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Photosynthesis is the process that harnesses, converts and stores light energy in the
form of chemical energy in bonds of organic compounds. Oxygenic photosynthetic
organisms (i.e., plants, algae and cyanobacteria) employ an efficient apparatus to split
water and transport electrons to high-energy electron acceptors. The photosynthetic
system must be finely balanced between energy harvesting and energy utilisation,
in order to limit generation of dangerous compounds that can damage the integrity
of cells. Insight into how the photosynthetic components are protected, regulated,
damaged, and repaired during changing environmental conditions is crucial for
improving photosynthetic efficiency in crop species. Photosystem I (PSI) is an integral
component of the photosynthetic system located at the juncture between energy-
harnessing and energy consumption through metabolism. Although the main site of
photoinhibition is the photosystem II (PSII), PSI is also known to be inactivated by
photosynthetic energy imbalance, with slower reactivation compared to PSII; however,
several outstanding questions remain about the mechanisms of damage and repair, and
about the impact of PSI photoinhibition on signalling and metabolism. In this review, we
address the knowns and unknowns about PSI activity, inhibition, protection, and repair
in plants. We also discuss the role of PSI in retrograde signalling pathways and highlight
putative signals triggered by the functional status of the PSI pool.

Keywords: PSI, photoinhibition, P700, electron transport, ROS, metabolism, photoprotection, alternative electron
flow

INTRODUCTION

Photosynthesis, the primary source of oxygen and organic compounds, is vital for life on Earth.
Photosynthetic activity in plants is intrinsically associated with productivity and yield (Raines,
2011) through allocation of assimilated carbon and biomass accumulation. Therefore, efficient
photosynthesis is essential to the problem of boosting crop growth and productivity that is
required to match increasing food and fuel demands by the growing global population (Fischer
and Edmeades, 2010; Ray et al., 2012; Long et al., 2015; Simkin et al., 2017). Accumulating evidence
supports an increase in photosynthetic capacity as a viable route to increase the yield of crop plants
(Long et al., 2015; Kromdijk et al., 2016; von Caemmerer and Furbank, 2016; Simkin et al., 2017;
Salesse-Smith et al., 2018).
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Although the study of photosynthesis is a pillar of the plant
sciences, many questions remain concerning its regulation, and
how photosynthetic activity influences other processes within the
cell and throughout the organism. Unlike decades of extensive
research on the damage and repair of photosystem II (PSII)
(e.g., Aro et al., 1993; Zavafer and Mancilla, 2021), outstanding
questions relating to damage and repair of PSI, the other light-
harnessing reaction centre protein complex of the thylakoid
membrane, have been less well-studied. Beside PSI protection
and inactivation, the impact of PSI inactivation on chloroplast
metabolism and retrograde signalling have remained poorly
understood. However, absorbance measurements of P700, the
special chlorophylls at the PSI reaction centre, are now commonly
used to assess PSI quantum yield and electron transport reactions
involving PSI (Klughammer and Schreiber, 2008, 2016; Schreiber
and Klughammer, 2016), which has improved the understanding
of factors regulating PSI activity and/or inactivation.

Here we review the current knowns and unknowns about
PSI activity, inhibition, protection, and repair in plants. We
also discuss the role of PSI in retrograde signalling pathways
and highlight putative signals triggered by the functional
status of the PSI pool. Considering the importance of
understanding PSI metabolism and regulation, new directions for
PSI research are suggested.

PHOTOSYSTEM I ELECTRON
TRANSPORT ACTIVITY POWERS
CARBON METABOLISM

In general, photosynthesis converts light energy into chemical
energy, which is stored as carbohydrate molecules synthesised
from carbon dioxide (CO2) and water. In plants, photosynthesis
is often separated into two distinct processes; photochemistry
and CO2 assimilation/fixation, although these steps are
inter-related. During photochemistry, chlorophyll and other
photosynthetic pigments absorb light energy that is used to
extract electrons from water in the lumen and transport them
through the thylakoid membrane to reduce the oxidised form
of nicotinamide adenine dinucleotide phosphate (NAD+),
producing its reduced form (NADPH) in the stroma. This
process also generates a proton gradient across the thylakoid
membrane that produces the energy carrier molecule adenosine
triphosphate (ATP). During CO2 assimilation, ATP and
NADPH generated from the photochemical phase are used
to reduce CO2 molecules to produce carbohydrates and their
derivative products. These processes are shown in Figure 1
and its animated version in the Supplementary Material
(Supplementary Video 1).

Linear electron flux begins with water-splitting at PSII
and proceeds through sequential reduction and oxidation of
cofactors within the thylakoid membrane (plastoquinone; PQ),
the cytochrome b6f complex (cyt b6f ), and the thylakoid lumen
(plastocyanin; PC), before arriving at the donor side of PSI.
Electron transport upstream of PSI will not be detailed here,
but has been described in excellent reviews (Freeman and Guss,
2011; Borisova-Mubarakshina et al., 2019; Havaux, 2020; Malone

et al., 2021; Sarewicz et al., 2021; Shevela et al., 2021). In the
light, the PSI reaction centre receives excitation from both light-
harvesting complex I (LHCI), which serves only PSI, and light-
harvesting complex II (LHCII), which serves both PSI and PSII
(Grieco et al., 2012, 2015; Wientjes et al., 2013; Rantala and
Tikkanen, 2018). Excitation promotes PSI charge separation,
whereby an electron is ejected from P700 via the monomeric
form of chlorophyll a named A0 and phylloquinone A1 to the
first iron-sulphur (FeS) cluster FX. Cofactors P700, A0, A1, and
FX are bound to the PSI protein subunits PsaA and/or PsaB,
which form the central protein heterodimer of PSI and bind the
majority of the other subunits of the complex (Figure 2; Golbeck,
1992; Ben-Shem et al., 2003; Amunts et al., 2007; Amunts and
Nelson, 2009; Qin et al., 2015; Kozuleva and Ivanov, 2016; Mazor
et al., 2017). The electron hole formed by charge separation at
P700 is filled from the PSI donor side by oxidation of reduced
PC (detailed in Caspy et al., 2021). Electron flux through PSI
terminates at the FA and FB clusters housed by the stromal PSI
subcomplex PsaC, PsaD, and PsaE at the PSI acceptor side, where
there also resides a docking site for oxidised ferredoxin (Fd).
PsaC establishes close contact required for fast electron transfer
between the respective FeS clusters of PSI and Fd, while PsaD
and PsaE are responsible for guidance of Fd into the PSI binding
pocket (Busch and Hippler, 2011; Marco et al., 2018; Caspy et al.,
2020). Fd reduced by PSI primarily carries electrons to the Fd-
NADP+-oxidoreductase (FNR) enzyme, which is responsible for
producing reduced NADPH that powers the electron-consuming
reactions of the chloroplast (reviewed in Hanke and Mulo,
2013). Fd also delivers electrons to the thioredoxin network of
the chloroplast, which regulates the redox-dependent activity of
CO2 assimilation enzymes of the Calvin-Benson-Bassham (CBB)
cycle (Buchanan, 2016; Nikkanen et al., 2016). Under specific
conditions, reduced Fd also injects electrons back into the PQ
pool via cyclic electron transport (reviewed in Peltier et al., 2016).

ATP and NADPH molecules synthesised by photochemistry
are used to reduce CO2 into sugar precursors through the CBB
cycle, where ribulose-1,5-bisphosphate (RuBP) carboxylation is
catalysed by RuBisCO and the resulting 3-phosphoglycerate is
reduced to glyceraldehyde-3-phosphate (G3P) that is mostly used
to regenerate the RuBP used in the CBB cycle. A portion of
G3P also serves as a precursor for the synthesis of carbohydrates
with myriad functions, including simple sugars (e.g., glucose and
fructose), stored energy (e.g., starch), transported energy (e.g.,
sucrose), structural carbohydrates (e.g., cellulose), amino acids,
fatty acids and many other compounds (Paul and Foyer, 2001;
Kölling et al., 2015; Wingler, 2018). For each molecule of G3P,
three molecules of CO2 are assimilated, while nine ATP and six
NADPH are consumed during each round of the cycle (Benson
et al., 1950; Raines, 2003). CO2 assimilation in the chloroplast
is dependent on the entry and diffusion of CO2 from the
atmosphere. Leaf pores known as stomates regulate CO2 uptake
through changes in stomatal resistance and aperture, and are
therefore a major limiting factor for CO2 assimilation and plant
growth (Lawson and Blatt, 2014; Wang et al., 2014). Stomatal
activity responds to changes in light and relative humidity,
and is regulated by several coordinated and dynamic signalling
mechanisms (Daloso et al., 2017; Devireddy et al., 2018). After
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FIGURE 1 | A simplified scheme of the photosynthetic electron transport chain in the thylakoid membrane and its interaction with CO2 assimilation in the
Calvin-Benson-Bassham cycle. Linear electron (e−) transport is shown with red lines and cyclic electron transport is represented with a blue dashed line. The proton
(H+) fluxes are represented in purple lines. ADP, adenosine diphosphate; ATP, adenosine triphosphate; CBB cycle, Calvin-Benson-Bassham cycle; Cyt b6f,
cytochrome b6f ; Fd, ferredoxin; FNR, ferredoxin:NADP+ oxidoreductase; FTR, ferredoxin:thioredoxin reductase; LHCI, light-harvesting complex I; LHCII,
light-harvesting complex II; NADP+, oxidised nicotinamide adenine dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; PC,
plastocyanin; Pi, inorganic phosphate; PQ, plastoquinone; PSI, photosystem I; PSII, photosystem II; TRXox, oxidised thioredoxin; TRXred, reduced thioredoxin.

entering through stomata, CO2 molecules concentrate in the
intercellular air space and then pass across the cell wall,
plasmalemma, cytosol, and chloroplast envelope before reaching
the chloroplast stroma, where they are available to the CBB
cycle (Evans and von Caemmerer, 1996; Evans et al., 2009;
Tan et al., 2021).

PHOTOSYSTEM I PHOTOINHIBITION:
MECHANISMS, IMPACT AND RECOVERY

Although light energy is vital for photosynthetic electron
transport, the same energy can damage the photosynthetic
machinery when excitation/electron pressure in the photosystem
exceeds the capacity of electron consumption by chloroplast
sinks. As a result, excitation or electrons are transferred to
O2, generating reactive oxygen species (ROS) that can oxidise
proteins, lipids and metabolites, and can also generate signalling
compounds (discussed below). These photo-oxidative conditions
are usually triggered by changes in environmental conditions
and can lead to a phenomenon known as “photoinhibition,”
which is characterised as the inactivation of either or both
photosystem(s) (Powles, 1984; Aro et al., 1993; Gururani et al.,
2015). Photoinhibition negatively affects photosynthetic capacity
and is thus deleterious for plant growth and crop yield (Takahashi
and Murata, 2008; Kato et al., 2012; Simkin et al., 2017). Unlike
PSII, which is frequently damaged in the light (Tyystjärvi and
Aro, 1996), PSI is protected from photoinhibition by several

mechanisms (see below). Nonetheless, PSI photoinhibition is
induced when PSI is over-reduced, relative to the oxidised state
of conventional stromal acceptors, whereupon O2 is utilised as
an alternative electron acceptor. O2 reduction is thought to occur
at the PSI acceptor side and/or at the phylloquinone A1 site,
in each case producing the radical superoxide (O2

•−) that is
disproportionated to hydrogen peroxide (H2O2) and O2 (Mehler,
1951; Asada et al., 1974; Takagi et al., 2016; Kozuleva et al.,
2021). PSI photoinhibition is thought to be the result of the
reaction between H2O2 and the FeS clusters, causing formation of
hydroxyl radical (•OH) and inactivation of PSI electron transport
(Sonoike et al., 1997; reviewed in Sonoike, 2011). Damage to
protein subunits by O2

•− and singlet oxygen (1O2) produced
by excitation of O2 by triplet P700 (3P700) has also been
associated with PSI inhibition (Takagi et al., 2016). Notably, the
mechanism(s) of ROS production and PSI photoinactivation is
not yet fully established.

PSI photoinhibition can be triggered by the combination
of light and environmental stresses, such as low temperature,
drought and salinity, all of which limit CO2 assimilation
(Inoue et al., 1986; Terashima et al., 1994; Tjus et al., 1998;
Munekage et al., 2008; Takahashi and Murata, 2008). PSI
is also susceptible to photoinhibition when the PSI acceptor
side capacity is overwhelmed by unregulated electron flow
(Munekage et al., 2002; Suorsa et al., 2012; Tiwari et al.,
2016; Kanazawa et al., 2017; Lima-Melo et al., 2019a,b) or
by various regimes of artificial fluctuating light (Sejima et al.,
2014; Kono and Terashima, 2016; Tikkanen and Grebe, 2018).
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FIGURE 2 | Simplified tertiary structure of the PSI:plastocyanin:ferredoxin complex (PDB accession 6YEZ; Caspy et al., 2020), showing protein subunits PsaA and
PsaB (white), PsaC (cyan), PsaD (blue), PsaE (pink) and LHCI subunits (green). Other PSI subunits are coloured grey. Also shown are plastocyanin (orange) at the PSI
donor side and ferredoxin (yellow) at the PSI acceptor side. Cofactors involved in electron transport are shown; Cu2+ (blue), P700 (dark green), A−1 and A0

chlorophylls (lime), A1 phylloquinone (red) in PSI, as well as the PSI 4Fe4S clusters FX, FA, FB (orange) and the ferredoxin (Fd) 2Fe2S cluster (orange).

A recent study showed that PSI photoinhibition is intensified
in red and blue light, which preferentially excite PSII, when
compared with white and green light (Oguchi et al., 2021).
In other words, PSI is at risk of inhibition when chloroplast
sink capacity is overwhelmed by photosynthetic electron
transport activity.

Some studies have demonstrated the negative effects of
PSI photoinhibition on CO2 fixation, and sugar and starch
accumulation, which is attributed to decreased electron transport
by a partly inactive PSI pool, and a subsequent decrease
in reduced NADPH to power the CBB cycle (Zivcak et al.,
2015; Gollan et al., 2017; Lima-Melo et al., 2019a,b). Time-
resolved measurements of CO2 assimilation and photosynthetic
electron transport during the onset and proceeding stages of PSI
photoinhibition showed an initial rapid decrease in PSI oxidation
and CBB activity, followed by slower rates of decline (Lima-
Melo et al., 2019a). These results indicate that the level of PSI
inactivation is proportional to the magnitude of energy imbalance
between the donor and acceptor sides. Such imbalance decreases
in the course of photoinhibition of PSI electron transport,
which in turn results in a corresponding decline in the rate
of PSI photoinhibition (Figure 3). The negative impact of PSI
photoinhibition on CBB activity is particularly acute under low or
“growth” light intensities, which are insufficient to fully energise
the remaining active PSI centres in order to power stromal
reactions (Gollan et al., 2017; Lima-Melo et al., 2019a,b). PSI
photoinhibition is especially deleterious to plant fitness due to
the fact that the restoration of PSI activity can take a period of

days or longer, which is much slower than the mere minutes
or hours taken to repair damaged PSII (Kudoh and Sonoike,
2002; Li et al., 2004; Huang et al., 2010; Lima-Melo et al.,
2019b). This discrepancy can be explained by the dedicated and
efficient PSII repair cycle (reviewed in Aro et al., 1993), while no
such repair system for PSI has been identified. Replacement of
damaged PSI reaction centre proteins or FeS clusters is widely
thought to involve degradation and rebuilding of the entire
PSI complex (Scheller and Haldrup, 2005). Nevertheless, PSI
recovery appears to be more complex, revealed by employing
different methods for evaluating the PSI activity. Decreased
abundance of PSI subunit proteins, especially the core proteins
PsaA and PsaB and their proteolytic fragments, has been used to
demonstrate long-lasting PSI inhibition over several days (Kudoh
and Sonoike, 2002; Zhang and Scheller, 2004; Lima-Melo et al.,
2019b), while oxidation of P700 and FeS clusters by electron
transport appears to recover slightly more quickly (Li et al.,
2004; Zhang et al., 2011; Gollan et al., 2017; Lima-Melo et al.,
2019b). Rates of CO2 assimilation also reflect PSI activity, which
is required to provide both reduced NADPH and the proton
motive force (PMF) that drives ATP production. Gas exchange
measurements showed a more rapid recovery of CO2 assimilation
after PSI photoinhibition compared to the recovery of PSI activity
estimated with analysis of P700 absorbance (Lima-Melo et al.,
2019b). Also, the measurement of CO2 assimilation revealed
that higher light intensity further enhanced the activity of the
partly-inactive PSI pool caused by PSI photoinhibition (Gollan
et al., 2017; Lima-Melo et al., 2019a,b). These results indicate
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that electron consumption in the chloroplast may be partly
independent from PSI activity and the P700 redox state, and
that PSI activity can be enhanced by LHCII-derived excitation
and/or activation of “reserve” PSI complexes (Lima-Melo et al.,
2019b). Meanwhile, thermal dissipation of excitation energy from
LHCII via oxidised P700+ in photoinhibited PSI centres (Tiwari
et al., 2016; Shimakawa and Miyake, 2019) has prompted the
suggestion that photoinhibited PSI does not require replacement
at all (Li L. et al., 2018).

MINIMISING PHOTOSYSTEM I
PHOTOINHIBITION THROUGH
PHOTOPROTECTION AND SINK
STRENGTH

As stated in the previous section, the level of PSI inactivation is
proportional to the magnitude of energy imbalance between the
donor and acceptor sides, and accordingly distinct mechanisms
for PSI photoinhibition avoidance are present at both sides
(reviewed in Shimakawa and Miyake, 2018). Mechanisms for
protection against PSI photoinhibition at the PSI donor side
include inactivation of the PSII reaction centre, dissipation of
absorbed light energy as heat and restriction of electron flow
through cyt b6f (reviewed in Tikkanen and Aro, 2014). Each
of these photoprotective strategies down-regulates the flow of
electrons to the PSI donor side, reducing electron pressure
on the PSI acceptor side and minimising O2 reduction. Over-
supply of energy to PSII results in the generation of 1O2 in the
PSII reaction centre, which damages the core D1 protein and
suspends PSII activity while D1 is replaced (reviewed in Aro et al.,
1993; Nixon et al., 2010). This light-induced inactivation of PSII
not only relieves the excitation pressure on the remaining PSII
complex, but also protects PSI from over-reduction (Tikkanen
et al., 2014; Huang et al., 2016). Dissipation of excess excitation
from LHCII, known as non-photochemical quenching (NPQ),
involves protonation of the PsbS protein and activation of the
xanthophyll cycle, both of which are triggered by acidification
of the thylakoid lumen (reviewed in Jahns and Holzwarth, 2012;
Ruban, 2016). Although NPQ is most often related to PSII
photoprotection, NPQ also protects PSI, both directly through
quenching part of the LHCII antenna pool functionally associated
with PSI (Tikkanen and Grebe, 2018; Hepworth et al., 2021) and
indirectly, through down-regulation of PSII activity and relief
of electron pressure on the downstream photosynthetic electron
transport chain (Han et al., 2010; Sonoike, 2011; Chaux et al.,
2015). Aside from activating NPQ, acidification of the thylakoid
lumen and subsequent formation of a pH gradient (1pH) across
the thylakoid membrane also slows proton-coupled electron
transport through the cyt b6f complex (reviewed in Tikhonov,
2014). This regulation mechanism, known as “photosynthetic
control,” is arguably the most important form of protection
against over-reduction of both donor and acceptor sides of
PSI during sudden increases in light. Plants lacking functional
proton gradient regulation 5 (PGR5) protein, which is essential
for lumen protonation and thus induction of both NPQ and

photosynthetic control, undergo severe PSI inhibition during
increases in light intensity (Munekage et al., 2002; Suorsa et al.,
2012; Kono et al., 2014; Tiwari et al., 2016; Gollan et al.,
2017; Takagi and Miyake, 2018; Lima-Melo et al., 2019a,b). In
the pgr5 mutant, high light-induced PSI photoinhibition is not
caused by missing NPQ (Tikkanen et al., 2015; Gollan et al.,
2017), demonstrating the importance of photosynthetic control
specifically in rapid induction of PSI protection under changing
environmental conditions (Rantala et al., 2020).

As PSI photoprotection relies on sufficient acceptor side
capacity, improved rates of electron channelling toward strong
stromal sinks can alleviate or guard against PSI photoinhibition
(Padmasree et al., 2002; Alric and Johnson, 2017; Wada
et al., 2018; Yamamoto and Shikanai, 2019). This has been
clearly demonstrated through the study of flavodiiron (FLV)
proteins, which oxidise electron carriers down-stream of PSI in
cyanobacteria, algae, lower-order land plants and gymnosperms,
but have been lost from angiosperms (Zhang et al., 2009; Gerotto
et al., 2016; Ilík et al., 2017). The introduction of FLV proteins
into angiosperm chloroplasts has clearly highlighted the value of
stromal sink strength in protecting against PSI over-reduction,
which appears to lie at least partly in enhanced electron transport
and subsequent lumen protonation, triggering induction of
NPQ and photosynthetic control (Wada et al., 2018; Yamamoto
and Shikanai, 2019). A major natural electron sink in the
chloroplast is the reduction of CO2 into sugars through CBB cycle
activity. Indeed, a protective effect of elevated CO2 concentration
against PSI photoinhibition during fluctuating light was recently
observed, but was reported to be independent from mechanisms
induced by thylakoid 1pH (Tan et al., 2021). On the other
hand, PSI oxidation by photorespiration, which is another major
chloroplast electron sink that involves oxygenation rather than
carboxylation of RuBP, decreases electron pressure at the PSI
donor side by oxidising the electron transport chain (Huang
et al., 2015; Osei-Bonsu et al., 2021) and by inducing lumen
acidification and photoprotection (Furutani et al., 2020; Wada
et al., 2020). Interestingly, weakening of chloroplast sinks in
higher plants through down-regulation of CO2 fixation has been
shown to induce photoprotection mechanisms that minimise PSI
photoinhibition (Kohzuma et al., 2009; Joliot and Alric, 2013; Li
Y.T. et al., 2018; Wada et al., 2019). Together, these results suggest
existence of a regulatory link between CO2 assimilation and
photosynthetic electron transport that protects PSI from over-
reduction, although further research is required to determine
how this feedback affects the donor and acceptor sides of PSI.

The prospective role of O2 as an electron sink for
photoprotection through ROS production has been long
speculated, and remains controversial (Ort and Baker, 2002;
Miyake, 2010; Driever and Baker, 2011; Ivanov et al., 2012; Cai
et al., 2017; Huang et al., 2019, 2021). Although considered
not to be a major route for electron flow in leaves (Driever
and Baker, 2011), O2 reduction by PSI through the so-called
water-water cycle (WWC) has been shown to be a genuine
mechanism of PSI oxidation (Asada, 2000; Ort and Baker, 2002;
Miyake, 2010; Huang et al., 2019). The WWC relies on enzymatic
dismutation of O2

•− formed by PSI (Mehler, 1951), followed
by detoxification of the resulting H2O2 in the chloroplast by
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FIGURE 3 | Proposed mechanisms of PSI photoinhibition and photoprotection. (A) Increased electron flow to the PSI donor side and/or decreased flow from the
acceptor side lead to reduction of O2 and formation of reactive oxygen species (ROS), which result in inactivation of part of the PSI pool; (B) Non-photochemical
quenching, photosynthetic control and/or PSII inactivation down-regulate the flow of electrons to the PSI donor side, limiting the formation of ROS and protecting
PSI from photoinhibition. Upregulated electron acceptor capacity in the stroma through increased CO2 fixation or photorespiration can also increase flow of electrons
from PSI, which may also prevent ROS formation and protect PSI; (C) Partial inactivation of the PSI pool by PSI photoinhibition down-regulates transport of electrons
to the acceptor side, limiting further PSI photoinhibition and down-regulating electron-consuming reactions in the stroma, including ROS formation and signalling.
Yellow stars represent ROS production; Arrows represent electron flow, heavy arrows represent high rate of electron flow, dashed arrows represent low rates of
electron flow. Pale green PSI pool (C) denotes partial inactivation of the PSI pool through ROS-induced FeS cluster and/or protein damage.

ascorbate peroxidase (APX) using ascorbate as an electron
donor. Ascorbate is regenerated through oxidation of glutathione
(GSH), ultimately drawing on the reducing power of NADPH
(Foyer and Halliwell, 1976; Foyer and Shigeoka, 2011). Protection
from photoinhibition by the WWC has been described to occur
through ROS scavenging and electron sink activities (Asada,
1999, 2000; Miyake, 2010), although it appears that the WWC
plays only a minor role in PSI protection, depending on the plant
species, sample type and the stress conditions studied (Driever
and Baker, 2011; Huang et al., 2021). However, the proposed
interaction between PSI and the chloroplast antioxidant network,
wherein reducing power from PSI both produces ROS and drives
ROS scavenging (in which the WWC has an important role),
implicates PSI in chloroplast signalling, as discussed below.

PHOTOSYSTEM I PHOTOINHIBITION
IMPACTS REACTIVE OXYGEN SPECIES
METABOLISM AND CHLOROPLAST
SIGNALLING

As described above, PSI is a major site of O2 reduction
and ROS formation in the chloroplast, which not only
induces PSI photoinhibition, but also promotes ROS-dependent
chloroplast retrograde signalling (reviewed in Gollan et al.,
2015; Mullineaux et al., 2018). In particular, the relatively
long-lived ROS H2O2 can move to the nucleus and instigate
gene expression through modifying redox-sensitive transcription
factors (Exposito-Rodriguez et al., 2017), but can also regulate
transcription indirectly by reacting with protein thiol groups or
changing the redox state of the antioxidant network (Chan et al.,
2016; König et al., 2018; Noctor et al., 2018). Transcriptional
reprogramming by H2O2 signalling is a vital component of both

abiotic and biotic stress responses (Vanderauwera et al., 2005;
Maruta et al., 2012; Sewelam et al., 2014; Dietz et al., 2016;
Smirnoff and Arnaud, 2019; Gollan and Aro, 2020). Relatively
low expression of many abiotic stress-responsive genes, which
are classical markers for H2O2 signalling, was observed after
PSI photoinhibition (Gollan et al., 2017), indicating a negative
impact of PSI photoinhibition on H2O2 signalling. This was taken
to indicate lower levels of O2

•− and H2O2 in the chloroplast,
suggesting that O2 reduction is decreased by down-regulated
PSI electron transport in a similar way to the decline in CO2
assimilation, as discussed above. However, the abundance of
O2
•− and H2O2, along with the activity and expression of

ROS-scavenging enzymes, was equivalent in control and PSI
photoinhibited leaves after 1 hour of high light stress (Lima-
Melo et al., 2019a). This finding indicates that chloroplast
H2O2 deficiency takes place during earlier stages after PSI
photoinhibition, or that deficient H2O2 signalling may have
occurred indirectly, such as by decreased photorespiration
and subsequently lower H2O2 production in the peroxisome
(Vandenabeele et al., 2004; Sewelam et al., 2014).

In addition to H2O2 signalling, PSI photoinhibition was also
found to suppress production of the oxylipin hormone 12-
oxo-phytodienoic acid (OPDA) and down-regulate expression
of oxylipin-responsive genes, as well as decreasing the level
of lipid peroxidation, during high light stress (Gollan et al.,
2017; Lima-Melo et al., 2019a). Oxylipins are products of lipid
oxidation, which can occur either enzymatically by lipoxygenase
(LOX), or non-enzymatically by ROS, especially 1O2 and •OH
(reviewed in Triantaphylidès et al., 2008; Farmer and Mueller,
2013; Wasternack and Feussner, 2018; Yalcinkaya et al., 2019).
Decreased abundance of LOX and OPDA, and lower levels of
lipid peroxidation (Gollan et al., 2017; Lima-Melo et al., 2019a),
suggest that the enzymatic, rather than ROS-induced, signalling
pathway is negatively affected by PSI photoinhibition, although
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both branches of oxylipin synthesis and signalling pathways
appear to be closely interactive (Ramel et al., 2012; Gollan
and Aro, 2020). OPDA regulates transcription for biotic and
abiotic stress responses, as well as providing a precursor for
jasmonic acid (JA), which regulates many stress-responsive and
developmental processes (Wasternack and Hause, 2013; Raza
et al., 2021). The observed effects of PSI photoinhibition on
ROS and oxylipin signalling pathways highlight the importance
of PSI activity in transcription regulation, although more work
is required in this area to understand the contribution of PSI
activity to hormone metabolism and chloroplast signalling.

CONCLUSION

PSI electron transport activity directly reduces the stromal
electron carrier Fd, leading to both formation of NADPH
reducing equivalents, which ultimately support biosynthesis
of carbohydrates, and reduction of the thioredoxin network
involved in redox regulation of stromal proteins. Although PSI
is extremely well protected by regulation of electron flow to
the donor side, PSI photoinhibition is induced when insufficient
capacity of stromal acceptors leads to ROS formation, causing
damage to FeS clusters and/or PSI core proteins; however, ROS
formed by PSI over-reduction is an important component of
chloroplast signalling and may also have an impact on the
redox state of the cellular antioxidant network. The decrease
in PSI activity caused by photoinhibition not only down-
regulates carbohydrate metabolism, but also negatively affects
transcriptional reprogramming through both ROS and metabolic
(enzymatic) pathways. This suggests that photoinhibition of
PSI during periods of sink weakness may be a mechanism
to limit stromal metabolism and ROS formation, preventing
excessive reduction of O2 and redox-sensitive stromal proteins.
Because PSI photoinhibition is mainly avoided by several
protective mechanisms, the impact of PSI inactivation on

chloroplast metabolism and retrograde signalling seems to be
particularly important under specific conditions, such as periods
of fluctuating light intensity or low temperature stress. PSI
photoinhibition is clearly an expensive option for protection of
stromal over-reduction, given the impact on primary metabolism
and long recovery time, although prevention of unregulated
electron flow to the acceptor side is apparently worth the cost.
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