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Carbon(C) and nitrogen(N) metabolisms are important for plant growth and defense,

and enzymes play a major role in these two metabolisms. Current studies show

that the enzymes of N Metabolism, C Metabolism, and defense are correlated with

biomass. Then, we conducted this research under the assumption that enzymes

could characterize the relationship based on growth-defense tradeoff, and some of

the enzymes could be used to represent the plant growth. From the mechanism

model, we picked out 18 physiological/biochemical indicators and obtained the data

from 24 tissue culture seedlings of Salvia miltiorrhiza (S.miltiorrhiza) which were

grafted with 11 endophytic fungi. Then, the relationship between the biomass and

the physiological/biochemical indicators was investigated by using statistical analysis,

such as correlation analysis, variable screening, and regression analysis. The results

showed that many physiological/biochemical indicators, especially enzyme activities,

were related to biomass accumulation. Through a rigorous logical reasoning process, we

established a mathematical model of the biomass and 6 key physiological/biochemical

indicators, including glutamine synthetase (GS), glutamate synthase (GLS), glutamate

dehydrogenase (GDH), peroxidase (POD), catalase (CAT), and soluble protein from

Cobb-Douglas production function. This model had high prediction accuracy, and it could

simplify the measurement of biomass. During the artificial cultivation of S.miltiorrhiza,

we can monitor the biomass accumulation by scaling the key physiological/biochemical

indicators in the leaves. Interestingly, the coefficients of Lasso regression during our

analysis were consistent with the mechanism of growth-defense tradeoff. Perhaps, the

key physiological/biochemical indicators obtained in the statistical analysis are related to

the indicators affecting biomass accumulation in practice.
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1. INTRODUCTION

As is known, Carbon (C) and nitrogen(N) are the main elements
for the growth and defense of plants. Plants synthesize propane
on the one hand through photosynthesis, which leads to starch,
sucrose, and soluble sugars, and on the other hand they translate
inorganic N into amino acids from ammonification, which leads
to soluble proteins and are used for growth and defense in
a certain C:N ratio (Lea and Morot-Gaudry, 2001). At the
same time, plants consume the assimilated products of C/N
metabolism through defense under biotic and abiotic stresses.
Therefore, plants maintain a dynamic tradeoff between growth
and defense by optimizing resource allocation through C/N
metabolism and defense to enable plants to survive (Li et al.,
2019).

Current studies show that some key enzyme activities of
C/N metabolism have an available correlation with biomass
accumulation (Noor et al., 2010). The activities of defensive
enzymes show a significant correlation with adaptation to
environmental stresses (Haddidi et al., 2020). Thus, the activities
of sucrose phosphate synthase (SPS) and sucrose synthase
(SS) in leaves, as well as the content of chlorophyll, soluble
sugars, and starch are often used as important indicators to
characterize the status of the C metabolism (Moriguchi et al.,
1992; Verma et al., 2011). In N metabolism, nitrate reductase
(NR) and nitrite reductase (NiR) translate N intoNH+

4 , formulate
glutamate and glutamine through ammonia assimilation (Liang
et al., 2018; Salehin et al., 2019). Glutaminase (GLS), glutamine
synthetase (GS), glutamate synthase (GOGAT), and glutamate
dehydrogenase (GDH) can promote amino acid accumulation.
But with a large increase in the reduction of NH+

4 from NO−
3 ,

a sustained raising in GDH amination activity will inhibit GLS,
GS, and GOGAT activities. Thus, GLS, GS, and GOGAT have a
positive influence on biomass accumulation, while GDH has a
bidirectional effect on biomass accumulation (Liang et al., 2018;
Salehin et al., 2019; Gonzíalez-Moro et al., 2021; Wei et al.,
2021). Many soluble proteins are crucial components of enzymes.
They are involved in the physiological/biochemical metabolic
and are the key indicators of whether plants suffered from heavy
metal stress.

In the competition of biotic and abiotic stresses, the activities
of enzymes, such as GS, GDH, NR, GOGAT, NiR, and GLS, as
well as the soluble protein content, are considerable indicators
of the N metabolic (Salehin et al., 2019; Gonzíalez-Moro et al.,
2021; Wei et al., 2021). The enzymatic activities of superoxide
dismutase (SOD), peroxidase (POD), catalase(CAT), proline
(Pro), phenylalanine ammonialyase (PAL), and malondialdehyde
(MDA) are commonly used to characterize defense responses
(Jaafar et al., 2012; Farooq et al., 2020; Sarker and Oba, 2020;
Zaheer et al., 2020). The increase of the enzymes activities
such as SOD, POD, CAT, and Pro can significantly improve

Abbreviations: C, carbon; CAT, catalase; GDH, glutamate dehydrogenase; GLS,

glutaminase; GOGAT, glutamate synthase; GS, glutamine synthetase; MDA,

malondialdehyde; N, nitrogen; NiR, nitrite reductase; NR, nitrate reductase; PAL,

phenylalanine ammonialyase; PGA, 3- phosphoglyceric acid; POD, peroxidases;

Pro, proline; NADPH, reducing agent; S.miltiorrhiza, Salvia miltiorrhiza; SOD,

superoxide dismutase; SPS, synthase; SS, sucrose synthase.

plant growth, biomass, chlorophyll content, and gas exchange
properties (Sarker and Oba, 2020; Zaheer et al., 2020), while
PAL and MDA inhibit plant growth by reducing the activity of
antioxidant enzymes through oxidative stress (Jaafar et al., 2012;
Farooq et al., 2020). Although the relationship between C/N
metabolism and plant growth defense is obvious, there is still a
lack of systematic research.

Based on the principles of metabolism, in this study we
hypothesized that the correlation among the enzymes of C/N
metabolic and defense could characterize the growth-defense
tradeoff, and some of the enzymes could indicate the connection
between the biomass and the physiological/biochemical
indicators. Then, a mechanism model was established and 18
physiological/biochemical indicators were picked out (Figure 1).
Since S.miltiorrhiza is considerable for the treatment of coronary
heart disease and cerebrovascular disease (Su et al., 2015; Ma
et al., 2016; Wang et al., 2017; Li, 2018; Shi et al., 2019), this
study has practical significance to guide the production of
medicinal plants. We cultured 24 tissue culture seedlings of
Salvia miltiorrhiza (S.miltiorrhiza) which were grafted with 11
endophytic fungi. The 11 fungi are non-pathogenic and can
intervene in physiological metabolism so that we can obtain
data on different growth states. Through lasso screening variable
(Efron et al., 2004) and regression analysis of plant physiological
and biochemical indexes and biomass, the functional relationship
between S.miltiorrhiza biomass and physiological /biochemical
indexes was found. Thus, through the monitoring of relevant
indicators of S.miltiorrhiza, we can understand the growth status
of S.miltiorrhiza.

2. MATERIALS AND METHODS

2.1. Plant Materials
In this study, 24 tissue culture seedlings were inoculated from
11 strains of non-pathogenic endophytic fungi from 8 species of
S.miltiorrhiza which our group obtained in previous studies (Ya-
Li, 2018). The culture of tissue culture seedlings and endophytic
fungal inoculation were obtained by the method in Lan et al.
(2016) (daytime 25oC/nighttime 20oC, 14/10 h, light intensity
3,000 LX) where young leaves of S.miltiorrhiza were employed
as explants. The seedlings with 3–5 roots were transplanted into
artificial soil containing 50 ml of 1/2 MS medium, sealed with a
sealing film, and incubated in vertical light for 3 days (Hesheng,
2000), then a small piece of fungal cake was taken with a hole
punch and placed on the root of the seedlings in the culture
flask, and the root of S.miltiorrhiza was gently punctured with
a sterile needle. After 30 days of incubation, the plants were
removed and the biomass and related physiological indicators
were measured.

2.2. Determination of the Biomass
The S.miltiorrhiza seedlings were taken out and washed carefully
to remove impurities attached to the roots. After absorbing the
surface moisture with absorbent paper, weigh it and subtract the
weight of seedlings when transplanting to get the net biomass.
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FIGURE 1 | The path structure of biomass accumulation of S.miltiorrhiza. It shows the process of C/N metabolism and the role of the physiological/biochemical

indicators in biomass accumulation.

2.3. Determination of the
Physiological/Biochemical Indicators
The activities of SS, SPS, NR, GS, and GOGAT were determined
through enzyme solution prepared from young leaves of
S.miltiorrhiza (Deane-Drummonda et al., 1979; Islam et al., 1996;
Li, 2000; Zhao et al., 2003). The contents of reducing sugar and
soluble sugar were estimated by adopting 3,5-dinitrosalicylic acid
method and anthrone method, respectively (Zhang, 1990; Li,
2000; Gao, 2006). The soluble protein content was assessed with
the coomassie brilliant blue method (Elsharkawy et al., 2012).
Chlorophyll content was determined by spectrophotometry
(Strain and Svec, 1966). The activities of SOD, POD, CAT,
PAL, and MDA and Pro in S.miltiorrhiza leaves were measured
according to Zhu et al. (1983), Polle et al. (1994), and Gao (2006).

2.4. Statistical Analysis
2.4.1. Correlation Analysis
Because of the large difference in unit and quantity, the
physiological/biochemical indicators were standardized by the
following function:

x′ij =
xij − xj

sj
, (1)

where xij was the value of the jth physiological/biochemical
indicator of the ith plant of S.miltiorrhiza, xj denoted the average
of jth indicator, and sj denoted the SD of the jth indicator.

The correlation analysis between the
physiological/biochemical indicators of S.miltiorrhiza and
the biomass included linear correlation analysis and nonlinear
correlation analysis, so the correlation coefficient matrix
analysis was chosen to be used. It included three aspects:
(1) analysis of the variation between the biomass and the
physiological/biochemical indicators; (2) linear correlation
between the biomass and the physiological/biochemical
indicators; and (3) analysis of the nonlinear relationship between
the biomass and the physiological/biochemical indicators.

2.4.2. Systematic Analysis Based on Lasso Algorithm
According to the mechanism analysis, we tried to find the
physiological/biochemical indicators related to the biomass
accumulation of S.miltiorrhiza, so there would be duplication or
the introduction of irrelevant factors. However, there aremultiple
covariates among various physiological/biochemical indicators,
in which case least squares and partial least squares work poorly.
In order to select a concise set of physiological/biochemical
indicators to effectively predict biomass and improve the
prediction accuracy of the model (Efron et al., 2004), Lasso
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regression was introduced for variable screening. The regression
function was as follow:

yi =

p∑

j=1

βjx
′
ij + εi, (i = 1, 2, ..., n), (2)

where x′ij denoted the jth physiological/biochemical indicator of

the ith sample, yi denoted the biomass of S.miltiorrhiza of the ith
sample, and p denoted the number of physiological/biochemical
indicators screened.

Because Xi = (xi1, . . . , xip)
T , (i = 1, 2, ..., p) were

multicollinearity, the Lasso method was used to filter variables.
The Lasso constructed a penalty function to obtain amore refined
model, which made it compress some regression coefficients.
Here, l1-penalty function was used for regularization estimation
parameter as in Efron et al. (2004), defined as

β̂(λ) = argmin
1

N
||Y − Xβ||2 + λ

∑

j

|βj|, (3)

where N denoted the number of samples, Y = (y1, y2, ..., yN)
T

denoted the biomass, X = (X1,X2, ...,XN)
T denoted the

physiological/biochemical indicators, β denoted the regression
coefficient, and λ ≥ 0 denoted the penalty parameter.

2.4.3. Nonlinear Regression Analysis Based on

Cobb-Douglas Production Function
Based on the characteristics of important variables screened
by Lasso, nonlinear regression analysis was utilized since
correlations and interactions between variables still existed.
Assuming that y denotes biomass, Ai(i = 1, 2, · · · n) denotes
factors with positive influence coefficients, and βj(j = 1, 2, · · ·m)
denotes factors with negative influence coefficients, similar to the
Cobb-Douglas productionmodel in Carter (2012), themodels for
the biomass and the physiological/biochemical indicators were
established as follows:

Y = H ·
Aa1
1 Aa2

2 · · ·A
an
n

Bb11 Bb22 · · ·B
bm
n

, (4)

WhereH, a1, a2, · · · , an, b1, b2, · · · , bm denoted parameters to be
determined by the Equation (4). Then took common logarithms
on both sides of the Equation (4) at the same time, that was

lnY = lnH + a1 lnA1 + a2 lnA2 + · · · + an lnAn − b1 lnB1

−b2 lnB2 − · · · − bm lnBm.

(5)

The Equation (4) was transformed into a linear regression,
from which the initial values of the nonlinear regression
parameters could be obtained from the Equation (5). Then, the
solution of Equation (4) could be optimized by performing a
nonlinear regression.

2.4.4. Data Analysis Environment
All the data were analyzed in R4.0.3 + Rstudio (Chang, 2013;
Lantz, 2013). glmnet() was used for filtering variables in Lasso,
ls()/nls() was used for linear/nonlinear regression analysis, and
ggplot() was used for graph plotting.

3. RESULTS

3.1. Experimental Results and Data
To analyze the relationship between the biomass and
the physiological/biochemical indicators, 24 samples of
S.miltiorrhiza were collected according to the methods described
in 2.1 ∼ 2.3, and the data of the 18 physiological/biochemical
indicators such as chlorophyll, SS, SPS, soluble sugar, and the
values of corresponding biomass were displayed in Table 1.

3.2. Descriptive Statistical Analysis of the
Biomass and the
Physiological/Biochemical Indicators
We defined biomass as the dependent variable(y) and
chlorophyll(x1), SS(x2), SPS(x3), soluble sugar(x4), starch(x5),
GOGAT(x6), GS(x7), NR(x8), NiR(x9), GLS(x10), GDH(x11),
soluble protein(x12), POD(x13), SOD(x14), CAT(x15), Pro(x16),
PAL(x17), and MDA(x18) as independent variables. To eliminate
the difference in magnitude between variables, the criteria
were standardized by using Equation (1) and then other
corresponding analyses were performed.

3.2.1. Differences in Some Physiological/Biochemical

Indicators and Lack of Consensus in the Biomass

Accumulation
Some physiological/biochemical indicators were influenced by
individual plants, especially SS(x2) and GOGAT(x6) were very
different (Figure 2). It indicated that they lacked consensus
in the biomass accumulation of S.miltiorrhiza and there was
uncertainty among indicators.

3.2.2. Many Physiological/Biochemical Indicators

Have a Linear (or Nonlinear) Correlation With the

Biomass
From the result of correlation analysis, we can see there was
a positive correlation of the biomass(y) with chlorophyll(x1)
and CAT(x15) (Figure 3), and a negative correlation with
GLS(x10) and POD(x13). Considering the relationship between
the physiological/biochemical indicators, chlorophyll(x1),
NR(x8), and CAT(x15) were positively correlated, while
chlorophyll(x1) was negatively correlated with SPS(x3),
NiR(x9), and POD(x13). SPS(x3) was positively correlated
with CAT(x15), while SPS(x3) was negatively correlated with
NiR(x9), GLS(x10) and POD(x13). Similarly, these results
indicated that linear correlations existed between the biomass
and the physiological/biochemical indicators.

There was a certain nonlinear relationship (Figure 4) between
the biomass and the physiological/biochemical indicators. For
instance, there was a nonlinear relationship between the
biomass(y), and NiR(x9), and soluble protein(x12). Thereby,
biomass could not be expressed by a single enzyme activity or
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TABLE 1 | Biomass and physiological/biochemical indicators of S. miltiorrhiza.

No Biomass Chlorophyll SS SPS Soluble sugar Starch GOGAT GS NR NIR GLS GDH Soluble POD SOD CAT PRO PAL MDA

1 1.04 187.38 100.24 94.18 173.60 231.12 48.89 149.78 26.73 62.88 141.30 46.08 10.79 102.40 21.51 553.86 82.61 100.92 227.21

2 1.41 152.56 58.98 110.35 82.81 227.04 56.84 72.18 20.70 83.66 70.04 34.29 7.37 103.87 16.21 403.92 45.96 93.84 238.91

3 1.39 202.88 47.25 120.05 63.48 192.40 296.44 258.31 18.37 44.65 86.70 73.73 13.05 79.33 18.25 504.90 60.10 169.62 263.68

4 0.98 160.17 82.81 102.36 158.63 196.75 79.82 112.13 39.66 62.61 72.69 66.87 13.42 203.47 26.87 621.18 91.93 152.38 204.85

5 2.03 174.68 88.90 118.91 132.40 289.19 70.97 152.65 28.93 80.51 81.09 100.09 7.45 128.40 19.29 605.88 67.29 203.37 256.28

6 1.32 214.34 40.92 139.27 148.14 249.62 102.82 71.57 37.03 85.81 102.21 61.51 8.31 110.80 19.83 563.04 88.23 103.19 235.12

7 2.25 160.84 78.52 148.21 86.62 221.64 91.91 178.59 19.16 58.31 110.54 36.22 10.51 88.80 20.83 615.06 40.77 134.70 176.13

8 1.19 166.41 100.29 152.40 161.93 182.49 105.90 71.67 34.65 68.46 121.30 26.58 10.68 98.67 25.88 553.86 61.72 172.85 257.14

9 1.23 203.04 170.71 130.52 66.56 239.29 64.09 50.11 16.64 88.85 112.71 16.93 8.62 96.67 17.38 584.46 43.71 131.07 184.38

10 1.07 214.27 33.39 145.55 140.28 233.01 43.08 58.01 35.07 65.61 144.62 38.15 11.88 127.87 24.34 434.52 68.36 208.06 240.46

11 0.94 191.76 88.23 87.52 116.16 238.10 29.62 48.53 29.04 90.13 140.57 13.93 8.29 114.40 16.33 511.02 63.05 135.70 232.54

12 1.25 160.38 22.77 94.75 57.85 198.83 35.11 39.05 14.46 62.62 101.60 24.65 12.20 96.40 26.20 593.64 64.38 121.54 310.63

13 0.48 116.58 90.26 355.59 162.98 247.04 125.73 101.31 20.37 90.47 194.85 20.58 8.64 248.11 18.44 241.74 53.38 105.26 221.54

14 1.06 103.47 120.38 770.74 203.46 333.85 201.82 82.14 25.43 105.50 215.34 42.65 8.00 246.11 25.22 91.80 52.60 124.82 248.37

15 0.86 130.59 155.42 614.54 128.79 257.06 212.45 78.38 16.10 87.80 253.22 75.66 8.84 252.37 19.20 192.78 67.72 157.39 328.52

16 0.54 89.78 88.48 882.80 98.80 249.39 39.91 66.06 12.35 89.51 173.20 19.29 8.84 169.71 23.68 250.92 36.53 153.42 181.46

17 0.65 110.24 93.60 977.17 82.86 237.87 35.75 60.58 10.36 99.08 174.48 52.08 7.73 168.64 22.43 293.76 34.67 145.00 301.86

18 0.65 132.35 80.32 243.15 96.08 277.75 83.20 52.02 12.01 89.12 300.71 44.37 11.91 163.84 25.88 250.92 47.79 225.36 312.70

19 0.86 98.60 80.11 502.85 72.80 261.91 83.31 128.01 9.10 89.34 208.74 28.08 11.85 167.17 20.42 302.94 57.02 94.13 202.96

20 0.77 92.34 131.02 203.58 134.67 275.86 64.34 117.74 16.83 93.30 148.66 29.58 9.39 166.24 20.02 149.94 61.75 117.86 193.50

21 0.66 127.12 101.46 248.29 74.47 268.69 72.29 70.85 9.31 70.70 80.47 31.29 10.11 164.91 18.39 272.34 43.36 168.17 347.96

22 0.98 152.86 135.44 567.16 151.44 305.34 270.98 109.18 18.93 90.69 145.72 95.38 9.61 170.24 36.83 122.40 77.40 140.63 236.84

23 1.19 140.67 160.92 305.18 212.24 301.72 306.41 163.26 26.53 93.62 151.27 65.37 7.85 166.51 37.67 198.90 64.15 110.90 170.11

24 0.81 82.39 94.16 192.73 90.83 237.21 51.44 62.29 11.35 101.33 105.87 29.36 7.73 167.04 22.45 281.52 49.63 133.27 408.67

In this table biomass, chlorophyll, SS, SPS, soluble sugar, starch, glutamate synthase (GOGAT), glutamine synthetase (GS), nitrate reductase (NR), nitrite reductase (NIR), glutaminase (GLS), glutamate dehydrogenase, soluble, peroxidases

(POD), superoxide dismutase (SOD), catalase (CAT), proline (PRO), phenylalanine ammonialyase (PAL), malondialdehyde (MDA) are separately measured as (g), (mg· g−1 · FW), (mol· min−1 · g−1 · FW), (mol· min−1 · g−1 · FW), (U· g−1

· FW), (g· g−1 · FW), (U· g−1 · FW), (nmol· min−1 · g−1 · FW), (mol· h−1 · g−1 · FW), (mol· min−1 · g−1 · FW), (mol· h−1 · g−1 · FW), (nmol· min−1 · g−1 · FW), protein(g· ml−1), (U· g−1 · h· FW), (U· g−1 · h· FW), (nmol· min−1 · g−1 · FW),

(U· g−1 · FW), (U· mg−1 · h), and (nmol· g−1 · FW), respectively.
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FIGURE 2 | The box line diagram of the physiological/biochemical indicators. The blue curve is the regression curve, the shaded part indicates the confidence interval,

and the larger the shaded area the worse the regression effect of the curve. It shows that some physiological/biochemical indicators lack consensus in the biomass

accumulation of S.miltiorrhiza.

FIGURE 3 | Correlations between the biomass and the physiological/biochemical indicators of S.miltiorrhiza biomass. The blue rectangles represent a positive

correlation, the red rectangles represent a negative correlation. The area of the circle represents the degree of correlation. According to correlograms shown in this

figure, there were correlations among the biomass and the physiological/biochemical indicators.

physiological/biochemical indicator, but by a combination of

some effective physiological/biochemical indicators (Figures 3,

4). Therefore, it was necessary to systematically analyze the

relationship between the physiological/biochemical indicators

and the biomass.

3.3. Some Physiological/Biochemical
Indicators Play a Major Role in the
Biomass Accumulation
We used the glmnet() of the R software to calculate the Lasso
model (parameters set to default values) and optimized themodel
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FIGURE 4 | The scatter and regression curves of the biomass and the physiological/biochemical indicators of S.miltiorrhiza. The horizontal axis of xi , is the

physiological/biochemical indicator of i and the vertical axis is y, which is the biomass of S.miltiorrhiza. The blue curve is the regression curve, the shaded part

indicates the confidence interval, and the larger the shaded area indicates the worse regression effect of the curve.

and function by cv.glmnet() to obtain the results shown in
Figure 5 and Table 2.

The results showed that GS(x7), GDH(x11), and

CAT(x15) were positively correlated with biomass and

acted as promoters when the whole system was considered.
GLS(x10), POD(x15), and soluble protein(x13) were
negatively correlated with biomass accumulation and acted
as inhibitors.

3.4. Some Key Physiological/Biochemical
Indicators Are Able to Express the
Biomass Well
A nonlinear regression analysis was performed by using the
Douglas production model with the influencing factors of
GS(x15), GLS(x15), GDH(x15), soluble protein(x15), POD(x15),
and CAT(x15), and biomass. Took 5/6 of the data as the training
set and 1/6 as the verification set, repeated the training 1,000
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FIGURE 5 | Lasso regression analysis number of iterations vs. mean square error. It shows that the optimal λ value is obtained in 5th step.

times, and selected the regression equation with the smallest
verification set error. The model was as follows:

Y = 5.05853×
x0.247377 x0.0902611 x0.2263115

x0.1477610 x0.6402112 x0.4438113

. (6)

The predicted values of biomass could be obtained fromEquation
(6) and the results were shown in Table 2. The test showed that
the prediction effect of the model was good (Tables 3, 4). It
showed that the regression equation was relatively successful and
was able to predict the corresponding the biomass from the 6
important physiological/biochemical indicators.

4. DISCUSSION

Carbon/nitrogen metabolism are critical in growth and defense
(Li et al., 2019). Adequate management of the plant in C/N
metabolism and growth defense have a significant impact on crop
productivity. In this study, we constructed a growth mechanism
model by S.miltiorrhiza and picked out the relationship
between the 18 physiological/biochemical indicators and the C/N
metabolism, with the aim of finding important metabolic traits as
an indication of the biomass (Table 2).

The variability of the physiological/biochemical indicators
was analyzed by box-line plots (Figure 2), and it was observed
that some indicators showed no consensus. That was, some
physiological/biochemical indicators were greatly affected by
individuals. In particular, SS(x2) and GOGAT(x6) were more
discrete. SS(x2) was an important enzyme catalyzing sucrose
synthesis in plants, and sucrose was broken down into soluble
sugars for drought resistance in plants on the one hand, and
synthesized biomass with soluble proteins on the other hand,
making SS showed uncertainty on the biomass (Kaur et al.,
2006; Zhang et al., 2018). Similarly, GOGAT(x6) consuming

amino acids used by plants for the biomass accumulation during
growth defense, formed aspartic acid, which was used for plant
drought resistance under the action of Pro and producing
glutamate, soluble protein, which leads to biomass accumulation.
The uncertainty of the two conversion pathways, SS(x2), and
GOGAT(x6), prevents them from being used as important
indicators for characterizing the biomass (Wei et al., 2021).

There were linear(or nonlinear) correlations between the
biomass and the physiological/biochemical indicators (Figures 2,
3), indicating interdependence in the growth-defense tradeoff
of plants. For example, there was a positive correlation
between biomass(y) and chlorophyll(x1)/CAT(x15), indicating
that chlorophyll was the main substance for photosynthesis
in plants, and it played an important role in C metabolism
(Luo, 2018). Although CAT(x15) was mainly used in the
defense, it reduced the toxicity of H2O2 (Abogadallah, 2010;
Sarker and Oba, 2020), and maintained normal growth and
defense. The biomass was negatively correlated with some
physiological/biochemical indicators, such as GLS(x6) promoting
amino acid accumulation, and POD(x13) depleting C and
N assimilation products, affecting the biomass accumulation.
POD(x13) reduces H2O2 and converts carbohydrates to lignin,
improving the physical defense barrier and depleting assimilates
required for growth. Considering the relationship between the
physiological/biochemical indicators, chlorophyll(x1), NR(x15),
and CAT(x15) were positively correlated, while chlorophyll(x15)
was negatively correlated with SPS(x3), NiR(x9), and POD(x13)
(Figure 3). On the one hand, chlorophyll is used by plants for
photosynthesis to convert CO2 in the air into C required by
plants, and on the other hand, about 90% of N in plants, coming
from biological N fixation, is reduced from nitrate to nitrite
in soil by NR. Plant cells can rapidly transfer nitrite produced
by nitrate reduction from the stroma to the chloroplasts of
leaf cells or the plastids of root cells and are reduced in the
chloroplasts by NiR to ammonia, while the potential toxicity of
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TABLE 2 | Nonzero regression coefficient of Lasso.

x7 x10 x11 x12 x13 x15

1.385218e-03 –1.205714e-05 1.999661e-03 –4.228444e-03 –1.422853e-03 7.330554e-04

TABLE 3 | The results of the training set of the biomass and the key physiological/biochemical indicators.

x7 x10 x11 x12 x13 x15 y hat_y absolute_error

48.53 140.57 13.93 8.29 114.4 511.02 0.94 1.043 0.103

62.29 105.87 29.36 7.73 167.04 281.52 0.81 0.956 0.146

71.67 121.3 26.58 10.68 98.67 553.86 1.19 1.151 −0.039

82.14 215.34 42.65 8 246.11 91.8 1.06 0.609 −0.451

112.13 72.69 66.87 13.42 203.47 621.18 0.98 0.969 −0.011

258.31 86.7 73.73 13.05 79.33 504.9 1.39 1.728 0.338

101.31 194.85 20.58 8.64 248.11 241.74 0.48 0.72 0.24

117.74 148.66 29.58 9.39 166.24 149.94 0.77 0.817 0.047

71.57 102.21 61.51 8.31 110.8 563.04 1.32 1.425 0.105

178.59 110.54 36.22 10.51 88.8 615.06 2.25 1.63 −0.62

50.11 112.71 16.93 8.62 96.67 584.46 1.23 1.198 −0.032

152.65 81.09 100.09 7.45 128.4 605.88 2.03 1.898 −0.132

60.58 174.48 52.08 7.73 168.64 293.76 0.65 0.934 0.284

128.01 208.74 28.08 11.85 167.17 302.94 0.86 0.796 −0.064

72.18 70.04 34.29 7.37 103.87 403.92 1.41 1.476 0.066

66.06 173.2 19.29 8.84 169.71 250.92 0.54 0.771 0.231

39.05 101.6 24.65 12.2 96.4 593.64 1.25 0.952 −0.298

109.18 145.72 95.38 9.61 170.24 122.4 0.98 0.832 −0.148

149.78 141.3 46.08 10.79 102.4 553.86 1.04 1.387 0.347

78.38 253.22 75.66 8.84 252.37 192.78 0.86 0.68 −0.18

TABLE 4 | The results of the validation set of the biomass and the key physiological/biochemical indicators.

x7 x10 x11 x12 x13 x15 y hat_y absolute_error

58.01 144.62 38.15 11.88 127.87 434.52 1.07 0.866 −0.204

52.02 300.71 44.37 11.91 163.84 250.92 0.65 0.606 −0.044

70.85 80.47 31.29 10.11 164.91 272.34 0.66 0.869 0.209

163.26 151.27 65.37 7.85 166.51 198.9 1.19 1.134 −0.056

nitrite is broken down by CAT(x15). Chlorophyll(x1), NR(x8),
NiR(x9), and CAT(x15) collaborate with each other in C/N
metabolism as well as in the growth-defenses tradeoff (Zhou
et al., 2021). SPS(x3) and SS(x2) are both important enzymes for
catalyzing sucrose synthesis in plants, however, SPS exhibiting
different characteristics from sucrose SPS SS(x2) was positively
correlated with CAT(x15), indicating that it promoted the
biomass accumulation (Figure 3). While SPS was negatively
correlated with NiR(x9), GLS(x10), and POD(x13)(Figure 3).
It showed inhibition of biomass accumulation, but NiR(x15)
reduced nitrate in soil and then synthesized NH+

4 for the biomass
formation, and GLS(x10) formed NH+

4 into amino acids, which
were against the previous analysis. All of these analyses indicated
that biomass accumulation was a relatively complex process
that required systematic analysis of the physiological/biochemical
indicators affecting the biomass accumulation.

By Lasso analysis (Figure 5 and Table 2), GS(x7) and
GDH(x11) were positively correlated with biomass (Table 3),
indicating that GS(x7) and GDH(x11) were the main substrate in
the seedling stage facilitate protein synthesis with amino acids
and were conducive to coordinate C metabolism (Kaur et al.,
2006), which was consistent with the rapid assimilation of N in
early growth and laid the foundation for high rate C assimilation
in later growth stages (Salehin et al., 2019; Gonzíalez-Moro et al.,
2021; Wei et al., 2021). GS(x7) was responsible for primary
NH+

4 assimilation as well as germination, and elevating of
GS(x7) in leaves contributed to the conversion of inorganic
NH+

4 to organic N (Lea and Morot-Gaudry, 2001). There was
a positive correlation between GDH(x11) and total amino acid
content in the root system (Gonzíalez-Moro et al., 2021). When
GDH(x11) was sufficiently induced in leaves, it would indicated
substrate specificity in plants with other enzymes. Although
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GLS facilitated amino acid accumulation, it was negatively
correlated with the biomass (Table 3), possibly due to the lack
of sufficient reducing agent(NADPH) or the unavailability of
reducing agent(NADPH), making it possible that NH+

3 might
not attack the ketone group, leading to its release into the
environment (Yoneyama et al., 2015). Soluble proteins were
negatively correlated with biomass (Table 3), indicating that
soluble proteins would consume amino acids used for biomass
accumulation. POD was negatively correlated with biomass
(Table 3), indicating that glutamate synthesis, as well as the
synthesis of metabolic enzymes represented by POD, consumed
N and C assimilation products, thus affecting the biomass
accumulation. POD reduced H2O2 and converted carbohydrates
to lignin, improving the physical defense barrier and depleting
assimilates required for growth. However, despite its synthesis
of N and C assimilation products, CAT(x15) specifically reduced
the toxicity of H2O2 (Abogadallah, 2010; Sarker and Oba,
2020), maintained cell membrane stability, and promoted growth
and defense. Meanwhile, it was a positive correlation between
CAT(x15) and biomass(y) (Table 3).

The relationship between the physiological/biochemical
indicators in the biomass accumulation mechanism model was
consistent with the results of the Lasso model analysis. Our
analysis not only illustrated that the biomass accumulation was
related to some key physiological/biochemical indicators, but also
the characteristics of these enzymes were the same as those of
Lasso analysis. For example, GS(x7) and GDH(x10), which had
positive coefficients in the Lasso model, were also present in the
routes of C/N metabolism to promote biomass accumulation,
and GLS(x11) and POD(x13), which had negative coefficients
in the Lasso model, were also present in the routes of defense
to consume the C and N and affect the biomass accumulation
(Lea andMorot-Gaudry, 2001). Furthermore, although CAT(x15)
consumed C and N on the defense route, its negative synergistic
effect with POD(x13), or competition for substrates, could
explain this phenomenon. Thereby, perhaps increasing GS(x7),
GDH(x10), and CAT(x15) activities, or decreasing GLS(x11) and
POD(x13) activities, would be beneficial to promote biomass
accumulation of S.miltiorrhiza .

Finally, we established a functional equation between the 6
key physiological/biochemical indicators and the biomass based
on the Cobb-Douglas economic model. Although Cobb-Douglas
economic model is an economic mathematical model used to
predict the production of national and regional industrial systems
or large enterprises and analyze the ways to develop production,
this study skillfully uses it to establish the relationship between
physiological/biochemical indicators and biomass. Interestingly,
the correlation between the physiological/biochemical indicators
and the biomass in this equation was the same as that obtained

by Lasso regression. That is GS(x7), GDH(x11), and CAT(x15)
were positively correlated with the biomass, and GLS(x10 ),
POD(x12), and soluble protein(x13) were negatively correlated
with biomass accumulation. The biomass predicted from the
physiological/biochemical indicators of this equation had less
error. In the artificial cultivation of S.miltiorrhiza, only the values
of the key physiological/biochemical indicators of the above-
ground parts are needed to obtain the corresponding biomass.

5. CONCLUSION

This study provides a rigorous logical reasoning process in terms
of the selection of factors affecting biomass accumulation, the
screening of key factors, and the establishment and validation
of regression models. The method is applicable not only to
metabolic engineering but also to phenomena with similar
mechanistic features, such as the relationship between the
activities and soil environment, and the self-organization of
microbial communities. In addition, the generalized application
of Lasso regression and the Cobb-Douglas production model
used in this study provides a powerful tool for a comprehensive
and systematic study of growth and active ingredient synthesis.
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