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Select and Sequence of a Segregating Sugar Beet Population Provides Genomic Perspective of Host Resistance to Seedling Rhizoctonia solani Infection
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Understanding the genetic basis of polygenic traits is a major challenge in agricultural species, especially in non-model systems. Select and sequence (SnS) experiments carried out within existing breeding programs provide a means to simultaneously identify the genomic background of a trait while improving the mean phenotype for a population. Using pooled whole genome sequencing (WGS) of selected and unselected bulks derived from a synthetic outcrossing sugar beet population EL57 (PI 663212), which segregates for seedling rhizoctonia resistance, we identified a putative genomic background involved in conditioning a resistance phenotype. Population genomic parameters were estimated to measure fixation (He), genome divergence (FST), and allele frequency changes between bulks (DeltaAF). We report on the genome wide patterns of variation resulting from selection and highlight specific genomic features associated with resistance. Expected heterozygosity (He) showed an increased level of fixation in the resistant bulk, indicating a greater selection pressure was applied. In total, 1,311 biallelic loci were detected as significant FST outliers (p < 0.01) in comparisons between the resistant and susceptible bulks. These loci were detected in 206 regions along the chromosomes and contained 275 genes. We estimated changes in allele frequency between bulks resulting from selection for resistance by leveraging the allele frequencies of an unselected bulk. DeltaAF was a more stringent test of selection and recovered 186 significant loci, representing 32 genes, all of which were also detected using FST. Estimates of population genetic parameters and statistical significance were visualized with respect to the EL10.2 physical map and produced a candidate gene list that was enriched for function in cell wall metabolism and plant disease resistance, including pathogen perception, signal transduction, and pathogen response. Specific variation associated with these genes was also reported and represents genetic markers for validation and prediction of resistance to Rhizoctonia. Select and sequence experiments offer a means to characterize the genetic base of sugar beet, inform selection within breeding programs, and prioritize candidate variation for functional studies.
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INTRODUCTION

The characterization of resistance sources for the genetic improvement of beet (Beta vulgaris) is a long-standing challenge. The USDA sugar beet germplasm is enriched for important traits such as resistance to disease and adaptation to local production regions. The pedigrees of this material suggest many of these traits can be traced back to wide hybridizations between sugar beet and wild beet (Beta maritima) (Doney, 1995; Panella et al., 2015). Beet is an outcrossing species, wind pollinated and generally self-incompatible. As a result, beet populations are highly heterozygous. Historically, crop improvement has been carried out via recurrent phenotypic selection and sib mating (Doney and Theurer, 1978). Commercial sugar beets are hybrid, and the production of hybrid seed relies on a narrow but well characterized genetic base where the frequencies of cytoplasmic male sterility (CMS) and CMS restorers are well understood. The need to maintain the genetic backgrounds required for hybrid seed production while breeding for multiple disease resistance traits, local adaptation, and yield makes the utilization of novel genetic variation a slow and resource-intensive process. Beet reference genomes and sequencing technologies have increased our ability to characterize genome variation within diverse beet lineages and breeding lines (Funk et al., 2018; Galewski and McGrath, 2020). The use of whole genome sequencing (WGS) to inform traditional beet breeding programs provides a system for “select and sequence” (SnS) experiments. These methods are a powerful tool for detecting the genetic basis of phenotypic selection in experimental populations (Schlötterer et al., 2015; Burghardt et al., 2018) and is an efficient way to prioritize candidate variation for functional studies and marker validation in the future (Burny et al., 2020).

Advances in genomic resources, population genomic methods and experimental design have improved the process of gene discovery in agricultural species. Reference genomes provide an anchor to link genetic variation with coding sequences underlying phenotypic variation (Hufford et al., 2012). Accurate gene models determined from ab-initio gene prediction, transcript evidence, and gene ontology can help to infer gene function and provide hypotheses for biological mechanisms (Salzberg, 2019). The genome EL10.2 is a contiguous chromosome level assembly (McGrath et al., 2020) with high homology to other beet reference genomes such as RefBeet (Dohm et al., 2014). Reference genomes have increased our ability to rapidly catalog and compare variation within and between populations using genome scans (Nielsen et al., 2005), bulk segreant analysis (BSA) (Michelmore et al., 1991) and mapping by sequencing approaches (Schneeberger et al., 2009). WGS has also been used to provide a complete picture of genetic variation within a population including structural variants (SV) and presence-absence variation (PAV) (Pinosio et al., 2016; Wang et al., 2018). Recent research has demonstrated the impact of SV and PAV on important phenotypic variation observed between cultivars and adaptative trait variation including disease resistance (Zhou et al., 2019; Hämälä et al., 2021). SnS experiments show potential to detect genetic variation linked to selection and adaptation in experimentally generated populations (Schlötterer et al., 2015). Additionally, numerous methods to detect positive selection within populations have been established (reviewed in Weigand and Leese, 2018) which facilitates the adoption of SnS experiments within breeding programs for agricultural crops such as beet.

Phenotypic variation in beets is often measured at the level of the population due to difficulties inbreeding and fixing variation in single plants, fostering comparisons between populations rather than comparisons between individuals. Pooled sequencing of populations is an effective way to capture and compare causal genetic variation in beet, either by partitioning variation according to phenotypes within a segregating population, or by comparing different populations. The utility of pooled data has been demonstrated (Schlötterer et al., 2014) and can provide accurate estimates of allele frequency (Lynch et al., 2014) and population genetic parameters (Ferretti et al., 2013). Pooled sequencing increases the effective number of assayed recombination events, improving our ability to resolve causal variation vs. traditional mapping approaches. In beets, pooled sequencing has been utilized to understand how diversity is distributed in crop type lineages (Galewski and McGrath, 2020) and within selected breeding populations (Ries et al., 2016). The later research used pooled data and a mapping by sequencing approach to discover causal variation associated with hypocotyl color, a monogenic trait. Our hypothesis is that pooled sequencing could also be effective for resolving polygenic traits with continuous phenotypes, which are more difficult to detect with traditional marker-based approaches. For example, disease resistance traits have been a major target of sugar beet breeding for more than a century and the application of pooled sequence data to inform polygenic traits such as Rhizoctonia resistance is warranted.

Rhizoctonia solani Kühn is a soil borne pathogen which can cause seedling dampening off and crown and root rot, both of which can severely impact sugar yield for growers (Gaskill et al., 1970). Various management practices are used to mitigate R. solani infection in the field and maintain crop profitability. This includes crop rotation, seed treatments and fungicide applications (Bolton et al., 2010). Genetic resistances have been identified but appear to be derived from relatively few sources (Panella, 2005) which highlights the need for identifying new sources. Unfortunately, genetic resistance to rhizoctonia is poorly characterized, and while no single germplasm source can be attributed to Rhizoctonia resistance in beet, the long history of selection for resistance to crown and root rot from the USDA-ARS Ft. Collins, CO, United States germplasm enhancement program likely represents the major resistance source in commercial materials. Seedling resistance was identified from these materials and from the USDA-ARS East Lansing, MI, United States germplasm enhancement program (Panella et al., 2015). Early reports describe resistance as polygenic with many small-effect alleles (Hecker and Ruppel, 1975). Some major resistance quantitative trait loci (QTL) have been described in greenhouse studies (Lein et al., 2008) but the added complexity of field conditions and year effects (Strausbaugh et al., 2013a), host growth stage (Nagendran et al., 2009; Liu et al., 2019), cultivar and pathogen interactions (Strausbaugh et al., 2013b), and confounding infections from bacterial pathogens (Strausbaugh et al., 2013a) suggest many genes contribute to rhizoctonia resistance in sugar beet. Other research suggests the involvement of additional compounds and proteins in rhizoctonia resistance, such as reactive oxygen species (Taheri and Tarighi, 2010), polygalacturonase-inhibiting proteins (Li and Smigocki, 2018), and major latex protein-like proteins (Holmquist et al., 202). Newly sequenced rhizoctonia genomes have further detailed the complexity of host-pathogen interactions resulting from different anastomosis groups, putative genes, enzymes, and effectors molecules (Wibberg et al., 2016).

This research is focused on understanding plant host resistance to seedling Rhizoctonia by sequencing bulks of phenotypically distinct individuals derived from a synthetic outcrossing population, EL57 (PI 663212). Using WGS, existing reference genomes, and selection for resistance we highlight a genomic background associated with seedling Rhizoctonia resistance. In identifying the genetic determinants underlying resistance we show how these methods can be used to characterize polygenic traits in beet (B. vulgaris), inform future experiments, and provide genetic solutions to long standing challenges faced by sugar beet producers.



MATERIALS AND METHODS


Populations and Sequencing

The population EL57 is a unique synthetic population combining mostly Eastern US germplasm traits in a self-fertile genetic background, and is diploid, multigerm, and biennial. EL57 is a very broad genetic base diploid combining genetics of 660 mother roots with the unique feature that 98% of the 133 parental used lines are self-fertile due to a dominant gene (Sf) introgressed from C869 (PI 628754) or C869 CMS (PI 628755). 21% of the parents were derived from C869 CMS and thus have the S-cytoplasm. Male sterility, both nuclear male sterility from C869 and CMS, was used to capture pollen from open-pollinated increases of a wide variety of pollinators from 1997 through 2007. Traits expected to be segregating in the population include Aphanomyces seedling disease and Cercospora leaf spot resistances contributed by sugar beet germplasms SP7622 (aka SP6822, 20% of original pollinators), USH20 (8% of original pollinators), and SP85303 (PI 590770, 6% of original pollinators), Rhizoctonia resistance derived from EL51 (PI 598074, 13% of original pollinators), curly top and rhizomania resistance selections from C931 (PI 636340) and EL0204 (PI 655951) (5% of original pollinators), a series of Aphanomyces resistant or salt-tolerant germination breeding lines and selections (derived from PI 165485, PI 271439, PI 518160, PI 546409, PI 562591, PI 562599, and PI 562601) (20% of original pollinators in total), a series of 17 nematode resistant breeding lines from the Salinas, CA USDA-ARS breeding program (13% of original pollinators), and a mixture of released and unreleased breeding lines derived from high sucrose, smooth-root selections (23% of original pollinators).

EL57 was planted in the SVREC seedling Rhizoctonia nursery on May 15, 2017, as a large selection block of 161 plots and inoculated with Rhizoctonia isolate RG2-2 on June 6. Seven plots of EL57 were not inoculated as a control. Approximately 8 weeks later leaves were harvested from non-inoculated and inoculated plots, representing three bulks. Resistant and susceptible bulks were chosen from the inoculated plots, and an unselected bulk was taken from non-inoculated plots. Leaf material from 25 plants was harvested and pooled for each of the three bulks. Pooled leaf material was homogenized, and DNA was extracted using the Macherey-Nagel NucleoSpin Plant II Genomic DNA extraction kit (Bethlehem, PA). One microgram of DNA for each population was submitted to Admera Health, LLC, where NGS libraries were constructed using TruSeq bar-code adapters. The sequencing reactions were carried out on the Illumina Hi-Seq 2500 in a 2 × 150 bp paired-end format with a target coverage of 80x relative to the predicted 758 Mb genome size of beet (Arumuganathan and Earle, 1991). Post-sequencing read quality was assessed using FastQC (Andrews, 2010). Library bar-code adapters were removed and reads were trimmed according to a quality threshold using TRIMMOMATIC (Bolger et al., 2014) invoking the following options (ILLUMINACLIP:adapters.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36). These filtered reads were used for downstream analysis.


Alignment and Variant Detection

Reads from each population were aligned to the B. vulgaris reference genome assembly EL10.2 (McGrath et al., 2020) using BWA mem (Li, 2013). The resulting alignment files were sorted and merged using SAMtools (Li et al., 2009). Variants for each population were called simultaneously on all three populations using the program Freebayes (Garrison and Marth, 2012). Variants were filtered for mapping quality, number of variants detected and depth across sites. After the initial variant detection step, the vcf file was filtered for genotype quality, GQ ≥ 20, and read depth, N < 300. Variants were then partitioned into those that were detected as biallelic and those that were multi-allelic. The biallelic sites were used for the estimation of population genetic parameters and the multiallelic sites were retained for consequence on phenotype after significant regions were determined. In addition, structural variants were cataloged in each sample using the program Manta (Chen et al., 2016).



Genome Divergence—Allele Frequency, FST and DeltaAF

A python program was used to count alleles for all biallelic variants within the three populations. Allele frequency was estimated for the resistant, susceptible, and unselected EL57 populations. Population genetic parameters were estimated using the allele frequency within each population such that (p + q = 1). The variable p was designated as the reference allele of the EL10.2 reference genome and q as the alternate state. The degree of fixation was estimated at all biallelic sites using the expected heterozygosity (He) or 2pq. Global levels of fixation with respect to selection were calculated as the average of He across all sites. FST was used to calculate differentiation between the resistant and susceptible populations at each locus (Eq. 1). The parameter FST24 was estimated by calculating FST within a sliding window of 25 biallelic variant sites, or 12 variant sites flanking a single biallelic locus across the genome. Significant regions along chromosomes were determined by loci that showed a significant FST value at a given locus. Significance thresholds were defined by P-values < 0.01, calculated using the empirical distribution of all FST values.
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Equation 1: shows FST is defined as the ratio of variance in allele frequency of the subpopulation (s) relative to the total population (t), where p is the allele frequency of allele (p).

Delta allele frequency was calculated by using a series of Boolean operators to determine the loci which pass allele frequency thresholds in selected populations relative to the unselected population. This provided a null distribution from which to derive the genomic locations of large changes in allele frequency with respect to selection for resistance.

[image: image]

Equation 2: determines sites where the relative change in allele frequency between resistant and susceptible bulks is > 0.8 and the allele frequency change between susceptible and unselected bulks is low, >0.15.



Genome Visualization

Visualization of significant genomic regions was carried out by plotting FST24 along chromosomes with a density plot of all significant FST values. Python was used for the manipulation of data sets and estimation of population genetic parameters, while R libraries were used for plotting the final data matrixes. DeltaAF was also plotted across the genome, highlighting only those regions where divergence in allele frequency between the resistant and susceptible bulk was high and the susceptible and unselected population was low. Regions along the chromosome of high significance were determined by investigating a significant locus and searching within a 50 kb window upstream to determine the size and significance of a region with respect to selection. All regions with significant FST or DeltaAF were visualized using R. The density and distribution of variation was also considered by plotting data relative to the physical map provided by the EL10.2 genome assembly along with EL10 gene models and annotations. SNPeff (Cingolani et al., 2012) was used to annotate variants based on physical position and determine functional consequences in terms of protein coding changes.



Determination of Resistance Genes Involved in Resistance to Rhizoctonia solani

A combination of statistical analysis and genome resources were leveraged to identify targets within or adjacent to significant regions across the genome (e.g., FST, FST24, and DeltaAF). Determination of putative gene loci involved in resistance were based on all previous analysis as well as significant homology to functional validated candidates in other species. Markers were derived for use in predicting seedling rhizoctonia resistance by extracting significant variation from .vcf files.





RESULTS

Nearly 3,500 plants from the synthetic, outcrossing sugar beet population EL57 (PI 663212) were sown, inoculated with Rhizoctonia solani isolate RG2-2, and allowed to grow for 8 weeks before being evaluated for seedling dampening off. Rhizoctonia symptoms became progressively worse throughout the growing season: average stand counts prior to inoculation were 21.3 plants/plot (SD = 3.33) and post-inoculation at the end of the season (October 17) were 4.9 plants/plot (SD = 1.74), or approximately 77% plant death. This suggested that the disease nursery provided a strong selection pressure for resistance to Rhizoctonia solani infection and an opportunity to identify a genetic basis for this important trait. Three bulks were sampled for WGS each representing 25 plants (0.7% of the total population). Susceptible individuals (S bulk) were selected with respect to leaf symptoms and confirmed as showing root symptoms as well. Resistant individuals (R bulk) showed no visual leaf or root symptoms (Figure 1). An unselected bulk was also sampled which helped to identify allele frequency changes resulting from selection vs. historical population dynamics and/or genetic drift.
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FIGURE 1. Phenotypic selection of EL57 bulks segregating for resistance to seedling Rhizoctonia.


An average of 259,888,506 reads were generated for each of the three bulks, representing an average coverage of 80.3X per sample. The raw reads were trimmed and mapped to the EL10.2 reference genome: 98.1% of bases were retained after filtering and 95% of reads successfully aligned. The aligned reads were used to identify sequence variation across the three populations. A total of 3,235,162 variants were detected, consisting of biallelic, multi-allelic, and structural variants (SV). Biallelic variation accounted for 2,812,301 loci (86.93%) of the total variation and multi-allelic variation accounted for 249,045 (7.70%). Biallelic and multi allelic variation was further categorized by type, including insertions, deletions, single nucleotide polymorphisms (SNP), multi nucleotide polymorphisms (mnp) and complex substitutions (Table 1). The biallelic variation was used for statistical analysis due to its ease in estimating allele frequency and population genomic parameters. Expected heterozygosity (He) showed the degree of fixation resulting from selection for a resistance phenotype. A reduction in He was observed between the unselected (0.304) and the resistant bulk (0.298). He for the susceptible bulk (0.305) was closer to the unselected bulk (Table 1). This is consistent with selection pressure applied and the frequency that resistance was observed in the base EL57 population. We also found 173,817 SVs (5.37%), which were subcategorized as insertions (26,837), deletions (68,922), and putative translocations (78,057) relative to the EL10.2 genome (Table 1).


TABLE 1. Summary of variant detection.

[image: Table 1]
Selection was investigated across the genome using the parameters FST and DeltaAF. FST estimated the apportionment of variation in allele frequency between bulks. The empirical distribution of FST allowed us to assign significance values (p-values) to all biallelic loci. At significance levels of p< 0.05, p< 0.01, and p< 0.001. FST values were equal to 0.22, 0.84, and 0.91 respectively. In total, 1,311 loci were detected with significant FST (p < 0.01). Since FST shows divergence at a single site, it can be hard to interpret if the divergence is the result of genetic drift or selection. To address this issue, FST was also calculated in a sliding window (FST24) which considered 24 adjacent variant sites as a single entity. This could reduce noise from genetic drift under the assumption that if selection was acting on a site, linkage disequilibrium would cause adjacent sites to diverge along with the causal variant. As expected, the FST24 analysis reduced the number of significant regions associated with divergence between the resistant and susceptible bulks (Figure 2 and Table 2). Divergence between resistant and susceptible bulks, measured by FST, occurred on all chromosomes but some chromosomes contained more divergent loci than others. It was also noted that divergent sites appeared to be within gene rich regions, and not associated with centromeric or telomeric sequences.
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FIGURE 2. Effects of selection on allele frequency across B. vulgaris chromosomes. (A) Distribution of FST 24 and FST (B) Distribution of DeltaAF.



TABLE 2. Accumulation of significant loci among chromosomes.

[image: Table 2]
Delta AF was used to test changes in allele frequency between populations selected for resistance and susceptibility to rhizoctonia vs. an unselected population. Our expectation for DeltaAF was that large differences in allele frequency detected between susceptible and resistant bulk would not be found between susceptible and unselected bulks, given the frequency of resistant individuals in the unselected bulk was estimated at 23%. In terms of significant sites, DeltaAF was a more stringent statistic. In total, 186 sites were detected as significant, representing 42 genes. The complete table of all DeltaAF loci are presented in Supplementary Table 2. Comparisons between significant loci produced by FST, FST 24, and DeltaAF across the chromosomes are present in Table 2.

Significant genomic regions were defined by taking all 1311 FST values which passed the significance threshold of 0.84 (p < 0.01) and looking for physical clusters of significant FST values within 50 kb of a given locus. This produced a list of regions along the chromosome which were the most diverged between the resistant and susceptible bulks (Table 3). In total 206 regions were identified and the size and magnitude of significance for each region were evaluated. In total 83 of the regions were represented by only one locus with significant FST. These appeared less likely to reflect a selective sweep but represent potential functional variants between pools and may contribute to the phenotype. The remaining 43 regions were represented by more than a single locus (3–17 loci) within 50 kb of another significant variant site. The average size of a significant region was 27,624 bp, with a range from 3 to 130,093 bp in length. The complete table with FST values is presented in Supplementary Table 1. Significant DeltaAF loci were associated with 136 regions across the chromosome and were determined the same way as FST.


TABLE 3. Comparison of regions derived from FST and Delta AF.
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Genes that were associated with significant FST and DeltaAF values were extracted by using a significance threshold and determining their physical position relative to gene boundaries (5′ URT and 3′ UTR) or the upstream promoter sequences, defined as 3 kb flanking the gene. In total, 1,316 loci with high FST were associated with 206 regions, containing 311 genes. These could be further subdivided into variants associated with the gene sequences (275) (Supplementary Table 3) and those associated promoter sequences of genes (36) (Supplementary Table 4). In total, DeltaAF recovered 42 genes, and 32 were identified as having high DeltaAF signals within the gene boundaries (Supplementary Table 5) and 10 were identified in putative promoter sequence (3 kb flanking the genes) (Supplementary Table 6). All of the genes associated with Delta AF genes were found within the larger FST gene set. The total biallelic variant set was analyzed using SNPeff and produced 56,451 annotations predicted to have high consequences on gene function. Only 11 of these coincide with loci determined to have significant FST or DeltaAF.

We combined data from statistical tests for enrichment (e.g., FST and DeltaAF) with custom visualization tools to inspect regions of significance with respect to the EL10.2 physical map (Figure 3). A preliminary set of 41 candidate regions was generated based on their proximity and effect of genetic variation relative to gene models. We queried publicly available databases and the scientific literature to determine the functional identity of the candidate genes to prioritize targets of future research. This analysis revealed 18 genes with known or putative function in pathogen resistance and six genes likely involved in cell wall metabolism (Table 4). The pathogen defense related genes included multiple representatives from three classes: four chitinases (EL10Ac3g05998, EL10Ac3g06002, EL10Ac3g06003, EL10Ac3g05996), three putative pathogen-responsive Ser/Thr receptor kinases (EL10Ac4g07999, EL10Ac3g06055, EL10Ac3g06056), and two genes involved in defense-associated volatile ester catabolism (EL10Ac6g14646 and EL10Ac3g05812). The cell wall-related genes included five metabolic genes (EL10Ac6g13717, EL10Ac6g13257, EL10Ac5g13023, EL10Ac3g05157, and EL10Ac3g05159) as well as one Myb-related transcription factor EL10Ac1g00142. It is noteworthy that the Peroxidase 5 genes EL10Ac3g05157 and EL10Ac3g05159 are likely a single gene with a transposon inserted into the coding region in the EL10.2 reference genome (the transposon is recorded as EL10Ac3g05158 “Retrovirus-related Pol polyprotein from transposon TNT1–94” in the EL10.2 annotation). Unfortunately, the variant detection strategy employed in this report cannot determine if this peroxidase gene is intact in either the resistant or susceptible bulks. However, the combination of FST, DeltaAF, and visualization of variant positions was able to generate a plausible candidate gene list for further investigation. Potential markers and their significance were reported which could be used for the prediction of resistance (Table 5). Subsequent rounds of the “Select and Sequence” strategy would help to validate the markers generated and inform how genomic prediction might be applied to beet populations segregating for phenotypes of interest.
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FIGURE 3. Visualization of chromosome regions on the basis significant FST (p-value<0.01).



TABLE 4. Candidate genes derived from FST, DeltaAF and proximity to chromosomal regions of high significance.
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TABLE 5. Marker variation-high consequence (SNPeff), FST, and DeltaAF.
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DISCUSSION

Identifying the genetic basis of quantitative traits is a longstanding challenge in crop improvement. In this report, we used a select and sequence (SnS) approach to identify contrasting genetic variants between resistant and susceptible bulks drawn from a synthetic breeding population segregating for resistance to seedling rhizoctonia infection. Using pooled sequencing, we estimated population genetic parameters to investigate fixation (He), genome divergence (FST) and changes in allele frequency (DeltaAF) resulting from selection and identified candidate genomic variation underlying Rhizoctonia resistance. We generated a list of putative candidate genes by visualizing the population genetic data with respect to the EL10.2 physical map. The candidate gene list was enriched for genes associated with pathogen defense and cell—wall biosynthesis, both of which are plausible components of rhizoctonia resistance. Additional rounds of selection within the EL57 base population or the advancement of generations in the presence of divergent selection could further resolve causal genetic variation and validate the genetic basis of Rhizoctonia resistance in beet.

SnS experiments using segregating populations provide a system to study the underlying genetics of polygenic traits as part of ongoing selection activities within a breeding program. Here we show how pooled sequencing could be used for discovery of key genetic variation when applied to polygenic traits within a population with an extremely broad genetic base. In this case, Rhizoctonia resistance stored within the synthetic EL57 population was derived from EL51, which can be traced to FC701 as the likely source (Panella et al., 2015). Significant signals of divergence as the result of selection were distributed across the genome indicative of a polygenic trait. This is consistent with previous reports of trait heritability (Hecker and Ruppel, 1975). Expected heterozygosity (He) estimated using all biallelic sites showed a greater level of fixation in the resistant bulk, suggesting that the genetic background that conditions resistance to Rhizoctonia could be selected and identified within a highly heterozygous population. The fact that only a few resistance sources have been identified even with considerable effort suggests genome informed approaches may be key to characterizing the source under study here as well as identifying new sources for Rhizoctonia resistance in other diverse populations.

FST and DeltaAF are complementary statistics that were both able to identify the effects of selection across the genome. DeltaAF was a more stringent statistic in terms of the number of significant loci and putative genes detected, as evidenced by all significant DeltaAF loci appearing as a subset of significant FST loci. It has been shown that generating a null distribution of allele frequency in an unselected population is important for separating signal from noise when detecting selection (Galtier and Duret, 2007). Therefore, DeltaAF could have an advantage in identifying causal variation due to its ability to leverage unselected allele frequencies to further distinguish significant loci resulting from selection, as opposed to differences resulting from historical population dynamics or genetic drift.

The final candidate gene list was strongly enriched for disease resistance genes and cell wall biosynthesis genes, suggesting complementary mechanisms involved in host resistance. To better define the genomic background associated with the putative EL51/FC701 resistance source, we specifically focused on genes which can explain resistance and are documented in the literature with known disease resistance functions, such as pathogen perception, signal transduction and cellular response to pathogens. The wide array of obvious defense genes such as Ser/Thr kinases, resistance gene analogs, chitinases, and peroxidases is in line with our expectations of how plants could defend themselves against a generalist pathogen such as Rhizoctonia. Other members of the candidate gene list do not have established roles in plant defense. These are genes with plausible but speculative roles, such as transcription factors and putative cell membrane-associated proteins. The combination of known defense genes along with additional genes of unknown function provides direction for developing testable hypotheses regarding the mechanisms of defense. In addition to genes involved in host-pathogen interactions, variation in cell wall biosynthesis could make some plants more resistant to infection. Previous studies have identified seedling resistance in comparisons between susceptible (USH20) and resistant (EL51) varieties (Nagendran et al., 2009). Resistant plants showed a durable resistance including the ability to limit the spread of infection beyond the epidermis, including maintenance of cell wall integrity in the presence of pathogen-derived enzymes that varied with respect to plant age. For this reason, identifying numerous cell wall-related genes among our significant loci adds evidence to the importance of cell wall biosynthesis in limiting Rhizoctonia infection, especially at the seedling stage.

In conclusion, this research provides a genomic perspective to seedling Rhizoctonia resistance in beets, a complex polygenic trait with agricultural importance. We think it is a useful exercise to develop methods and generate lists of candidate genes involved with important traits in order to validate results and prioritize candidate variation for functional studies. A better understanding of the limitations of these experiments and our ability to detect significant variation is warranted. The detection of PAV in pooled data is perhaps the most visible limitation of this experiment. If PAV is causal and not represented in the genomic data then we rely on linkage, which is not a strength of pooled sequencing designs. Future experiments should address the ability of pooled assemblies to represent the genomes of populations under investigation with respect to PAV, and whether PAV frequency can be measured. Starting with the best possible catalog of variants for population genetic parameters represents the highest degree of resolution for the identification of causal variation. Select and sequence experiments have the potential to explore the genetic base of beet through the identification of alleles in wild material as well as characterize existing germplasm for agriculturally important traits. Using this approach, beet breeding programs can simultaneously generate markers and improve the genetic base of populations using phenotypic selection.
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Total variants 3,235,162 100.00%
Biallelic 2,812,301 86.93%
Multiallelic 249,045 7.70%
Structural variant (SV) 173,816 5.37%
SV insertion 26,837
SV deletion 68,922
SV translocations 78,057
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Single nucleotide polymorphism (SNP) 1,939,590 68.97%
Insertion 454,829 16.17%
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Complex substitution 168,053 5.98%
Multi nucleotide polymorphism (MNP) 63,039 2.24%
Population Expected heterozygocity (2pq)
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OPS/images/fpls-12-785267-t002.jpg
Chromosome 1
Chromosome 2
Chromosome 3
Chromosome 4
Chromosome 5
Chromosome 6
Chromosome 7
Chromosome 8
Chromosome 9

FST (p < 0.01)

314
204
145
79
17
50
235
69
103

FST24 (p < 0.01)

153
18
0
4
26
0
12

52

DeltaAF

37
32
25
13
14
i
48
5
5





OPS/images/fpls-12-785267-t003.jpg
Number of Genes associated Promoters associated Average number Average size
regions with regions with regions of loci in regions of region (bp)

FST 206 275 36 6.39 14,998
DeltaAF 136 32 10 1.37 3,559





OPS/images/fpls-12-785267-t004.jpg
Data Chr Gene Scaffold Start Stop Strand Identity

FSTG 1 EL10Ac1g00142 Icl| Scaffold_4 62288988 62293643 — Myb-related protein Zm1

Region 3 EL10Ac3g05118 Icl| Scaffold_7 2505514 2508049 + Mitochondrial metalloendopeptidase OMA1

DAF/FSTG 3 EL10Ac3g05157 Icl| Scaffold_7 2964465 29088432 + Peroxidase 5 {ECO:0000250| UniProtkB:P22195}

Region 3 EL10Ac3g05158 Icl| Scaffold_7 2975394 2980297 — Retrovirus-related Pol polyprotein from transposon
TNT1-94

Region 3 EL10Ac3g05159 Icl| Scaffold_7 2986817 2992340 — Peroxidase 5 {EC0O:0000250| UniProtkKB:P22195}

FSTG 3 EL10Ac3g05812 Icl| Scaffold_7 11447524 11463930 — Probable carboxylesterase 1

FSTG 3 EL10Ac3g05814 Icl| Scaffold_7 11478272 11491769 + Putative disease resistance protein RGA1

FSTG 3 EL10Ac3g05956 Icl| Scaffold_7 13796358 13808136 — Cytosolic sulfotransferase 15

Region 3 EL10Ac3g05996 Icl| Scaffold_7 14499893 14502240 + Endochitinase CH25

Region 3 EL10Ac3g05998 Icl| Scaffold_7 14524198 14525516 + Endochitinase

Region 3 EL10Ac3g06002 Icl| Scaffold_7 14553565 14555809 + Endochitinase A

FSTG 3 EL10Ac3g06003 Icl| Scaffold_7 14553822 14558536 — Chitinase 9

FSTG 3 EL10Ac3g06012 Icl| Scaffold_7 14703412 14714093 — 3beta-hydroxysteroid-dehydrogenase/decarboxylase
isoform 3

FSTG 3 EL10Ac3g06014 Icl| Scaffold_7 14744397 14756713 — Calreticulin-3

Region 3 EL10Ac3g06055 Icl| Scaffold_7 15643877 156645017 + Wall-associated receptor kinase 1

FSTP 3 EL10Ac3g06056 Icl| Scaffold_7 15666223 16687673 + Wall-associated receptor kinase 2

Region 4 EL10Ac4g07999 lcl] Scaffold_3 6786108 6793448 - Probable leucine-rich repeat receptor-like
serine/threonine-protein kinase At5g15730

Region 5 EL10Ac5hg12121 Icl| Scaffold_2 165631411 16538896 + zinc-binding in reverse transcriptase

FSTG 5 EL10Ac5g13023 Icl| Scaffold_2 787508 799504 - Oxysterol-binding protein-related protein 2A

FSTG 6 EL10Ac6g13257 lcl] Scaffold_1 69644352 69648601 — Endo-1,4-beta-xylanase F1

FSTP 6 EL10Ac6g13717 Icl| Scaffold_1 62821741 62829006 + Anthocyanidin 3-O-glucoside 2”-O-glucosyltransferase

NA 6 EL10Ac6g14646 Icl| Scaffold_1 22176769 22179875 — Valencene synthase

FSTG 6 EL10Ac6g15325 Icl| Scaffold_1 7486762 7502133 + transmembrane protein 184A

FSTG 6 EL10Ac6g15331 lcl] Scaffold_1 7409666 7416329 - Probable E3 ubiquitin-protein ligase HERC2

Region 6 EL10Ac6g15568 Icl| Scaffold_1 3124396 3127216 + hypothetical protein

FSTG 8 EL10Ac8g19585 Icl| Scaffold_5 30096389 30106598 + Cationic amino acid transporter 1

FSTG 3 EL10Ac9g21282 Icl| Scaffold_9 41429473 41431399 — Vacuolar amino acid transporter 1

Region 5 EL10As14924073 Icl| Scaffold_2 14271095 14272339 + Protein SLE2 {ECO:0000303| Ref.3}

FSTP 5 EL10As14924074 Icl| Scaffold_2 14288341 14294899 + Dynamin-related protein 1E

FSTG, significant FST loci within gene; FSTR significant FST loci within promoter sequence; DAF, significant DeltaAF loci; Region, gene found within significant region;
NA, gene found within significant region.
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Allele Frequency

Data EL10.2 Position Ref Alt Unseleted Resistant Suceptible FST EL10.1 Gene ID Gene Annotation
Scaffold

SNPe cl| Scaffold_1 10,879,102 TGG TGGG 0.00 0.00 1.00 1.00  EL10Ac6g15089 RNA recognition motif. (a.k.a. RRM,
RBD, or RNP domain)

SNPe cl| Scaffold_1 26,110,683 CAA CAAA 1.00 0.00 0.92 0.85  EL10Ac6g14526 Zinc finger CCHC domain-containing
protein 8

SNPe cl| Scaffold_2 56,034,911 GG GCA 0.88 1.00 0.16 0.72 EL10Ac5g11051 NEP1-interacting protein-like
2;TMhmm_ExpAA:32.25

SNPe cl| Scaffold_4 62,342,250 CTC CTTG 1.00 0.00 1.00 1.00 EL10Ac1g00136 Carboxymethylenebutenolidase
homolog

SNPe cl| Scaffold_7 52,713,203 TA TGG 0.92 0.00 1.00 1.00 EL10Ac3g07219 Nucleolar protein 10

SNPe cl| Scaffold_8 452,635 T TAGGA 0.88 0.00 0.84 0.72 EL10Ac2g02429 Histidine kinase 5

SNPe cl| Scaffold_9 48,328,478 AGA AGGG 0.92 0.00 1.00 1.00 EL10Ac9g21727 Probable receptor-like
serine/threonine-protein kinase
At4g34500; TMhmm_ExpAA:23.97

SNPe cl| Scaffold_9 52,891,057 TA TGGC 0.80 0.00 1.00 1.00 EL10Ac9g22099 GATA transcription factor 12

SNPe cl| Scaffold_9 53,136,509 GAG GAAC 0.68 1.00 0.16 0.72 EL10Ac9g22117 MADS-box transcription factor 27

DAF/FST  Icl| Scaffold_4 63,029,953 C T 0.08 1.00 0.00 1.00  EL10Ac6g15080 Protein FAR-RED ELONGATED
HYPOCOTYL 3

DAF/FST  Icl| Scaffold_4 63,029,962 A G 0.08 1.00 0.00 1.00 EL10Ac6g14731 Probable inactive receptor kinase
At5g10020; TMhmm_ExpAA:41.51

DAF/FST  Icl| Scaffold_4 53,504,844 T C 0.00 1.00 0.00 1.00 EL10Ac6g14670 Replication factor C subunit 1

DAF/FST  Icl| Scaffold_4 40,900,804 TGGGGGGGG GGGGGGGA TGGGGGGGGGGE GGGGGGA 0.04 0.96 0.00 0.92 EL10Ac6g14562 mportin-9; TMhmm_ExpAA:27.48

DAF/FST  Icl| Scaffold_4 1,904,674 CA AG 0.00 0.84 0.00 0.72 EL10Ac6g13913 Sugar transport protein 14

DAF/FST  Icl| Scaffold_4 1,904,696 T A 0.00 0.88 0.00 0.79 EL10Ac5g12073 Putative disease resistance protein
RGA3

DAF/FST  Icl| Scaffold_8 2,814,345 A G 0.00 1.00 0.00 1.00 EL10Ac5g12061 Transcription factor MYB39

DAF/FST  Icl| Scaffold_8 3,930,082 G A 0.00 0.88 0.00 0.79 EL10Acbg11572 Metallothionein

DAF/FST  Icl| Scaffold_7 1,850,367 A T 0.16 1.00 0.12 0.79 EL10Ac4g08331 Putative ribonuclease H protein
At1g65750

DAF/FST  Icl| Scaffold_7 2,965,251 AT ATACAGT 0.00 1.00 0.00 1.00 EL10Ac4g09188 Guanine deaminase

DAF/FST  Icl| Scaffold_7 2,965,294 C T 0.00 1.00 0.00 1.00 EL10Ac4g09998 Protein kri1

DAF/FST  Icl| Scaffold_7 14,304,193 GAA GA 0.00 1.00 0.00 1.00 EL10Ac1g02366 Heptahelical transmembrane protein
4; TMhmm_ExpAA:151.43

DAF/FST  Icl| Scaffold_7 15,181,123 GTAAACTAGTAAC GGCCAG 0.00 1.00 0.00 1.00 EL10Ac1g02366 Heptahelical transmembrane protein
4, TMhmm_ExpAA:151.43

DAF/FST  Icl| Scaffold_7 15,643,326 A G 0.08 1.00 0.00 1.00 EL10Ac1g02366 Heptahelical transmembrane protein
4; TMhmm_ExpAA:151.43

DAF/FST  Icl| Scaffold_7 15,665,864 G A 0.00 1.00 0.00 1.00 EL10Ac1g01440 Small RNA degrading nuclease 5

DAF/FST  Icl| Scaffold_7 15,665,870 GTAAGAAAGTGACAT GTAAGAAAGTGACATA 0.00 1.00 0.00 1.00 EL10Ac1g00071 ABC transporter E family member 2

AGAAAGTGACAT
DAF/FST  Icl| Scaffold_7 16,724,330 GGATC AGATT 0.00 1.00 0.00 1.00 EL10Ac1g00071 ABC transporter E family member 2
DAF/FST  Icl| Scaffold_7 16,724,391 TATC AATT 0.00 1.00 0.00 1.00 EL10Ac8g18254 BNR repeat-like domain






OPS/images/fpls-12-785267-t005b.jpg
DAF/FST
DAF/FST

DAF/FST
DAF/FST

DAF/FST

DAF/FST
DAF/FST

DAF/FST

DAF/FST

DAF/FST

DAF/FST
DAF/FST
DAF/FST
DAF/FST
DAF/FST
DAF/FST
DAF/FST
DAF/FST
DAF/FST
DAF/FST
DAF/FST

DAF/FST

DAF/FST

DAF/FST

DAF/FST

DAF/FST

DAF/FST
DAF/FST

QO O O o O o o O o o O

o O O O

Icl| Scaffold_7
Icl| Scaffold_7

Scal
Sca

Scaf

Sca
Sca

Scaf

Sca

Scal

Scal
Scal
Scal
Sca
Sca
Sca
Scaf
Scaf
Scal
Sca
Sca

Scal

Scaf

Sca

Scal
Sca
Sca
Sca

O O 0O o0 O O o o o O O

o O O O

16,724,418
25,250,059

52,512,965
19,694,86

15,282,274

48,281,437
56,318,571

60,769,635
35,363,747
18,141,331

17,790,729
15,093,093
54,208,817
24,987,470
21,268,651
19,398,911
19,217,784
11,698,071
11,468,948
2,848,41
33,124,391

61,709,065

61,709,075

48,904,484

42,132,982
7,244,134

34,647,812
45,146,825

A C
AGTGGTTGTGGTTGTG AGTGGTTGTGGTTGTGG
GTTGTGGTTGTGGTTG TGTGGTTGTGGTTGTG
TGGTTGTGGTTGTGGT GTTGTGGTTGTGGTTGT
TGTGGTTGTGGTTGTGG GGTTGTGGTTG

TTGTGGTTG
TG GG
G A
GGG AAA

A C

TTATATATATATATATATATA TTATATATATATATATA
TATATATATATATATATATATATA TATATATATATAT
TATATATATATATATAT
G C
G G G G

A -

T A

c -

AAGGGTTAGGGTTT AAGGGTTAGGGTTAGGGTTT
CGGGGGGGGGGGGET CGGGGGGGGGGGGGGT
TAAAAAG TAAAAAAG

C A

G A

C A

A T

GAA GAAA

AATATATATATATATAT AATATATATATATATATA
ATATATATATATA TATATATATATATA

GT AC

G A

C T

C A

GCC GC
GCTGGACTGGAC GCTGGACTGGACTGGAC
G T

0.00
0.08

0.00
0.00

0.00

0.00
0.04

0.00

0.16

0.00

0.00
0.00
0.08
0.16
0.00
0.00
0.00
0.12
0.00
0.00
0.00

0.00

0.08

0.00

0.04

0.08

0.12
0.00

1.00
0.92

1.00
1.00

1.00

1.00
1.00

0.84

0.96

1.00

1.00
1.00
1.00
1.00
0.88
1.00
1.00
1.00
1.00
1.00
0.92

1.00

1.00

1.00

1.00
0.88
1.00
1.00

0.00
0.04

0.00
0.04

0.00

0.00
0.08

0.00

0.08

0.00

0.00
0.00
0.08
0.12
0.00
0.00
0.00
0.12
0.00
0.00
0.08

0.00

0.00

0.08

0.00
0.00
0.12
0.00

1.00
0.78

1.00
0.92

1.00
0.85

0.72

0.78

1.00
1.00
0.85
0.79
0.79
1.00
1.00
0.79
1.00
1.00
0.71

0.85

1.00
0.79
0.79
1.00

EL10Ac8g18254
EL10Ac8g20189

m

L10Ac7g17584
L10Ac3g05987

m

EL10Ac3g06032

m

L 10Ac3g0B055
L 10Ac3g0B056

m

m

L10AC3g0B056

EL10Ac3g06056

m

L10Ac3906056

L10Ac3g06102
L10Ac3g06102
L10Ac3g06102
L10Ac3g06102
L10Ac3g06102
L10Ac3g06102
L10Ac3g06102
L10Ac3g06102
L10Ac3g06102
L10Ac3905053
L10Ac3g06365

mmmTmTImTimMmimmimimMmim

m

L10AC3g05157

EL10Ac3g05157

m

L10Ac3g07201

L10Ac2g02580
L10Ac2902645
L10Ac9g21035
L10Ac9g21479

m m m m

BNR repeat-like domain

U4/UB.U5 tri-snRNP-associated
protein 2

Major allergen Pru ar 1

Lysine—tRNA
ligase; TMhmm_ExpAA:77.60

Hypothetical
protein; TMhmm_ExpAA:36.46

Wall-associated receptor kinase 1

Wall-associated receptor kinase
2;TMhmm_ExpAA:46.88

Wall-associated receptor kinase
2;TMhmm_ExpAA:46.88

Wall-associated receptor kinase
2;TMhmm_ExpAA:46.88

Wall-associated receptor kinase
2;TMhmm_ExpAA:46.88

Protein FAM136A

Protein FAM136A

Protein FAM136A

Protein FAM136A

Protein FAM136A

Protein FAM136A

Protein FAM136A

Protein FAM136A

Protein FAM136A

Hypothetical protein

Light-mediated development protein
DETA
Peroxidase 5 {EC0:0000250|
UniProtkKB:P22195}

Peroxidase 5 {EC0:0000250|
UniProtkB:P22195}

Two-component response regulator
ARR9

Cytochrome b-c1 complex subunit 7
Hypothetical protein
Exosome component 10

Calmodulin-binding transcription
activator 1






OPS/images/logo.jpg
' frontiers
in Plant Science





