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Cuticles are specialized cell wall structures that form at the surface of terrestrial plant 
organs. They are largely comprised lipidic compounds and are deposited in the apoplast, 
external to the polysaccharide-rich primary wall, creating a barrier to diffusion of water 
and solutes, as well as to environmental factors. The predominant cuticle component is 
cutin, a polyester that is assembled as a complex matrix, within and on the surface of 
which aliphatic and aromatic wax molecules accumulate, further modifying its properties. 
To reach the point of cuticle assembly the different acyl lipid-containing components are 
first exported from the cell across the plasma membrane and then traffic across the 
polysaccharide wall. The export of cutin precursors and waxes from the cell is known to 
involve plasma membrane-localized ATP-binding cassette (ABC) transporters; however, 
other secretion mechanisms may also contribute. Indeed, extracellular vesiculo-tubular 
structures have recently been reported in Arabidopsis thaliana (Arabidopsis) to 
be associated with the deposition of suberin, a polyester that is structurally closely related 
to cutin. Intriguingly, similar membranous structures have been observed in leaves and 
petals of Arabidopsis, although in lower numbers, but no close association with cutin 
formation has been identified. The possibility of multiple export mechanisms for cuticular 
components acting in parallel will be discussed, together with proposals for how cuticle 
precursors may traverse the polysaccharide cell wall before their assimilation into the 
cuticle macromolecular architecture.

Keywords: cutin, suberin, cuticle, cell wall, ABC-transporter, secretion, transport, extracellular vesiculo-tubular 
body

INTRODUCTION

During plant organ development, a lipidic, hydrophobic cuticle is deposited on the nascent 
epidermal surface of the entire embryo (Ingram and Nawrath, 2017; Berhin et al, 2019), 
where it forms an intimate association with the underlying hydrated polysaccharide cell 
wall. Cuticle biosynthesis continues during organ expansion and is fine-tuned by developmental 
signals and environmental conditions to fulfill multiple roles. These include biomechanical 
support to maintain organ integrity, a barrier that limits the diffusion of a wide range of 
molecules between epidermal cells and the plant surface, and a layer that prevents organ 
fusion (Yeats and Rose, 2013; Ingram and Nawrath, 2017). The cuticle of the shoot of a 
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seedling is maintained on the surface of organs in their 
primary growth stage during the entire life of the plant 
(Figure  1A), and cuticles can also line internal structures, 
such as the sub-stomatal chamber and locular cavity of some 
fruits. In contrast, the cuticle encasing the root of a seedling 
is shed with the embryonal root cap cell layer after seedling 
establishment (Figure  1A), at which time other extracellular 
protective structures, including mucilage sheaths, Casparian 
strips and suberin lamellae, have been formed in different 
cell types (Berhin et  al., 2019).

The most abundant component of the cuticle is the 
polyester cutin, which is mainly composed of fatty acids 
C16–C18  in length carrying an oxygen-containing group 
(hydroxy, epoxy, or carboxy) in the ω or mid-chain positions 
of the acyl chain. In addition, relatively low amounts of 
glycerol and hydroxycinnamic acids are often detected as 
components of the polyester (Fich et  al., 2016). Cuticular 
waxes, composed of very-long chain fatty acids (VLCFA) 
of C26–C34 and their derivatives (aldehydes, ketones, alcohols, 
alkanes, and wax esters), and alicyclic compounds 

A

B

FIGURE 1 | Schematic overview of cuticle assembly. (A) Morphologies of cuticles from different organs of tomato and Arabidopsis. Cuticle thickness 
measurements were based on TEM images from Martin et al. (2017), Mazurek et al. (2017), and Berhin et al. (2019). The cuticle proper (CP) is indicated by blue 
arrows. *The root cap cuticle is only present on the first outer root cap layer formed during the development of a main root or lateral root. (B) Models of cuticle and 
suberin cellular export and trafficking mechanisms. ABCG transporters are annotated by their respective numbers in Arabidopsis. Brackets indicate that ABCG13 is 
only involved flowers. Arrows show the trafficking direction of lipidic components to their final destination. Question marks indicate hypothetical mechanisms. Note 
that LTPs have not been included in this model.
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(triterpenoids and flavonoids) impregnate the cutin matrix 
(intracuticular) or accumulate on the surface (epicuticular), 
where they may form films or crystal structures, depending 
on their amount and composition (Jetter et  al., 2006; Jetter 
and Riederer, 2016).

Cutin is assembled in the apoplast from precursors that 
are generated within the cell (Fich et  al., 2016; Philippe 
et  al., 2020b). Hydroxylated fatty acids, synthesized by 
members of the cytochrome P450 families 77 and 86 are 
covalently linked to glycerol by glycerol 3-phosphate acyl 
transferase (GPAT) proteins at the endoplasmic reticulum 
(ER) membrane, resulting in monoacylglycerols (Gidda 
et  al., 2009; Yang et  al., 2012). Several acyl transferases 
of the BAHD family that are localized in the cytoplasm 
are also essential for the formation of the cutin polyester: 
for example, DEFECTIVE IN CUTICULAR RIDGES (DCR) 
is required for the incorporation of mid-chain oxygenated 
fatty acids into cutin (Panikashvili et  al., 2009; Lashbrooke 
et al., 2016). In addition, DEFICIENT IN CUTIN FERULATE 
(DCF), a member of the BAHD family that has acyl-
coenzyme A (CoA)-dependent acyl-transferase activity 
involving ferulic and sinapic acids, incorporates ferulate 
into cutin (Rautengarten et  al., 2012). The formation of 
adducts with glycerol or other molecules may provide a 
mechanism to circumvent potential disturbance of membranes 
caused by free hydroxyacids (Douliez, 2004). Notably, all 
known cutin precursors are amphiphilic, reflecting the 
oxygenation of the component fatty acids and the conjugation 
to hydrophilic compounds (glycerol) or other amphiphilic 
compounds, such as hydroxycinnamic acids. Cuticular wax 
components are synthesized at the ER via the alkane-forming 
or alcohol-forming pathways after fatty acid elongation 
(Lewandowska et  al., 2020). Wax molecules, 
particularly  alkanes, are considerably more hydrophobic 
than cutin precursors.

While the core frameworks of the biosynthetic pathways 
of cutin and waxes have been generally defined, many questions 
remain regarding the export mechanisms of the cutin precursors 
and waxes; the trafficking processes across the hydrated primary 
cell wall to their point of assembly on the outer face of the 
wall, and factors that influence the subsequent assembly of 
the cutin scaffold and associated waxes.

In this article, we  discuss the routes of export of cutin 
precursors and wax components across the plasma membrane 
(PM) and through the cell wall to their final destination in 
the cuticle. We  compare these processes with the export of 
precursors of suberin, a polyester that is closely related to 
cutin, but that is often described as having longer monomer 
acyl chain lengths (C18–C28) than cutin and a higher content 
of phenolic compounds. Suberin is deposited in specialized 
cell types, or in response to tissue damage, often in the form 
of lamellae that are present between the PM and the bulk of 
the primary polysaccharide wall. This is a notable difference 
from cutin, which accumulates on the outer face of the primary 
wall. The mechanistic or structural basis for the differences 
in  localization of the two polyester types has not yet been 
elucidated (Philippe et  al., 2020b).

EXPORT OF CUTICULAR COMPONENTS 
BY ABC TRANSPORTERS

In organisms of all kingdoms ABC-transporters, consisting of 
nucleotide binding domains (NBD) and transmembrane domains 
(TMD), transport a broad range of molecules with different 
structure and properties across the PM. Some act as flippases, 
translocating acyl lipids from one leaflet of the membrane to 
the other (Lopez-Marques et  al., 2015). Reaction mechanisms 
for binding different types of substrates and for the transport 
process (import/export/flippase) have been elucidated (Lopez-
Marques et  al., 2015; Lewinson et  al., 2020). The different 
domains of ABC-transporters may be  comprised of separate 
polypeptide chains, as is typical in bacteria. In eukaryotes, 
so-called ABC half-transporters, each of which is encoded by 
a single gene, are composed of one TMD and one NBD. These 
are thought to require dimerization to form a functional unit. 
Full ABC transporters, composed of two TMDs and NBDs, 
are formed by a single polypeptide chain. ABC-transporters 
in plants can be  grouped into eight different families (ABCA–
ABCI; ABCH is not found in plants). ABC-transporters of 
the G-family have the NBD at the N-terminus and the TMD 
at the C-terminus of the protein. In fungi and plants, in 
addition to ABCG half-transporters (previously called as WBC 
transporters), full ABCG transporters (termed Pleiotropic Drug 
Resistance (PDR)-type ABCG transporters) are also present 
(Verrier et  al., 2008).

ABCG Half-Transporters Are Required for 
Cuticle Formation
A clade of closely related ABCG half-transporters has been 
associated with the export of cuticular components (Do et  al., 
2018), which in Arabidopsis comprises four members: 
AtABCG11, AtABCG12, AtABCG13, and the currently 
uncharacterized AtABCG15 (Pighin et  al., 2004; Bird et  al., 
2007; Luo et  al., 2007; Ukitsu et  al., 2007; Panikashvili et  al., 
2010, 2011; Figure  1B). Notably, a different clade of ABCG 
half-transporters (AtABCG1, AtABCG2, AtABCG6, and 
AtABCG20) is involved in the extracellular deposition of suberin 
(Yadav et  al., 2014; Shanmugarajah et  al., 2019; Figure  1B). 
AtABCG11 contributes to both wax and cutin export, while 
AtABCG12 is only required for wax export and AtABCG13 
only for cutin precursor export (Pighin et  al., 2004; 
Bird et  al., 2007; Panikashvili et  al., 2011).

Substrate specificities of ABCG-half transporters seem to 
be largely dependent on homodimer or heterodimer formation: 
for example, AtABCG11 forms homodimers and heterodimers 
with AtABCG12 in vivo (Bird, 2008; McFarlane et  al., 2010). 
ABCG11 likely transports cutin precursors as a homodimer 
that forms with high affinity (Bird et al., 2007). The heterologous 
expression of AtABCG11  in protoplasts of Nicotiana 
benthamiana was observed to lead to the export of free and 
glycerol-bound hydroxylated fatty acids, consistent with a role 
in cutin precursor export (Elejalde-Palmett et  al., 2021). 
Nevertheless, the possibility of heterodimerization with other 
ABCG half-transporters cannot be excluded. While AtABCG11 
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is expressed in all Arabidopsis organs, ABCG13 expression 
is restricted to inflorescences and specific positions in other 
organs. Whether this specific expression pattern relates to 
particular cutin precursor export capacities needs 
further investigation.

PpABCG7, a member of this clade of ABCG half-transporters, 
is required for wax export in the moss Physcomitrium 
(Physcomitrella) patens indicating that the role of this ABCG 
transporter clade has been conserved over at least 450 million 
years of plant evolution (Buda et  al., 2013). ABCG function 
in the formation of impregnations of the cell wall with lipidic 
components may have arisen even earlier in various charophyte 
algal lineages (Kondo et  al., 2016; Philippe et  al., 2020b). 
Indeed, ABCG11 homologues have been identified in extant 
charophyte algae, the sister lineage of embryophytes, and the 
size of the family has increased substantially during the emergence 
and evolution of land plants (Philippe et  al., 2020b). This is 
consistent with the capacity to secrete and assemble hydrophobic 
cuticles being a prerequisite for plant colonization of truly 
terrestrial habitats.

ABCG Full-Transporters Export Cutin 
Precursors
In addition to ABCG half-transporters, ABCG full-transporters 
play essential roles in cutin precursor export (Bessire et  al., 
2011; Chen et  al., 2011b; Garroum et  al., 2016; Figure  1B). 
The downregulation or knockout of AtABCG32 homologs 
(named as ABCG31 in monocots) in rice (Oryza sativa) and 
barley (Hordeum vulgare) results in severely impaired cuticle 
diffusion barrier properties (Chen et  al., 2011a,b; Garroum 
et al., 2016). Additionally, the polysaccharide cell wall-cuticle 
interface is severely disrupted in the rice mutant (Garroum 
et  al., 2016). In Arabidopsis, which has a cutin composition 
that is unusually rich in unsaturated dicarboxylic acids, 
ABCG32 plays a more pronounced role in cuticle formation 
of organs with a higher proportion of hydroxy acids (Bessire 
et al., 2011; Fabre et al., 2016). Although AtABCG32 homologs 
have been tentatively identified in a few non-vascular plant 
lineages, it appears that at least one homolog is present in 
all seed plants (Philippe et  al., 2020b). A duplication of 
AtABCG32 has been identified in members of the Solanaceae 
(Elejalde-Palmett et  al., 2021); however, whether the two 
paralogs have evolved different substrate specificities is still 
an open question. In the tobacco protoplast system, ABCG32 
homologs transport oxygenated cutin precursors without 
selectivity for the structure at the terminal carbons or the 
mid-chain position, raising the possibility that these proteins 
may also transport yet uncharacterized cutin precursors 
(Elejalde-Palmett et  al., 2021).

Full ABCG transporters are often expressed in the 
same organ and developmental stage as the ABCG half-
transporters: for example, AtABCG11, AtABCG13, and 
AtABCG32 are all expressed in floral organs. However, single 
atabcg mutants exhibit significant reductions in cutin levels, 
as well as other specific phenotypes, highlighting their 
non-redundant functions (Bird, 2008; Bessire et  al., 2011; 
Panikashvili et  al., 2011).

An important unanswered question is the mode by which 
the lipid-derived substrates interact with the ABCG 
transporters, i.e., as free molecules, as ligand-bound forms, 
or via the PM. This question is particular pertinent for the 
hydrophobic wax molecules. The export of the amphiphilic 
cutin precursors can be  directly addressed with transport 
assays using radiolabeled precursors. However, the export 
of the more hydrophobic wax molecules has not yet been 
characterized since they partition into membranes in vitro. 
Consequently, there is not yet direct experimental evidence 
that the ABCG transporter formed by the AtABCG11/
AtABCG12 heterodimer exports waxes.

UNDERSTANDING CELLULAR 
TRAFFICKING OF CUTICLE BUILDING 
BLOCKS AND AN ASSESSMENT OF 
ALTERNATIVE EXPORT PATHWAYS

A broad range of cell wall components, including structural 
proteins and cell wall matrix polysaccharides, such as 
hemicelluloses and pectins, are secreted via the canonical 
secretory pathway, in which vesicles derived from the trans-
Golgi network fuse with the PM and deposit their cargo into 
the apoplast (Driouich et  al., 2012). Lipophilic apoplastic 
components may follow similar transport pathways, and indeed 
early histological studies of the root endodermis revealed the 
presence of vesicles coincident with the deposition of suberin 
(Scott and Peterson, 1979). Consistent with this idea, the atmin7 
mutant, which is deficient in an ADP-ribosylation factor guanine 
exchange factor (ARF-GEF) protein, homologs of which function 
as regulators of the secretion pathway, exhibits reduced cutin 
deposition (Zhao et al., 2020). Similarly, the Arabidopsis echidna 
mutant, which has perturbed post trans-Golgi network (TGN) 
formation, shows decreased wax accumulation, although the 
presence of pleiotropic phenotypes complicates interpretation 
of these relationships (Gendre et  al., 2013).

Besides export through the canonical secretion pathway, cell 
wall material may also be  exported at direct contact sites 
between the cortical ER and the PM, independent of vesicular 
traffic (Samuels and McFarlane, 2012). In animal cells too, 
lipids traffic between the ER and other cell compartments via 
ER contact sites, and such a mechanism might also be  used 
for the transport of cuticular lipids from the ER to the PM 
(Stefan et  al., 2013; Wu et  al., 2018).

Recently, a study of suberin formation in the root 
endodermis of Arabidopsis revealed that membrane-enclosed 
vesiculo-tubular structures (300–900 nm diameter), so called 
extracellular vesiculo-tubular bodies (EVBs), are tightly 
associated with the suberization process (Figure 1B; De Bellis 
et  al., 2021). Notably, these EVBs are considerably larger in 
diameter than the vesicles of the canonical secretion pathway 
(30–100 nm). Remarkably, despite the resemblance of EVBs 
to multi-vesicular bodies (MVB), a specialized subset of 
endosomes that contain membrane-bound intraluminal vesicles, 
no evidence was found that EVBs are involved in recycling 
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endosomes or are derived from Golgi vesicles, the trans-
Golgi-network (TGN), or vacuoles (De Bellis et  al., 2021). 
Moreover, cryo-fixation procedures reveal that the MVB-like 
appearance of these structures might be  largely due to their 
swelling upon chemical fixation, and that their in vivo 
appearance is more lens-shaped, containing larger, less 
fragmented extracellular membrane tubules (De Bellis et  al., 
personal communication). While blocking endosomal 
trafficking did not interfere with EVB- or suberin formation, 
blocking ER-to-cis-Golgi trafficking, as well as post-TGN 
secretory trafficking, affected both EVB accumulation and 
suberin formation, indicating that both early and later secretory 
pathway are required for EVB formation. The cargo of EVBs 
is hypothesized to be  suberin precursors, since punctate 
structures of approximately 1 μm diameter, possibly 
corresponding to EVBs, were stained with the lipid dye 
fluorol yellow in early suberizing cells (De Bellis et al., 2021). 
In this context, it has been reported that free polyhydroxy 
acids form vesicles in vitro (Heredia-Guerrero et  al., 2008), 
although it is not known whether suberin precursors, i.e., 
largely ω-hydroxy and dicarboxylic acids bound to glycerol, 
spontaneously form vesicles, nor whether such a process 
occurs in vivo. Recently, EVBs have also been reported in 
suberized bundle sheath cells in maize, further supporting 
the link between EVBs and suberin formation (Gao et  al., 
2021). In addition to suberin precursors, the EVB cargo 
may include enzymes catalyzing suberin formation, 
polymerization, or a broader collection of cell wall components.

An intriguing question is whether EVBs may also be associated 
with cutin formation. We  addressed this using histological 
approaches to study tomato (Solanum lycopersicum) fruit and 
Arabidopsis petals, both of which have cutin that is rich in 
10, 16 diOH C16:0 acids (Martin and Rose, 2014; Mazurek 
et  al., 2017). In addition to wild-type (WT) Arabidopsis, 
we  examined several mutants that have a reduction in cutin 
abundance (including in 10,16-diOH C16:0 levels) due to 
distinct changes in cutin precursor formation (cyp77a6, gpat6, 
dcr single and double mutants) or a deficiency in ABCG32 
(pec1) expression (Bessire et  al., 2011; Mazurek et  al., 2017).

Notably, no EVB-like structures were observed during the 
expansion phase of WT tomato fruit development, at which 
point very large amounts of cutin are synthesized and deposited. 
In Arabidopsis, WT petals only very small EVB-like structures 
were present (Figure  2). However, large EVB-like structures 
(up to 2,500 nm in diameter), similar to these associated with 
suberization of Arabidopsis root tissues, were observed in all 
the investigated cutin-related mutants (Bessire et  al., 2011; 
Mazurek et  al., 2017). Interestingly, large EVBs were also seen 
in WT leaves, which have a cutin composition that it more 
similar to suberin than is cutin from petals (Nawrath et  al., 
2013). Nevertheless, in shoots, EVBs were not only specific 
to epidermal cells, but were also present at the periphery of 
internal cells, suggesting a role in the formation of multiple 
specialized cell wall types (Figure  2). Furthermore, EVBs in 
organs of the shoot were present in lower numbers (a maximum 
of 0.5 EVBs/cell section) than in suberizing root tissues (eight 
EVBs/cell section; De Bellis et  al., 2021). In addition, the size 

and internal structure of EVBs varied considerably, not only 
between different genotypes but also between different 
preparations of sections from the same sample. This raises the 
question of whether these phenotypic characteristics are not 
only influenced by cellular metabolism and developmental 
trajectories, but also by the barrier properties of the cuticle 
affecting the chemical fixation and embedding procedure. 
Accordingly, the use of fixation methods that minimize the 
introduction of artefacts, such as cryo-fixation, will be important 
for further studies of EVBs in the formation of different cell 
wall types.

Our observations and published data suggest that EVBs are 
related to the deposition of suberized cell walls, rather than 
to the formation of cutin. However, the possibility that they 
also carry other cargo cannot be  excluded (Figure  1B).

THE MYSTERIOUS PATH THROUGH 
THE CELL WALL TO THE SITE OF 
CUTICLE ASSEMBLY

The mechanism by which cutin precursors traffic from the 
point of their deposition into the apoplast and then across 
the highly hydrated primary cell wall to the site of cutin 
assembly remains a poorly understood aspect of cuticle 
formation. An earlier suggestion was that lipid-transfer proteins 
(LTPs), which are small (7–9 kDa) and often abundant 
extracellular proteins, function as carriers that mediate the 
transport of cuticular components across the wall (Sterk 
et  al., 1991; Pyee et  al., 1994; Hollenbach et  al., 1997; Yeats 
and Rose, 2008; Salminen et  al., 2016). Consistent with this 
model, LTPs have been found to accumulate at the plant 
surface (Pyee et  al., 1994; Yeats et  al., 2010). There is also 
evidence that LTPs play a role in the deposition of cuticular 
waxes, as evidenced by a reduction in the very long chain 
fatty acid (VLCFA) content in Arabidopsis LTP mutants 
(DeBono et  al., 2009; Lee et  al., 2009; Kim et  al., 2012). 
However, the reported decrease in wax load in the mutants 
did not exceed 25% and there did not appear to be  an 
effect on the composition or amount of cutin monomers. 
It is also notable that none of the many cuticle-related mutants 
that have been identified in a range of plant species to date 
has been attributed to a defect in a non-anchored LTP protein. 
Indeed, the energy cost of synthesizing proteins that would 
act as chaperones and transport cutin and waxes, in the 
absence of a recycling mechanism, suggests that such a 
process is unlikely. This would, presumably, particularly be the 
case with organs that deposit massive cuticles such as fleshy 
fruits. Thus, LTPs may instead have other roles such as 
antimicrobial defense and signaling (Bakan et al., 2006; Yeats 
and Rose, 2008; Salminen et  al., 2016; Balmant et  al., 2021).

Given the large amounts of material needed to assemble the 
thick cuticles of some organs, such as tomato and pepper fruit 
cuticles (>1 mg/cm−2 cutin monomers; Figure  1A; Graça et  al., 
2002), we  suggest that the movement of cuticular lipids across 
the apoplast is more likely to be  a passive process that avoids 
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investment in metabolically expensive transport proteins (Fich 
et  al., 2016; Philippe et  al., 2020b). Such a mechanism would 
involve the diffusion of amphiphilic cutin precursors and 
hydrophobic waxes in the hydrophilic environment of the cell 
wall as a physicochemical phase-separation process. Bakan and 
Marion (2017) suggested that cutin precursors might aggregate 
in aqueous environments due to their chemical properties and 
may be stabilized as lyotropic structures through association with 
polysaccharides and non-polar waxes (Bakan and Marion, 2017). 
Indeed, the studies of the behavior of mixtures of cutin fatty 
acids with pectin in vitro have led to the observation of stable 
aggregation (Guzman-Puyol et  al., 2015; Manrich et  al., 2017). 
An early association of cutin precursors with waxes and 
polysaccharides is consistent with features of maturing cuticles, 
such as deposition of intracuticular waxes and the embedding 
of specific polysaccharides within the cuticle characterized by 
their hydrophobicity (Philippe et  al., 2020a). While there is not 
currently direct evidence of phase separation of cuticle components 

in muro, transmission electron microscopy images of the outer 
epidermal wall and thick cuticles of tomato fruit often show 
patches of electron-dense material of increasing size nearer to 
the wall-cuticle interphase (Girard et  al., 2012; Yeats et  al., 2012) 
that are reminiscent of the coalescence of materials of differing 
hydrophobicity. It may be  that a gradient of increasing 
hydrophobicity provides specific micro-/nano-scale environments 
for the aggregation of certain wall components, favoring the 
activities of specific enzymes that catalyze wall assembly. For 
example, tomato cutin synthase 1 (SlCUS1) was shown to localize 
in the cuticle and not the primary wall, indicative of the site 
of cutin polymerization (Girard et  al., 2012; Yeats et  al., 2012). 
Interestingly, over-expression of SlCUS1 using a constitutive 
promoter resulted in the appearance of polymeric cutin in 
non-epidermal wall layers, suggesting that the polymerizing activity 
is a limiting factor and that the cutin precursor substrate is 
mobile and not solely targeted to the organ surface (Yeats et  al., 
2012). The deposition of cutin in the anticlinal and sub-epidermal 

FIGURE 2 | Extracellular vesiculo/tubular bodies in Arabidopsis. Transmission electron micrographs of extracellular vesiculo/tubular bodies (EVBs) visualized in 
Arabidopsis petals have connections to the cell wall. In addition, similar bodies were seen that were hypothesized to have the cell wall connection in a different plane 
of section. (A,B) Small EVBs in WT; (C–L) large EVBs in Arabidopsis cutin mutants. Arrows point to the connection to the cell wall; arrow head points to plasma 
filled bodies potentially having vesicles in another plane of section; Ep, epidermal cell; pa, parenchyme cell; CW, cell wall; Cu, cuticle. Scale bar represents 500 nm.
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walls observed in some fruits suggests additional complexity in 
the modes and directionality of the secretion of cuticle components.

Phase separation of cuticle components may also result in 
compositional heterogeneity within a single cuticle. The cuticle 
is sometimes broadly described as a bi-layer, comprising an 
upper stratum, referred to as the ‘cuticle proper’, overlying the 
‘cuticle layer’, which is thought to be  less abundant in waxes 
but enriched with polysaccharides (Figure 1A; Yeats and Rose, 
2013; Fernandez et  al., 2016). While distinctly demarcated 
layers are not apparent in microscopic images of some cuticles, 
and a simple two-layer model may be overly simplistic, trafficking 
models should accommodate the formation of distinct zones 
(Figure  1B). For example, populations of epicuticular waxes 
are distinct from those of intracuticular waxes. However, it is 
not known whether cutin structure on the outer and inner 
face differ from each other, and new technologies are needed 
to resolve cuticle architecture at a higher degree of resolution. 
Regardless, phase separation of cuticular lipids with differing 
physicochemical properties seems a viable mechanism to both 
drive deposition of the cuticle and to establish higher order 
structures within the macromolecular cuticular matrix.

Another mystery is the basis of the different sites of deposition 
of the structurally related suberin and cutin polyesters, on the 
inner and outer faces of the polysaccharide wall, respectively 
(Philippe et  al., 2020b). Suberin accumulates immediately after 
cell export and there is no evidence of diffusion of its precursors. 
An important factor in this regard may be  that suberin has a 
relatively high phenolic content, which could affect the mobility 
of its precursors and promote physical associations with lignin, 
a phenolic polymer that is deposited in cell secondary walls 
close to the PM (Philippe et  al., 2020b). Another feature that 
may influence the sites of cutinization or suberization is the 
potential involvement of multiple classes of proteins associated 
with their coordinated secretion at the PM. For example, it has 
been reported that membrane-anchored LTPs may be  involved 
in suberin export or deposition, consistent with polymerization 
immediately after secretion (Deeken et  al., 2016; Lee and Suh, 
2018). Clearly, much remains to be  learnt about this process, 
and the underlying mechanistic basis and potential differences 
between the deposition of canonical cutin and suberin, or other 
structural intermediates, represents an exciting area of future study.

CONCLUSION

Key aspects of transport processes underlying the formation 
of plant extracellular lipid matrices are slowly coming into 
focus. This has been enabled by advances in high-resolution 
imaging, molecular probes and reverse genetic targeting of 

candidate genes, as well as mutant characterization. However, 
fundamental questions remain regarding the relationship between 
composition, architecture and assembly, and the molecular and 
physicochemical basis for the organization of the cuticle and 
the cell wall-cuticle continuum is still essentially a blank canvas.

MATERIALS AND METHODS

Transmission Electron Microscopy
Transmission electron micrographs of A. thaliana (accession 
Col) petals were obtained as described previously (Fabre et  al., 
2016; Mazurek et al., 2017). Micrographs of the areas of interest 
were taken as tiled scans with a transmission electron microscope 
JEOL JEM-2100Plus (JEOL Ltd., Akishima, Tokyo, Japan) at 
an acceleration voltage of 80 kV with a TVIPS TemCamXF416 
digital camera (TVIPS GmbH, Gauting, Germany) using the 
SerialEM software package (Mastronarde, 2005). Tiled scans 
were aligned with the software IMOD (Kremer et  al., 1996).
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