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This review summarizes and discusses the knowledge of cytogenetics in Solanaceae,
the tomato family, its current applications, and prospects for making progress in
fundamental systematic botany and plant evolution. We compile information on
basic chromosome features (number, size, morphology) and molecular cytogenetics
(chromosome banding and rDNA patterns). These data were mapped onto the
Solanaceae family tree to better visualize the changes in chromosome features and
evaluate them in a phylogenetic context. We conclude that chromosomal features
are important in understanding the evolution of the family, especially in delimiting
clades, and therefore it is necessary to continue producing this type of data. The
potential for future applications in plant biology is outlined. Finally, we provide insights
into understanding the mechanisms underlying Solanaceae’s diversification that could
substantially contribute to developing new approaches for future research.
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INTRODUCTION

Chromosomes provide information for inferring phylogenetic relationships, since they are
hereditary elements of the whole nuclear genome and discrete hereditary units of mutation. Within
taxa, they may vary in number, size, morphology, and staining properties (Weiss-Schneeweiss and
Schneeweiss, 2013). Chromosome number has always been a common character employed, since
it is the most easily obtained information and the only one that is known for most plant groups.
Karyotypes represent an important aspect in plant speciation since chromosomal differences
establish immediate postzygotic crossing barriers. They provide diagnostic characters for plant
systematics and evolution that are usually expected to be congruent with clade divergence (e.g.,
Baltisberger and Hörandl, 2016). In Solanaceae, chromosomes have played a relevant role: they have
been useful to delimit taxa (Camadro et al., 2012), for genetic studies with model species (Blakeslee
et al., 1920; Avery et al., 1959), and for the selection of cultivars in economically important species
(Pringle and Murray, 1992). With the advent of molecular phylogenetic techniques, chromosome
data acquired a new value, to the point that within the family, there is a major lineage named
as the “x = 12 clade,” whose members share such cytological synapomorphy (Olmstead et al.,
2008). This review summarizes and discusses the knowledge of cytogenetics in Solanaceae, its
current applications and prospects for making progress in fundamental systematic botany and
plant evolution. Available chromosome data were reassessed by employing them in ancestral
state reconstruction and thus revealing how many times traits changed over evolutionary time,
inferring the degree of convergence, and suggesting relationships between chromosomes and other
Solanaceae characteristics. Continuous cytogenetic characters (C, mean chromosome length; r,
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mean arm ratio or r index; TL, total haploid chromosome length;
and m_ratio, the ratio between the number of metacentric to the
total number of chromosomes) were mapped and plotted onto
the family phylogeny of Särkinen et al. (2013) with modifications
by Dupin et al. (2017), after removing those species without data
using the drop.tip function of the package {ape} in R (Paradis
et al., 2004). The ancestral states were estimated assuming that
the species evolved under a Brownian model and the mapping
was performed using the ContMap function of the package
{phytools} in R version 3.4.2 (Revell, 2012; Supplementary
Figures 1–4). All the methodologies to gather the data are in
Supplementary Table 2.

CHROMOSOME COUNTS

Knowing the basic number x for all Angiosperms and its clades
has been a recurring question (Darlington, 1956). Initially, it was
considered of little taxonomic utility at high hierarchical levels
(orders, families) due to homoplasy. For Solanales, Raven (1975)
proposed x = 7 while x = 12 may have derived from the tetraploid
level (n = 14) by aneuploid reduction in the early history of
Solanaceae. Acosta et al. (2006) suggested x = 11 as the ancestral
number that best fits the available phylogenetic hypotheses
(Olmstead et al., 1999). Recently, models of chromosome
evolution were customized using statistical frameworks, allowing
to leverage other tools, like Ancestral State Reconstruction
(ASR, FitzJohn, 2012), and to infer character evolution across
phylogenetic trees (Revell, 2012). The compilation and analysis
of data in a phylogenetic context allow us to recalculate the first
estimates and reconstruct the history of the changes. Although
the basic number x is homoplastic in Solanaceae, it is more
conserved than other karyotype features, which makes it useful to
delimit taxa at lower hierarchical levels: tribes, subtribes, genera
(e.g., Rodríguez et al., 2020). The availability of chromosome
data is essential to delve into these analyses, but the information
is still scattered and fragmentary (Supplementary Tables 1, 2).
Among the five largest genera of Solanaceae, the best studied
(Solanum) has 48% of its species counted. There is a bias toward
groups of species with economically valuable representatives
(e.g., Capsicum, Nicotiana), while small clades and monotypic
genera are karyologically unknown (Supplementary Tables 1, 2).
Applying model approaches to chromosome number would
clarify this topic (Glick and Mayrose, 2014), although such
methodologies have difficulties given the size of the matrix for
the entire family (Supplementary Table 1) and discussing such
downsides is beyond the scope of this work.

Solanaceae have undergone whole genome duplications
occurring near the time of its origin, which could have
contributed to the rise of key traits and drove species
diversification (Schranz et al., 2012). Polyploidy, a phenomenon
constantly reviewed (e.g., Van de Peer et al., 2021), because of the
advantages it may confer, has been a subject since the beginning
of cytogenetics in Solanaceae (e.g., Blakeslee et al., 1920) up to
the present (e.g., Hijmans et al., 2007; Chiarini et al., 2018).
Nowadays, the availability of data makes it possible to analyze
polyploidy throughout the evolutionary history of the family and

relate it to colonization of new habitats, speciation events and to
the rising of adaptive traits (Hijmans et al., 2007; Scaldaferro et al.,
2012; Zenil-Ferguson et al., 2018, 2019; McCarthy et al., 2019).

KARYOTYPES

Blakeslee’s pioneering work on Datura mutants (Blakeslee
et al., 1920, and subsequent papers) allowed to identify pairs of
homologs by their shape, and correlate alterations in meiotic
behavior to exomorphology. The chromosome morphology
observable with classical technique is still essential to detect
rearrangements involved in speciation, for example, detection
of allopolyploids in Nicotiana (Goodspeed, 1954), Robertsonian
translocations in Solanum (Chiarini and Bernardello, 2006)
and in Chamaesaracha (Rodríguez et al., 2020), and centric
fission in Capsicum (Jarret et al., 2019). In contrast, uniform
chromosome morphology may be the explanation for crossability
among Iochrominae species (Deanna et al., 2018) and suggests
the phenomenon of “karyotype orthoselection” in Lycieae
(Bernardello et al., 2008). Karyotype data integrated with
molecular phylogenies provide characters for Solanaceae
systematics and evolution (e.g., Nierembergia: Acosta et al.,
2016; Jaborosa, Chiarini et al., 2017; Iochroma, Deanna et al.,
2018; Physalis, Rodríguez et al., 2020). However, the distribution
of cytological studies is uneven among the genera of the
family (Supplementary Table 2). We registered 420 species
of Solanaceae with some kind of data (karyotype formulae,
idiograms, asymmetry indices), which makes up a percentage of
ca. 15% of the family. The most frequently informed characters
are the following.

Chromosome Size
Chromosome size (usually expressed as length in µm) is useful
to single out individuals, samples, populations or species. DNA
content is directly related to it, so the alleged factors affecting
the former may indirectly affect the latter as the speed of
DNA replication and the duration of the life cycle. Also, long
chromosomes would undergo a higher number of chiasmata
than small ones (Turney et al., 2004) and low recombination
due to small chromosomes would be compensated by high
ploidy levels (Nakazato et al., 2006). In Solanaceae, average
chromosome size varies from ca. 1 µm (in Solanum and
Atropa) to 6.5–11.5 µm (in Cestrum and the Cyphomandra
clade of Solanum, Figure 1, Supplementary Figure 1, and
Supplementary Table 3) although most species have small to
medium-sized chromosomes, with an overall mean chromosome
length of 2.95 ± 1.78 (Supplementary Table 3). In order to
better visualize the changes in chromosome size and evaluate
them in a phylogenetic context, we mapped C and TL
onto the Solanaceae family tree (Supplementary Tables 3, 4).
Although these two variables are homoplastic (Supplementary
Figures 1, 2) and have no significant phylogenetic signal,
it is still useful to characterize some clades which are
equivalent to medium-hierarchy taxonomic levels. Cestreae,
Cyphomandra and Capsicum clades are outstanding because
they have high C, conspicuously different from the remaining
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FIGURE 1 | Photomicrographs of mitotic metaphases of Solanaceae, illustrating the chromosome variety found in the family. (A) Cestrum buxifolium Kunth (2n = 16,
c = 11.5 µm, r = 1.4). (B) Solanum lidii Sunding (2n = 24, c = 1.3 µm, r = 1.6). (C) Iochroma edule S. Leiva (2n = 24, c = 4.0, r = 1.2). (D) Physalis lagascae Roem.
& Schult. (2n = 24, c = 2.5 µm, r = 2.8). Panels (A,B) with classical staining, panels (C,D) fluorescence in situ hybridization with 5S (red) and 18-5.8-26S (green)
rDNA probes. All at the same scale. Bar = 10 µm.

clades (Supplementary Figure 1). These synapomorphic large
chromosomes arose three times separately and are an interesting
case to study phenomena such as “genome obesity” (Bennetzen
and Kellogg, 1997), increases in DNA content through the
incorporation of heterochromatin, repetitive sequences, and
retrotransposons (Fregonezi et al., 2007; Miguel et al., 2012;
Scaldaferro et al., 2013).

Chromosome Morphology
Asymmetry
There are a variety of indices to estimate chromosomal
asymmetry and their accuracy is arguable (Peruzzi and Eroğlu,
2013). Here we have considered the r index because it is the
most widespread, intuitive and easy to calculate, and also the
most frequently informed (Supplementary Table 5). Asymmetry
indices try to provide an idea of the general morphology
of the karyotype through a single number, but logically not
regarding the morphology of each chromosome. When all pairs
of chromosomes undergo similar changes at the same time (like
in Nicotiana, Kovarik et al., 2004), other measurements are

needed to distinguish individual chromosome rearrangements.
In a general survey of Solanaceae, Badr et al. (1997) reported
values of r from 1.17 to 2.78, whereas in Solanum it ranges
from 1.19 to 3.71 with an overall mean of 1.64 (Chiarini et al.,
2018). Thus, karyotype asymmetry is not uniform in the family.
According to ASR, symmetrical karyotypes are plesiomorphic
(Supplementary Figure 3), being asymmetry a synapomorphy
of some clades (Physalis, Nicotiana), while others would have
conserved symmetry (Lycium). This supports the idea that in
Solanaceae, shifts in chromosome morphology are frequent when
considering broad frames of time (Wu and Tanksley, 2010;
Chiarini et al., 2018).

Karyotype Formulae
The karyotype formula is a mean of expressing the result of
a measurement process of the chromosome complement, i.e.,
the whole set of chromosomes in a nucleus, and it gives an
overall idea of its morphology. Morphology provides the first
clue to single out chromosome pairs (e.g., heteromorphic sex
chromosomes). Chromosome morphology can be related to the
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plant mating system: in Rumex, a species with sex chromosomes,
the suppression of recombination varies between metacentric
and acrocentric chromosomes (e.g., Rifkin et al., 2021). Also,
bimodal karyotypes visible with classical technique evidence
the presence of two genomes (Brandham and Doherty, 1998).
According to the widespread Levan’s classification (Levan et al.,
1964), chromosomes can be, in increasing order of asymmetry,
m, sm, st, and t. On this basis, karyotypes of Solanaceae are
symmetrical, since only 17 out of the total species (4%) with
known karyotypes contain 1–3 t chromosomes, while 100 (24%)
present 1–7 sm chromosomes. Most Solanaceae have more
than half of chromosomes per complement in the m and/or
sm categories. These features are useful to characterize entire
clades within the family: there are groups with a majority
of m chromosomes, e.g., Lycium (Stiefkens et al., 2020), but
there are also groups in which complements include st and
t chromosomes, e.g., Nicotiana, Capsicum, Jaborosa, Physalis
(Figure 1D), Hyoscyamus, Nierembergia (Sheidai et al., 1999;
Moscone et al., 2006; Scaldaferro et al., 2013; Acosta et al.,
2016; Chiarini et al., 2017; Rodríguez et al., 2020) and in
some clades of Solanum (Bernardello et al., 1994; Acosta et al.,
2005). Some Nicotiana species have karyotypes mostly with st
chromosomes (Villa, 1984) and Leptoglossis linifolia has mostly
sm chromosomes (Acosta et al., 2016).

In Solanaceae, establishing the direction of karyotype
evolution is unlikely, as many reversals might have occurred
(Stace, 2000), and karyotype asymmetry might be a temporary
state rather than an evolutionary end (Mandáková and Lysak,
2008). Comparing karyotype formulae is arguable because
it is difficult to establish homologies of chromosome pairs
among different species. Here, we calculated the proportion
of m chromosomes for each nightshade with the available
karyotype formula and mapped this ratio onto the phylogeny
(Figure 2, Supplementary Figure 4, and Supplementary
Table 6). This reconstruction suggests the most probable
ancestral karyotypes had ± 80% of m chromosomes (i.e.,
symmetric karyotype). Formulae with few or no m chromosomes
are autapomorphic (e.g., Nicotiana plumbaginifolia) while
complete formulae with m chromosomes is a synapomorphy for
certain clades (Lycium, Iochrominae, Figure 1C). Transitions
between karyotype formulae can be interpreted as evidence
of chromosome rearrangements. Particularly, formulae with st
or t chromosomes are seemingly the result of a deletion or
translocation of the entire or part of one arm (Weiss-Schneeweiss
and Schneeweiss, 2013) or centric fissions (Moscone et al., 2006;
Jarret et al., 2019).

Chromosome Banding
Banding techniques are the next step in identifying chromosome
pairs in a complement. They leverage on the physical properties
of chromatin, using dyes that differentially stain euchromatin
and fractions within heterochromatin (e.g., AT- or GC-rich),
which are then visualized as bands across the chromatids. In
Solanaceae, 218 spp. out of approx. 2,800 (ca. 7.7%) have been
studied with any banding technique. The largest number of
species studied belong to Solanum (69 out of 1,238 species,
5.6%), followed by Capsicum (25 out of 41, 60.9%) and Lycium

(24 out of 105, 22.9%) (Supplementary Table 2). These last
two genera are also the best studied in relative terms, together
with Nierembergia (71.4% of 21 spp.), Jaborosa (65.2% of
23 spp.) and Iochroma (22.6% of 31 spp.) (Supplementary
Table 2). A variety of banding techniques have been essayed in
Solanaceae to answer a range of questions: silver impregnation
detected active nucleolar organizing regions (NORs) (e.g., in
Cestrum, Berg and Greilhuber, 1993; Capsicum, Scaldaferro et al.,
2016; Solanum, Miguel et al., 2012; Deprea, Deanna et al.,
2014); Giemsa C-banding revealed differences between taxa and
contributed to taxonomic grouping of Capsicum (Moscone et al.,
1993); Fluorescent banding, mostly with the double staining
CMA/DAPI technique (Schweizer, 1976) demonstrated that
chromosomes are mostly composed of non-coding chromatin,
and also revealed strong phylogenetic signal, defining specific
patterns in different clades (Acosta et al., 2016). CMA/DAPI
technique helped to detect variability despite the morphological
uniformity of the chromosomes, provided information on genetic
variation at a population level regarding speciation, and revealed
AT- and GC-rich regions of B chromosomes. Together with
FISH (see below), this technique showed that B chromosomes
possess nucleolar activity and nucleolar competition with the A
chromosomes (Acosta and Moscone, 2011; Acosta et al., 2016;
Montechiari et al., 2020).

Heterochromatin amount (H.a.) is a value often reported
(usually as a percentage). It exhibits a remarkable variation
among species of the same genus, for example in Solanum
it varies from 1.86 to 35.43% (Brasileiro-Vidal et al., 2009;
Chiarini et al., 2018). The data on H.a. have served to
discuss whether the increases in genome size (either measured
visually as TL, or as DNA content through flow cytometry)
are due to increases in the amount of one or another fraction
of chromatin (e.g., Karsburg et al., 2009). In some clades,
H.a. is positively correlated with karyotype length (Moscone
et al., 2006; Scaldaferro et al., 2013), while in others there
is negative or no correlation, which is unexpected because
heterochromatin is considered as an additional component
of the genome (Pringle and Murray, 1993; Acosta et al.,
2012, 2016). Heterochromatin patterns are more variable in
some genera (Jaborosa, Solanum) than in other members of
the x = 12 clade (e.g., Lycium and Sclerophylax), where
heterochromatin is scarce and restricted to the NORs (Lujea
and Chiarini, 2017; Stiefkens et al., 2020). Variable patterns
might be evidence of intense chromosomal rearrangements
(Evtushenko et al., 2016) associated with diversification and
colonization of new habitats, since they function as species
barriers (Hughes and Hawley, 2009).

rDNA and Repetitive DNA Patterns
Ribosomal DNAs are fundamental components of all cell
types. In most plants, 5S and 18S-5.8S-26S rDNAs are present
in high copy numbers to satisfy the cellular requirement
for ribosomes. These rDNAs, highly conserved in plants,
are the commonest markers for FISH (Heslop-Harrison and
Schwarzacher, 2011). They are repetitive, tandemly arranged
and generally clustered at different loci, either with a spatial
separation or also linked in a single unit. FISH enables
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FIGURE 2 | Heatmap of m ratio (proportion of metacentric chromosomes over the total chromosomes of each karyotype formula) reconstructed on Solanaceae.
Scale below indicates values of the ratio and its color guide. Values vary from 0 (no metacentric chromosomes) to 1 (all chromosomes metacentric).

direct visualization of rDNA loci on the chromosomes and
determination of their rearrangements and organization (e.g.,
Srebniak et al., 2002; Melo and Guerra, 2003; Lou et al.,
2010). Thus, homologous chromosomes in a complement can
be identified and related species can be compared, answering
evolutionary questions. Number, position and organization
of rDNAs have been suitably employed in Solanaceae as
systematic and evolutionary approaches (Figures 1C,D and
Supplementary Table 2), for example in Nierembergia (Acosta
et al., 2016), Jaborosa (Chiarini et al., 2017) and Iochroma
(Deanna et al., 2018). Genera with economically important
species (Capsicum, Nicotiana) have received special attention
(Kitamura et al., 2005; Scaldaferro et al., 2016). Within the
largest genera, Lycium is the most studied (Stiefkens et al.,
2020), revealing uniformity of patterns, but little is known
about the rest of the family. Chromosomal rearrangements
between Solanum crops and several related species have
been studied using tomato and potato bacterial artificial
chromosomes (BACs) in multiple FISH essays, providing support
for grouping of species into sections and suggesting interspecific
hybridization events (Doganlar et al., 2002; Frary et al., 2016).
Another type of repetitive DNA revealed by FISH are the
telomeric sequences. Most plants present the Arabidopsis-type
telomeres, but some Solanaceae are exceptional in lacking such
sequences: the characterization of unusual telomeres in the
three genera of Cestreae has shed light on patterns of telomere

evolution, maintenance and function (Sýkorová et al., 2003;
Peška et al., 2015).

CYTOGENETIC AND PHYLOGENETIC
GAPS

There is a growing interdependence between chromosomal data
and molecular phylogeny. Cytogenetics and molecular phylogeny
feed into each other, providing evidence in both ways. To some
extent, Solanaceae ASRs allow reconstructing the cytogenetic
data when there is molecular data (e.g., Rodríguez et al., 2020),
but the reverse is obviously not possible. Thus, the largest
information gaps are found in Cestrum, (165 species without any
data of a total of 233, neither counts nor sequences), Lycianthes
(116 species without data of about 161), Jaltomata (32 species of
73), Physalis (47 of 109) and Browallia (18 species without data
of about 22). Of the ca. 2,900 species in the family, 494 (17%)
possess chromosome counts and are included in the phylogeny
of Särkinen et al. (2013), while of these, only 207 (7% of the
family) also possess karyotypes. At the same time, there are 137
species for which there are counts but no sequences, and of these,
40 also have karyotypes, but these data cannot be analyzed in
a molecular phylogenetic context (Supplementary Tables 7, 8).
Important gaps in both cytogenetics and phylogeny still wait to
be filled: in Goetzeoideae, a clade of which nothing is known;
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in Solandreae, only chromosome studies in one Trianaea species
and two Dyssochroma; Cuatresia, genus of Physalideae with an
important number of species about which nothing is known
(Supplementary Table 8).

CYTOGENETICS AND GENOMICS IN
SOLANACEAE

Extensive pairwise comparative mapping studies have been
performed for several major solanaceous crops relative to tomato
(Tanksley et al., 1988, 1992; Livingstone et al., 1999; Doganlar
et al., 2002; Wu et al., 2009; Wu and Tanksley, 2010). By using
single-copy conserved ortholog sets (COSII), the outcomes of
chromosomal evolution in the Solanaceae over 30 million years
were deduced, estimating the rates and timing of chromosomal
rearrangements as well as calculating the age of ancestral species
and predicting their genome features (Wu and Tanksley, 2010).
Thus, studies integrating cytogenetics and genomics, though
focused on main crops and close relatives, generate knowledge
that can be extrapolated to the rest of the species of the family.

Recently, Cytogenetics developed feedback with Genomics:
the availability of species with complete chloroplast genome
sequenced and some with complete nuclear genome, allows
the finding of new markers for hybridization techniques. In
return, these cytogenetic data become valuable information on
chromosome identification and genome organization, enabling
the spatial location of specific, single, or low-copy sequences.
Next-generation sequencing speeds up cytogenetic research
on Solanaceae. In species with available transcriptomes, like
S. dulcamara, new markers like SNP SSR, AFLP and CAPS
were developed, allowing the construction of a genome-wide
genetic linkage map (D’Agostino et al., 2013). Based on gene
orthologs, the markers were anchored to the genome of related
Solanum species (tomato, potato and eggplant), revealing both
conserved and novel chromosomal rearrangements. Estimates of
the evolutionary moment of rearrangements were possible and
showed that chromosomal breakpoints are regularly re-used.

Also, advances in NGS, such as the study of repetitive DNA,
contributed to the design of more specific oligo-probes for
FISH (Buggs et al., 2012), and hence bringing new chances
to improve our understanding of systematics and genome
organization at different taxonomic hierarchies. More recently,
there has been progress in the phylogenomics of Solanaceae,
particularly in some clades within the family, through the use
of nuclear target capture and high-throughput sequencing of
transcriptomic data (Gates et al., 2018; Poczai et al., 2018; Gagnon
et al., 2021). These approaches provide more comprehensive and
better resolved phylogenies which can be used in the study of
chromosome evolution.

CONCLUDING REMARKS

• Evolutionary trends: The ancestor of the family had
a karyotype formula with 80% of m chromosomes,
each about 2 µm in size. Increased asymmetry and
size are synapomorphies of some clades that arose in
independent events.

• Although homoplastic at a higher hierarchical level,
karyotype traits are useful to delimit taxa at lower levels:
tribes, subtribes, genera.

• Important gaps in both cytogenetics and phylogeny still
wait to be filled.

• Potential for future applications: once there is a genomic
phylogenetic backbone of Solanaceae, including divergence
time estimates, adding chromosomes to it would be
illuminating, because relationships between major clades of
the family and Solanoideae are still poorly resolved using
Sanger sequence data alone.
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