
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and during deep learning. Each original image is cropped into 
four overlapping regions as (1) the original image resolution is 
too large and is computationally expensive to maintain and (2) 
due to the small size of the pore within images, scaling the 
original image results in a high loss of accuracy. Augmentations 
within the network are applied for each image every epoch (a 
full iteration of the dataset) and are performed as follows; A 
subsample of the image is taken at a resolution of 768 × 768px. 
The centre of the bounding box, i.e., the area of the subsample, 
is determined by a series of random variables; the first randomly 
selects whether to perform a stomata crop; using the centre of 
the stomata, or a random crop; a random position within the 
image, with an 4:1 probability, respectively. The stomata crop 
randomly selects a stoma in the image and applies random jitter 
to the position with upper bounds of 15% of the image size. 
The random crop is selected anywhere within the image bounds 
excluding half the crop size around the border of the image. 
For both crop methods, a random rotation is applied ranging 
between plus and minus 30°. There is a 20% probability that 
the image will be  flipped vertically or horizontally and a 30% 
probability of blur, sharpness, or contrast manipulation. These 
augmentations increase the dataset size and help prevent overfitting 
(where a network learns only the data it is being trained on). 
The augmentation is applied to the training dataset.

Deep Learning
Within this project, all deep learning was performed using Python.

A brief overview of CNNs is provided for those who have 
no prior knowledge; for further reading, see (Maier et  al., 
2019). A CNN is a deep learning algorithm with a particular 

focus on imagery, for example, object detection or image 
classification within two-dimensional images. It is made up 
of a series of layers, each of which have a set of trainable 
parameters. The CNN takes as input an image and passes it 
through multiple layers and outputs a prediction that represents 
the class label of the input data, whether as an image as a 
whole or at pixel level. The three most common layers in a 
CNN are (1) The convolution layer which applies multiple 
filters, which aim to detect patterns such as edges, the input 
each of which have different parameters, so each filter is 
able to learn contrasting features whilst preserving the spatial 
relationship between pixels. The filters pass over the image, 
scanning a few pixels at a time, and creates a feature map. 
After a convolution, an activation function is performed to 
introduce nonlinearity calculating a weighted sum of its inputs 
and adding a bias. (2) The Maxpooling layer downsamples 
the feature map reducing its dimensionality, providing an 
abstracted form of the representation, and the associated 
computational costs. It allows for the CNN to be  robust 
against minor displacements. (3) The final layer of a CNN 
is the fully connected output layer. After a sequence of multiple 
layers, it takes the outputs of these and classifies the pixels, 
computing scores for each class label applying an activation 
function such as SoftMax, which converts a set of numbers 
into a set of probabilities. Additional common steps can 
include skip connections, which allows the output of some 
layer to skip some other layers and be  passed as input to 
layers further down the network.

The performance of a CNN, how well it has managed 
to learn these parameters and make predictions, can 

FIGURE 1 | Pipeline for the proposed method of extracted morphometric properties of stomata for the estimation of maximal stomatal conductance; anatomical 
gsmax.

TABLE 1 | Overview of image datasets and properties.

Dataset # Images Size (px) # Stomata Density (mm2) μm Per Pixel

Wheat 348 2,592 × 1,944 1,600 63 0.12547
Poplar 113 2,048 × 2,048 3,862 246 0.18181
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be  evaluated in numerous ways. The score function or 
evaluation metric, evaluates the accuracy of the model during 
training, comparing the predicted outcome to the ground 
truth (i.e., the labels). The higher the score, the higher the 
degree of accuracy thus indicating that the model is correctly 
making predictions. The loss function is used as a method 
of evaluating how well the algorithm models the given data 
during training. If the predictions of a model deviate from 
the ground truth, a high loss value is returned. Too little 
data variation combined with a large network or high number 
of epochs can result in overfitting, where the model learns 
the training data and is unable to adapt to new or 
varying inputs.

The structure of CNNs vary depending on the data, 
application, or the size of the network and so multiple 
networks exist. In this study, we  propose a CNN using 
features of both an Attention U-Net (Oktay et  al., 2018) 
and Inception (Szegedy et  al., 2016) to make pixel-level 
predictions of stomata for both guard cell and pore 
(Figure  2). The original U-Net model (Ronneberger et  al., 
2015), which was primarily developed for biomedical image 
segmentation, is a U-shaped network comprised of a series 

of encoder and decoder layers. The encoder layer is the 
downwards trajectory performing a series of convolutions 
and maxpooling, encoding the input sequence (Figure  2). 
The decoder performs the opposite, an upwards trajectory 
applying deconvolution to increase dimensionality, decoding 
the input sequence to an output sequence. Skip connections 
are added between encoder and decoder layers to combine 
spatial information. However, whilst skip connections offer 
many advantages, such as the ability to maintain feature 
information, they introduce many redundant low-level 
feature extractions, as feature representation is poor in 
the initial layers. Attention U-Net overcomes this, expanding 
on the original U-Net model, by adding attention gates 
which seek to highlight salient features. Skip connections 
combined with attention gates suppress activations in 
irrelevant regions, reducing the number of redundant 
features. The inception architecture employs multiple 
convolutions and pooling layers simultaneously in parallel 
within the same layer (inception layer) using the same 
input. The inception layer reduces the computational costs 
of the model and automatically selects the most useful 
features when training the network.

FIGURE 2 | Overview of the adapted CNN used for the extraction of stomata morphometry. The proposed CNN combines features of both an Attention U-Net 
(Oktay et al., 2018) and Inception (Szegedy et al., 2016) to make pixel-level predictions of stomata for both guard cell and pore. The CNN contains a number of 
layers including convolution (Conv) layers, Max pooling layers, and fully connected layers. The output of each convolution layer is a set of 2D images, known as 
feature maps, which are computed by convolving previous feature maps with a filter, the size of which is given in the key. Batch normalisation (BN) and Rectified 
Linear Units (ReLU) steps are added to normalise data and remove negative pixel values from features maps. Skip connections help to maintain spatial information 
whilst the Attention Gate removes redundant features. The number of filters at each step is given as the blue number, whilst the resolution is given in black.
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A B C D E

FIGURE 3 | Overview of the stages of stomata morphometry extraction. (A) each stoma is detected using the CNN model described in Figure 1; (B) the contour is 
extracted; (C) a bounding box is applied to the contour; (D) the bounding box is rotated using the primary eigen vector and the stoma contained within the contour 
is cropped; and (E) morphometric measurements of the guard cell and pore are automatically extracted including guard cell and pore length and widths plus 
peristomatal groove distance.

Here, we  present an incremental model (Figure  2), which 
increases the branches as the depth of the network increases, 
this works as follows.

 • Encoder layer 1; The network takes, as input, an image with 
dimensions of 768 × 768 pixels. A Convolution (Conv) with 
a 3 × 3 filter, followed by Batch Normalisation (BN; normalises 
the input by re-scaling and re-centering the data, which 
increases the stability and speed of the network) and Rectified 
Linear Unit (ReLU; in which all negative pixel values in the 
feature map are converted to zero) is performed three times 
(we refer to this as Conv 3 × 3, BN, ReLUx3). Maxpooling is 
then applied with a kernel size of 3 × 3.

 • Encoder layer 2; Receives input from the previous layer passing 
it through Conv, BN, ReLUx2 followed by a maxpooling layer 
with a 3 × 3 kernel.

 • Encoder layer 3; The input of the previous layer is copied into 
two branches, the first applies a Conv 3 × 3, BN, ReLU, whilst 
the second applies a Conv with a 1 × 1 filter, BN, ReLU 
followed by a Conv 3 × 3, BN, ReLU. The values are 
concatenated and a further Conv 3 × 3, BN, ReLU is applied. 
Maxpooling further reduces the dimensionality.

 • Encoder layer 4; The input of the previous layer is passed to 
three branches, the first two are the same as the third encoder 
layer, whilst the additional branch performs Conv 1 × 1, BN, 
ReLU followed by a Conv 5 × 5, BN, ReLU. The values are 
concatenated and a further Conv 3 × 3, BN, ReLU is applied 
followed by maxpooling

 • Encoder layer 5; Is the same as the previous encoder, but with 
an additional branch this time performing maxpooling with 
a 1 × 1 kernel followed by Conv 1 × 1, BN, ReLU.

 • Decoder layers 5–2; Decoder layers 5–2 are the same as the 
encoder layers, though the maxpooling operation, which is 
used to down sample, is changed to a transpose convolution, 
which increases the dimensionality.

 • Decoder layer 1; the final decoder, is responsible for the final 
output of the model and applies Conv 3 × 3, BN, ReLUx3 
followed by a fully connected layer to output predictions.

The parameters of the network were trained using Stochastic 
Gradient Descent (Kiefer and Wolfowitz, 1952) with a momentum 

of 0.9 and a learning rate of 0.1. The model was trained on 
an Nvidia Titan V GPU for 50 epochs using a batch size of 
8. Whilst a GPU is not necessarily a requirement for deep 
learning, the speed of computations will be  considerable using 
a CPU only. The Lovasz-Softmax (LS) loss function (Berman 
et  al., 2018) is used; LS is a loss function for multi-class 
semantic segmentation incorporating SoftMax and supports 
direct optimisation of the mean intersection-over-union (IoU) 
loss in neural networks. IoU, also known as Jaccard index, is 
used to compute the area of overlap between the target mask 
(i.e., the annotated labels) and the predicted mask. The score 
function, or evaluation metric, evaluates the accuracy of the 
model during training. In this study, we  use the IoU as a 
score function in two ways; (1) IoU is used to represent the 
percentage of overlap and (2) a confusion matrix summarises 
the performance of the model providing insight into the errors 
being made, returning an accuracy of the network. Moreover, 
the confusion matrix accounts for uneven number of samples 
for each class.

Once trained, the model allows new, unseen, images to 
be  passed into the network producing, as output, a pixel-
level annotation, the mask, of stomata within it. Unlike 
existing methods that use image processing methods to 
quantify the morphometry of stomata, in this study, the 
process is simplified by directly manipulating the mask. As 
a result, calculating morphometry becomes a relatively 
straightforward task, accomplished using a single network, 
and simple pixel counting.

Stomata Morphometry
Morphological traits such as length and width of pores can 
be  segmented from the output of the CNN model proposed 
here by extracting information from the pixel-level labelled 
mask predicted by the CNN (Figure  3A). Contours in the 
mask are identified surrounding the guard cell (Figure  3B), 
and all pixels within each contour are selected and assigned 
to each individual stoma. A bounding box is fit around the 
contour and all background is removed (Figure  3C). Each 
individual stoma is rotated such that the principal axis is in 
line with the bounding box using the eigenvalues obtained 
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from principal component analysis (Figure  3D). The rotation 
step supports the trait extraction; allowing widths and heights 
to be  easily obtained. The mask is then split based on the 
corresponding label thus enabling the extraction of the pore 
from the stoma leaving the guard cell for automated morphometry 
(Figure  3E).

To calculate the morphometry of each stoma within the 
image, it is represented as a two-dimensional matrix where 
the values correspond to pore, guard cell, or discard. From 
this the width, height, and area of both the guard cell and 
pore can be  calculated as a sum of pixels multiplied by the 
μm to pixel conversion. To obtain the measurements relating 
to the guard cell, the centre point, along both x and y, is 
selected and the length and width are calculated as the average 
sum of pixels along 10 pixel transects surrounding this centre 
point. This averaging is used to account for artifacts in the 
data (i.e., asymmetry in guard cell shape). The same process 
is applied to the pore.

Stomatal density is automatically calculated from the dataset. 
For all images, the number of stomata is counted, excluding 
any detected stomata, which intersects the left or bottom border 
of the image. The area within each image (i.e., the field of 
view; FOV) is calculated using a pixel to mm conversion 
(Equation 2)
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Eq. 2

Where w and h correspond to the width and height of the 
image in pixels. Density, D, is then calculated according to 
Equation 3:

 
D

mm
=

Total number of stomata

2

 
Eq. 3

Using these measurements, gsmax can be  calculated using 
Equation 1.

RESULTS

The network was evaluated for its ability to accurately classify 
stomata type between wheat (Poaceae) and poplar in the datasets 
provided, detect features, obtain morphological traits, and predict 
gsmax compared to manual calculations.

Stomata Detection
An example test image is presented in Figure  4 with the 
associated morphometric measurements.

The proposed network can be  readily applied to both 
poplar and wheat, which have contrasting patterning (files 
vs. random spacing), thus making the method more universally 
applicable. The proposed model was evaluated against the 
U-Net (Ronneberger et  al., 2015) and the Attention U-Net 
(Oktay et  al., 2018) architectures. For each architecture, 25 

epochs were performed using the same train and validation 
data. The results can be  seen in Table  1; where parameters 
corresponds to the total number of trainable parameters in 
the network, Time is the total execution time in minutes, 
IoU is the intersection over union score; a value between 
0.0 and 1.0 with 1.0 meaning that the prediction from the 
network is equivalent to the manual annotation, Loss is the 
result of the LS loss function, and Acc. is the accuracy of 
the model using a confusion matrix. As we  can see from 
Table 2, the network proposed here has 50% fewer parameters 
than the related architectures, U-Net and Attention U-Net, 
and achieves at equal accuracy a higher IoU and a lower 
loss in a shorter amount of time.

The number of parameters can have a direct impact on 
the computational cost of training a network and the future 
predictions made on unseen images. In most instances, a smaller 
number of parameters is preferable, particularly when access 
to high-spec hardware is limited. For that reason, we  have 
reduced the parameters of the well-known U-Net architecture. 
The network proposed here has a total of ~8 million parameters, 
which is considerably less than existing approaches used for 
stomata deep learning, for example, the VGG16 network has 
~138  million trainable parameters and the YOLO network has 
~63  million. Here, we  show that the number of parameters 
can be  reduced whilst obtaining a higher degree of accuracy 
with our proposed method achieving 100% accuracy for stomata 
counts across both datasets. Moreover, no false positives, the 
prediction that a stoma is present when it is not, were recorded. 
If false positives were to be  detected in images, the contour 
detection stage, discussed in the previous section, would discard 
any small errors based on average size of the stomata in 
the image.

gsmax
Manual calculations of morphometry for 20 images of both 
the wheat and poplar dataset were obtained by an expert, and 
the measurements were used to calculate gsmax using Equation 
1. The images chosen were of various quality and spanning 
a range of examples from each dataset. These values were 
compared to those obtained using the automated method 
proposed here. One further benefit of the proposed CNN is 
that the stomatal type has been detected, and so gsmax can 
be  calculated based on the most appropriate stomatal shape: 
circular for poplar or elliptical for graminaceous wheat stomata. 
It is worth noting that the difference here, between the predicted 
and manually determined measurements, is not classified as 
an error as the manual process is susceptible to intra-rater or 
inter-rater repeatability. To determine gsmax a series of variables 
need to be  extracted from the data.

Stomatal density, given as an average across all images 
in the set, is given in Table  2, calculated using Equations 
2, 3. In general, stomatal density is the biggest driver of 
variation in gsmax, because the other two input variables 
(pore length and guard cell width) are averaged across many 
stomata and will differ less among samples. Within this 
proof of concept, the magnification required to calculate 
morphometry does not necessarily capture an accurate 
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stomatal density as it will not cover a wide enough range 
of samples, thus the gsmax results presented here may differ 
from those reported elsewhere in the literature (Lammertsma 
et  al., 2011). This is particularly the case for the poplar 
dataset whereby the obtained sample images were of fixed 
magnification and were originally collected to test a stomata 
counting system, focused on relatively stomatal-dense samples 
(i.e., leaf sections lacking vein structures etc.; Fetter et  al., 
2019). In contrast, the gsmax values calculated for wheat are 
likely more accurate because wheat stomata are patterned 
in rows and thus calculating density at 10 × 40 has less 
spatial bias. This can be  overcome through the addition of 
more samples at this same magnification or through an 
additional step to count stomata at a lower magnification.

For each image, the manually and automatically calculated 
gsmax is given in Figure  5. For the wheat dataset, the average 

difference between the manual and automated measurement 
was 3.8%, with a slope of 0.9373 and R2 of 0.9661. For the 
poplar dataset, the average difference between manual and 
automatic calculated gsmax was 1.9%, with a slope of 0.9842 
and R2 of 0.9782.

This method also allows operational gs to be  calculated on 
a per image basis, or over a set of images. Replacing amax  
in Equation 1 with the area of the pore allows such calculations 
to be  made.

DISCUSSION

Here, we present a significant advancement in methodology, 
which permits both morphological (density, size, and area) 
and functional (anatomical gsmax) attributes to be  predicted 
from purely image-based data that is easy to obtain and 
can be  translated to high throughput systems. To our 
knowledge, this is the first time that the dumbbell – like 
Poaceae has been distinguished from dicotyledonous stomata 
and gsmax predicted using automated stomatal morphometry. 
Thus far gsmax has been used in disciplines where gas exchange 
measurements are inconvenient or simply not possible, for 
example, the recreation of conductance in palaeoclimates 

FIGURE 4 | Example output from the CNN model applied to an unseen poplar image. Summary results for the whole images are given in the top table, whilst the 
measurements for individual stomata are given in the bottom, where GCW refers to guard cell width and PSG refers to peristomatal groove distance.

TABLE 2 | Comparison of the proposed convolutional neural network (CNN) 
relative to two other common CNN architectures.

Method Parameters Time (m) IoU Loss Acc.

U-Net ~16,482,000 200 0.78 0.18 0.98
Attention U-Net ~17,450,000 343 0.72 0.18 0.97
Proposed method ~8,114,000 176 0.84 0.16 0.98
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derived from fossils (Hetherington and Woodward, 2003; 
Franks and Beerling, 2009). This and similar approaches 
could prove useful in understanding and modelling future 
vegetation dynamics in climates with altered CO2 and water 
vapour. In the case of crop phenotyping, individual leaf 
gas exchange on large numbers of lines is impractical, 
making a functional prediction from image-based data 
invaluable. However, gsmax does not always correlate well 
with measured leaf gs due to variation in aperture. Despite 
this, measurement of the actual pore area, as opposed to 
maximal pore area, permits the calculation of operational 
gs (Dow et  al., 2014). However, such comparisons require 
careful consideration of both the conditions of measurement 
and the accuracy of the pore area estimation from a 
two-dimensional image made using light microscopy. The 
stomatal guard cell complex should really be  considered 
in three dimensions relative to the surrounding cell structure, 
with the possibility of sunken or raised pores, whilst 
thickening of the guard cell wall may blur the calculation 
of the actual pore area. Finally, the means of taking the 
impression itself leads to uncertainty: after the resin or 
varnish has been applied there is a period of many minutes 

needed for drying (depending on temperature), which has 
unknown effects on stomatal aperture. Thus, the calculation 
of operational gsmax requires care. If such problems can 
be  overcome, then this method provides opportunities to 
predict function from purely morphometric analysis and 
may be  amenable to in-field instrumentation. By linking 
operational gsmax with mechanistic models of leaf gas exchange 
and environmental conditions, a prediction of photosynthetic 
rate would become possible.

There is a vast amount of literature relating to the extraction 
of stomata data from 2D images, the most recent and relevant 
of which are presented and compared to the current method 
in Table 3. Accuracy is not directly compared as each individual 
approach uses a different dataset and methods vary between 
papers. Dependent on the phenotyping task, each of these 
methods could be  of use however none of the approaches 
explicitly output a gsmax calculation, which relies upon pixel 
segmentation, orientation of the stomata, and individual 
measurements of pore and guard cell. Also the method presented 
here, whilst limited to stomata, offers a solution that requires 
no tuning of parameters or user interaction to determine the 
optimal network.

The proposed method provides many advantages over 
manually obtaining morphological measurements, not least the 
time in which it takes to calculate gsmax. Unlike manual 
measurements, an automated approach allows for repeatability 
and a higher level of accuracy without bias, particularly beneficial 
for stomata phenotyping due to user-dependent variation in 
morphometric measurements. The time taken to calculate gsmax 
for a single image is less than a second regardless of the 
number of stomata present, substantially less than a manual 
approach. This may prove to be many hundreds of times faster 
with little manpower required. For example, it may take 
~5–10 min per sample to count manually, with longer timespans 
required to measure dimensions. In a high-throughput 
phenotyping context with many thousands of samples this is 
difficult or impossible to achieve with limited human resources. 
We  improve on existing works achieving 100% accuracy for 
stomata counting and obtain gsmax results that are within 4% 
of the manual measurements calculated by an expert. 
Furthermore, the pipeline can be  applied to different species 
or varieties, currently applicable to the poplar and wheat but 
easily expandable with addition of an increasing number 
of datasets.

Historical trends in stomatal density using herbarium 
specimens have shown that rising CO2 coincide with a reduction 
in stomatal density (Woodward, 1987; Hetherington and 
Woodward, 2003). Genetic manipulation has shown that changes 
in the size:density ratio can lead to changes in growth and 
WUE either through the improved uptake of CO2 or via 
reducing water loss (Lawson and Blatt, 2014; Franks et  al., 
2015; Bertolino et  al., 2019). Recently, it was discovered that 
reducing frequency in multiple crop plant species resulted in 
an enhancement of WUE with no cost to photosynthesis or 
yield (Nadal and Flexas, 2019). Therefore, understanding and 
manipulating this relationship are vital for sustaining or improving 
crop yields under global climate change, especially in regions 

A

B

FIGURE 5 | Comparison of manual calculation of gsmax by an expert vs. 
automatic calculation using the proposed deep learning approach where 
(A) corresponds to the wheat dataset, (B) is the poplar dataset.
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dominated by heat and drought conditions and where 
precipitation patterns are shifting, and advanced methods to 
automatically calculate this will become increasingly important 
(Prasad et  al., 2008; Asseng et  al., 2015; Hughes et  al., 2017; 
Caine et  al., 2019; Dunn et  al., 2019; Mohammed et  al., 2019). 
This will allow for the rapid identification of anatomical traits 
for multiple applications including the acceleration and 
exploitation of variation in large-scale crop populations, for 
example in heat and drought dominated regions where higher 
WUE is essential to increase crop yields, analysis of stored 
specimens such as herbariums and palaeobotanical samples 
(Araus et  al., 2002).

Application to General Research
The method presented here can be  readily applied to new 
datasets. The key constraint, as with all deep learning 

methods, is the required annotated dataset; a network cannot 
find what it has not already “seen.” This can be  easily 
accomplished using the Pixel Annotation Tool used within 
this study to manually classify the guard cells and pore 
(Bréhéret, 2017). The network itself was generated for novice 
users, although access to a graphical processing unit (GPU) 
is required. Sample files and further instructions can be found 
on github.1

Whilst it is still quicker and more efficient to annotate a 
dataset to apply to future samples, the obvious next step would 
be to reduce the bottleneck associated with manual annotations. 
Future work could look at the use of Generative adversarial 
networks (GANs; Goodfellow et  al., 2014), which generate 

1 http://github.com/drjonog

TABLE 3 | Comparison of the proposed method and output compared to other recently published methods.

Method Overview Output

Proposed method A convolutional neural network based on semantic segmentation and 
image processing tool for morphometric calculations of stomata plus 
the automatic estimation of gsmax

Applied to Poplar and Wheat

Pixelwise detection

Count

Density

Pore measurements

Guard cell measurements

gsmax estimate
Toda et al., 2018

DeepStomata

Developed software comprising histogram of gradients (HOG) detection 
of stomata followed by region classification by a CNN. Used for 
stomatal pore quantification.

Applied to Dayflower

Pixelwise detection

Count

Density

Classification between open and closed stomata

Pore measurements
Bhugra et al., 2019 Detects and quantifies stomata using a CNN and a series of image 

processing techniques

Applied to Rice using scanning electron microscopy (SEM) images

Bounding box detection

Count

Density
Fetter et al., 2019

StomataCounter

A CNN for counting stomata, which detects bounding boxes that 
encapsulate the stomata

Applied to Ginkgo and Poplar

Bounding box detection

Stomata count

Density
Andayani et al., 2020 Uses a CNN and image processing for classifying stomata into one of 

two groups belonging to either turmeric or ginger
Classification

Casado-García et al., 2020

LabelStoma

Use YOLO (Redmon and Farhadi, 2018) to detect bounding boxes

Applied to Common Bean, Barley, and Soybean

Bounding box detection

Stomata count

Density
Kwong et al., 2021 A CNN applied specifically towards detecting stomata from Oil Palm Bounding box detection

Count

Density
Toda et al., 2021 A platform that supports real time stomata detection when directly 

connected to a microscope

Applied to Wheat- N.B. measurements of bounding boxes allow 
morphometric calculations of stomata when orientated parallel or 
perpendicular to the field of view

Bounding box detection

Count

Density

Bounding box measures

Zhu et al., 2021 Applies R-CNN, U-Net, and image processing to calculate stomatal 
index

Applied to Wheat

Bounding box detection

Counts of stomata and epidermal cells

Stomatal index calculation
Gómez-de-Mariscal et al., 2021

DeepImageJ

A plugin for the widely used ImageJ application. Brings a sophisticated 
method for integrating deep learning with ImageJ. A user friendly 
interface which supports a wide range of phenotyping tasks

Dependent on the network but also on the user for 
defining and selecting the best choice for their needs.

Will give detection and possible measurements but no 
automatic calculation of indices without an additional step
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artificial annotations from a series of smaller datasets to reduce 
the overhead of training a network.

Previously stomatal conductance and related traits (i.e., 
transpiration, evapotranspiration, and photosynthesis) have been 
correlated in natural and crop ecosystems to remote sensing 
traits such as reflectance ratio R701/R820 as a response to 
photosynthesis and chlorophyll content in the leaves (Carter, 
1998), Enhanced Vegetation Index (EVI), Normalized Difference 
Vegetation Index (NDVI), and Normalized Difference Infrared 
Index (NDII) in water scarce regions (Carter, 1998; Glenn 
et  al., 2008; Joiner et  al., 2018) or infrared thermography and 
water indices (Gutierrez et  al., 2010). However, none of these 
remote sensing methods, whilst allowing direct means of 
assessing canopy function, permit a means of selecting specifically 
for stomatal anatomy traits, which must require analysis at 
the cellular level. The rapid estimations of gsmax proposed in 
this study can facilitate breeding programs especially in arid 
and semi-arid countries were WUE is the most important 
trait for yield improvement.
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