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Upon pathogen recognition, a transient rise in cytoplasmic calcium levels is one
of the earliest events in plants and a prerequisite for defense initiation and signal
propagation from a local site to systemic plant tissues. However, it is unclear if calcium
signaling differs in the context of priming: Do plants exposed to a first pathogen
stimulus and have consequently established systemic acquired resistance (SAR) display
altered calcium responses to a second pathogen stimulus? Several calcium indicator
systems including aequorin, YC3.6 or R-GECO1 have been used to document local
calcium responses to the bacterial flg22 peptide but systemic calcium imaging within
a single plant remains a technical challenge. Here, we report on an experimental
approach to monitor flg22-induced calcium responses in systemic leaves of primed
plants. The calcium-dependent protein kinase CPK5 is a key calcium sensor and
regulator of the NADPH oxidase RBOHD and plays a role in the systemic calcium-ROS
signal propagation. We therefore compared flg22-induced cytoplasmic calcium changes
in Arabidopsis wild-type, cpk5 mutant and CPK5-overexpressing plants (exhibiting
constitutive priming) by introgressing the calcium indicator R-GECO1-mTurquoise
that allows internal normalization through mTurquoise fluorescence. Aequorin-based
analyses were included for comparison. Based on the R-GECO1-mTurquoise data,
CPK5-OE appears to reinforce an “oscillatory-like” Ca2+ signature in flg22-treated local
tissues. However, no change was observed in the flg22-induced calcium response in the
systemic tissues of plants that had been pre-challenged by a priming stimulus – neither
in wild-type nor in cpk5 or CPK5-OE-lines. These data indicate that the mechanistic
manifestation of a plant immune memory in distal plant parts required for enhanced
pathogen resistance does not include changes in rapid calcium signaling upstream of
CPK5 but rather relies on downstream defense responses.
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INTRODUCTION

Plants that experience a primary attack by microbial pathogens
not only induce rapid local immune responses but are also
able to build a more long-term systemic immune memory,
the so-called systemic acquired resistance (SAR). Primed plants
are sensitized toward a secondary infection and often induce
faster and stronger immune reactions that ultimately impede
pathogen growth. Defense priming requires an initial recognition
of a pathogen (or conserved microbe-derived molecules termed
pathogen-associated molecular patterns, PAMPs), the initiation
of local immune reactions, a defense signal propagation from
local to distal sites of the plant (systemic tissues), and the onset
and maintenance of SAR involving phytohormone-dependent
changes in gene expression and defense metabolite synthesis
(Hake and Romeis, 2019; Hilker and Schmulling, 2019).

A transient change of the cytoplasmic calcium concentration
([Ca2+]cyt) is one of the earliest events in plant cells upon
pathogen recognition, and many studies applying different
calcium indicators reported on distinct [Ca2+]cyt patterns in
response to PAMPs, e.g., bacterial flg22 (Ranf et al., 2011; Maintz
et al., 2014; Seybold et al., 2014; Thor and Peiter, 2014; Keinath
et al., 2015; Aldon et al., 2018; Tian et al., 2020). Furthermore,
calcium and calcium signaling being instrumental during defense
signal propagation from a local attacked site to systemic parts
of a plant has been observed as a spread of a calcium signals
through the plant along the vasculature and beyond (Romeis and
Herde, 2014; Kiep et al., 2015; Nguyen et al., 2018; Toyota et al.,
2018; Shao et al., 2020; Fichman and Mittler, 2021). However, it is
unknown whether [Ca2+]cyt changes contribute to SAR. Defense
priming of SAR is mechanistically correlated to changes in gene
expression including accumulation of the master transcription
factor SARD1, on maintaining phytohormone salicylic acid
(SA)-based transcriptional reprogramming, or on epigenetic
modifications. But it is unclear whether and how calcium
signaling contributes to the mechanism necessary to acquire
an immune memory. Do plants that have experienced a first
priming pathogen stimulus and have consequently established
SAR display a different [Ca2+]cyt change pattern in response
to perception and recognition of a second triggering pathogen
stimulus?

Studies on immune-related [Ca2+]cyt changes have been
performed in cell cultures, protoplasts, young seedlings, excised
leaf disks or in epidermal peels with a focus on single guard
cells. These were often investigated in response to direct pathogen
contact or to purified PAMPs such as flg22, pep13, chitin,
or liposaccharides. The degree and patterns of calcium signal
changes were recorded over time employing genetically encoded
calcium indicator (GECI) systems such as aequorin, cameleon
YC3.6 or more recently GCaMP/R-GECO1 and their derived
variants (Blume et al., 2000; Kwaaitaal et al., 2011; Ranf et al.,
2011; Thor and Peiter, 2014; Keinath et al., 2015; DeFalco et al.,
2017; Hilleary et al., 2020; Li et al., 2021). Also, [Ca2+]cyt changes
have been employed as a signaling read-out in forward and
reverse genetic screens to dissect the roles of various genes in
plant defense (Ranf et al., 2011, 2012; Tian et al., 2019; Hilleary
et al., 2020; Thor et al., 2020). However, none of these systems

have been employed for imaging of systemic calcium responses
in the context of SAR. Such investigations need to be conducted
in adult plants competent to mount SAR, where a selected leaf
is treated by a local priming stimulus, and after a gap in time of
2 days, a distal leaf is exposed to a secondary stimulus, and the
consequence in the induced calcium response is recorded. The
challenge of such an approach is the fluorescence emission-based
calcium imaging, which in principle would have to cover an entire
“primed” leaf, but ideally at single cell resolution.

In plant cells, changes in the intracellular [Ca2+] are
decoded and transduced by calcium sensor proteins and their
interaction partners, such as CaMs, CMLs, CBL-CIPKs and
CPKs (McCormack et al., 2005; Batistič and Kudla, 2012; Aldon
et al., 2018; Kudla et al., 2018; Shi et al., 2018; Bredow and
Monaghan, 2019; Mohanta et al., 2019). Among these decoder
proteins is the 34 member-containing gene family of calcium-
dependent protein kinases (CPK in Arabidopsis), in which a
calcium sensor and protein kinase effector domain are united
within a single molecule (Liese and Romeis, 2013; Schulz et al.,
2013; Simeunovic et al., 2016; Yip Delormel and Boudsocq, 2019).
Several distinct CPK members have been characterized as positive
(CPKs 1,2,4,5,6,11) or negative (CPK28) regulators during the
local initiation of PAMP-induced immune responses, subsequent
to receptor-mediated pathogen recognition (Boudsocq et al.,
2010; Gao et al., 2013; Kadota et al., 2014; Monaghan et al.,
2014, 2015; Bredow et al., 2021). Among these, CPK5 is a key
signaling hub of immune signaling, which correlates with its
unique high affinity for calcium (Kd ∼100 nM) for enzyme
activation. This is near the resting [Ca2+]cyt of an un-challenged
plant cell, thus rendering the enzyme highly responsive to
small [Ca2+]cyt changes (Guerra et al., 2020). Besides its
function in local basal immunity, CPK5 was additionally shown
to contribute to a calcium- and NADPH-oxidase RBOHD-
mediated calcium/ROS-based auto-propagating mechanism that
is assumed to be crucial for the defense signal spread from local
to distal parts of a plant (Dubiella et al., 2013; Hake and Romeis,
2019). Furthermore, CPK5 is required for priming of a SARD1-
dependent systemic, long-term immune memory. Enhanced
CPK5 signaling in CPK5-YFP overexpressing lines leads to an
increased pathogen resistance status, with the plants displaying
constitutive priming, manifested by an increase in SARD1 gene
expression, high levels of the defense metabolite N-hydroxy
pipecolic acid (NHP), and of the phytohormone SA (Guerra
et al., 2020). When challenged with a priming infection by an
avirulent bacterial pathogen, and a second triggering infection
with a virulent pathogen, these plants exhibited enhanced SAR
with an almost complete block of pathogen proliferation (i.e., a
display of “super-priming”). In contrast, in a cpk5,cpk6 double
mutant line, the lack of CPK5 and its close CPK homolog
CPK6 lead to an increase in pathogen susceptibility, and when
subjected to a priming and triggering context, plants could
not be primed and were unable to mount SAR (Gao et al.,
2013; Guerra et al., 2020). CPK5 is a key positive regulator
in priming and promoting disease resistance. Here, we aim to
address if lines differing in their priming status also display
altered stimulus-induced [Ca2+]cyt changes upon a second
(triggering) stimulus.
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The GECI R-GECO1 has been successfully used in live
cell imaging to resolve PAMP-triggered calcium transients with
a high sensitivity but, due to its intensiometric fluorescence
readout, suffered from a [Ca2+]cyt calculation bias if GECI
levels differ between lines or during time course of experiments
(Keinath et al., 2015; Waadt et al., 2017). To investigate systemic
calcium responses and compare different lines in the context
of priming in adult plants over a time course of 2 days,
we chose an improved next-generation R-GECO1-mTurqouise
(RGmT) system, where the reporter additionally incorporates as
an internal mTurquoise (mT) fluorescent protein reference for
normalization and validation of the GECI amount throughout
the experiment (Waadt et al., 2017). The RGmT sensor was
introduced into the CPK5-overexpression line CPK5#7 and into
cpk5, rbohD, and fls2 mutants by crossing. We found that
under conditions of enhanced CPK5 signaling, flg22 induces
a more pronounced pattern into distinct peaks of [Ca2+]cyt
changes in local tissue. By contrast, in a systemic leaf, the overall
calcium pattern (signal amplitude, form, and timing) upon flg22
stimulation did not significantly differ between plants of different
priming status – either through pre-exposure to flg22 priming
stimulus, “super-priming” (through overexpressing CPK5) or
reduced priming (cpk5 background). These data indicate that
the systemic immune signaling causal to enhanced pathogen
resistance in SAR does not employ alterations in the early
[Ca2+]cyt change but relies on downstream defense processes.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Arabidopsis thaliana (Col-0) was used throughout this study.
Seeds were either sown on 0.5 x Murashige and Skoog (MS)
media containing 500 mg/L MES and vitamins (Duchefa,
Netherlands), 1% [w/v] sucrose, 0.8% [w/v] phytoagar (Duchefa),
pH 5.7 adjusted with KOH, or grown in soil. Seeds were stratified
for 2 days at 4◦C, and after transfer to individual pots or jiffy-7
soil (Jiffy Products, Norway), the plants were maintained under
short-day conditions (8 h day light, 150 µE, 20 – 24◦C; 60% RH).
Seedlings carrying constructs with fluorophores were screened
for fluorescence of the respective fluorescence protein using a
fluorescence stereo zoom microscope (Zeiss Axio Zoom.V16,
Zeiss, Germany) before the transfer to individual pots. Plants
were grown for a total of 6 weeks under short day condition. For
aequorin-based calcium assays, seeds were first surface sterilized
and stratified for 2 days at 4◦C and grown in liquid MS medium
for 8–10 days under long day conditions (16 h light, 8 h dark,
21◦C). Flg22 and an inactive flagellin variant from Agrobacterium
tumefaciens were synthesized on an in-house peptide synthesizer
and used as previously described (Ranf et al., 2011).

Generation of Transgenic Plants
For generating transgenic A. thaliana lines carrying R-GECO1-
mTurquoise (RGmT) Colombia-0 wildtype plants were
transformed by floral dip method. Plasmid pGGZ-RW253
(pUBQ10-N-decoy-R-GECO1-GSL-mTurquoise-tHSP18.2M-
HygR) was generated via GreenGate cloning using previously

published modules (Lampropoulos et al., 2013; Waadt et al.,
2017). Seeds of homozygous RGmT lines were harvested
and crossed with the mutants cpk5 (SAIL_657C06), rbohD
(SALK_070610), and fls2 (SALK_062054) and the CPK5-
overexpressing line CPK5#7 that have been described before
(Ranf et al., 2012; Dubiella et al., 2013). The generated lines
were selected for BASTA (phosphinothricin, glufosinate
ammonium) or hygromycin B resistance and fluorescence to
obtain independent transformants. For aequorin luminescence
measurements, wildtype plants expressing cytosolic p35S-
apoaequorin (pMAQ2) were used (Knight et al., 1991). Seeds
of a homozygous line were used to cross with the cpk5
(SAIL_657C06) and the CPK5-overexpressing line CPK5#7.

Calcium Measurements
R-GECO1 Based Calcium Imaging
Local Calcium Imaging
For sample preparation, 2 well chambered coverslips (IBIDI,
Germany) were coated with a thin layer of medical adhesive
(Ulrich Swiss, Switzerland). After 10 min of evaporation of
volatile medical adhesive components excess medical adhesive
was removed by washing three times with water. The leaf abaxial
epidermis was then glued to the medical adhesive layer, and magic
tape (Scotch, Germany) was taped to the adaxial epidermis and
pulled away. Mesophyll cell layers were then removed carefully by
affixing and pulling away with magic tape, leaving a single-layer
of lower epidermis behind that was attached to the IBIDI slide.
Immediately the coverslip was immersed with 1 ml plant imaging
buffer (10 mM MES-Tris pH 5.6, 5 mM KCl, 50 µM CaCl2)
and the samples were incubated for recovery in a phyto chamber
or growth cabinet overnight. The samples were incubated under
light at 22–24◦C for at least 1 h before imaging. Confocal laser
scanning microscopy was performed in bottom imaging mode
on a Zeiss LSM 780 or 880 system (Zeiss) using a 40 × water
immersion objective (LD C-APOCHROME, 40 x/1.1 Korr UV-
VIS M27; Zeiss) at a zoom factor of 0.8. 16-bit images were
acquired every 4 s with a frame size of 512 × 512 pixels and
a pinhole of 200. mTurquoise and R-GECO1 were excited with
458 or 561 nm, respectively and an emission-range between 470
and 540 nm for mTurquoise or 590 and 640 nm for R-GECO1
was used for detection. Gain was set to 850 and laser intensity
settings were adjusted individually to have comparable baseline
intensity values for each experiment. For flg22 treatments, 50-fold
and for ATP treatments 10-fold concentrations of the respective
agent were prepared in water and added in a 1:50 or 1:10 volume
ratio to the imaging chamber to avoid sample movement. The
image processing was performed using Fiji (Schindelin et al.,
2012). Images acquired in Zen Z2.3 SP1 FP3 black (Zeiss) were
imported as single channel files into Fiji and all following steps
were conducted for both fluorescence channels (R-GECO1 and
mTurquoise): Gaussian blur filter set to 1, conversion into 32-
bit, threshold adjustment (stack histogram) and selection of
an appropriate look-up table. For further analyses, 26 regions
of interest were selected and imported into the ROI manger.
ROI_1 included the whole image. For ROIs 2–26 the image of
512 × 512 pixel was divided into 25 ROIs of 102.4 × 102.4
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pixels each (Supplementary Figure 6A). The mean gray values
of these ROIs were used for further calculations. The RGmT ratio
was calculated via dividing R-GECO1 mean gray values over
mTurquoise mean gray values. The resulting RGmT emission
ratio was normalized to the mean of the 10 min (flg22) or 5 min
(ATP) base line ratio for each ROI before flg22 or ATP treatment
(R/R0). For each ROI the following parameters were analyzed:
maximal signal change after treatment; time until maximal signal
change; number of local maxima, and time between first two local
maxima. ROI_1 and the selected ROIS with the highest number of
local maxima were chosen for comparison of different genotypes.
The graphs of single ROIs were generated in R, using R Studio
(PBC, United States) incl. the packages tidyverse and reshape2
(Supplementary Figure 6; Wickham, 2007; Wickham et al., 2019;
R Core Team, 2021). Scripts for the ImageJ macro and analysis in
R are available on request.

Analysis of Resting [Ca2+]cyt Levels
We monitored R-GECO1 and mT fluorescence without stress
application in leaf disks to compare resting [Ca2+]cyt levels
between RGmT crosses. Leaf disks were sampled from 6-week-
old stable A. thaliana expression lines and transferred to 1 mL
distilled water. The sampled plants were transferred back to
prior growth conditions for an overnight recovery period to
minimize calcium signals induced by wounding. Leaf samples
were imaged with a fluorescence stereo zoom microscope
(Zeiss Axio Zoom.V16, Zeiss) using a 1 × objective and a
zoom factor of 10. Optical filters for mTurquoise (λexcitation
436/20 nm, λemission 480/40 nm) with an exposure time of 1.5 s
and for R-GECO1 (λexcitation 550/25 nm, λemission 605/70 nm)
exposure time of 1.8 s were used for fluorescence detection.
For image processing the following steps were conducted for
R-GECO1 and mT channels using Fiji: Gaussian blur filter
set to 1, conversion to 32 bit, threshold adjustment (stack
histogram) and the mean gray values of the whole image
area were used for calculating fluorescence intensities. Analyses
revealed higher signal intensities for R-GECO1 and mTurquoise
channels in the CPK5#7 crossed line, probably indicating a higher
protein abundance (Supplementary Figure 2A). However, the
denominator channel mTurquoise exhibited an even higher
increased fluorescence intensity compared to other RGmT
crosses than R-GECO1 channel, and as consequence, the
ratiometric readout fluorescenceR−GECO1/fluorescencemTurquoise
was decreased, indicating apparent lower resting [Ca2+]cyt levels.
To test if altered fluorescence ratios of R-GECO1/mTurquoise
may rely in a high sensor protein amount, we transiently
expressed and imaged increasing RGmT protein concentrations
in the same N. benthamania leaf. Transient expression in
Nicotiana benthamiana was conducted as described in Franz
et al. (2011). For N. benthamiana infiltration reciprocal dilutions
of A. tumefaciens cultures harboring RGmT plasmid and
A. tumefaciens cultures harboring a plasmid coding for the
N-terminal domain of slow anion channel 1 (SLAC1) (Geiger
et al., 2010) were mixed leading to OD600 concentration
gradients of RGmT A. tumefaciens cultures from 0.1 to 0.5. The
combinatory OD600 of A. tumefaciens cultures harboring RGmT
or SLAC1-NT were kept constant at 0.5. Leaf disks were harvest

3 days after transfection of N. benthamiana. Preparation and
imaging setup was identical to resting [Ca2+]cyt measurements
in A. thaliana.

Systemic Calcium Imaging
Three fully developed “local” leaves of 6-week-old plants were
infiltrated with either mock-treatment (10 mM MgCl2) or
200 nM flg22 as priming-stimulus using a needleless syringe.
After 48 h, a 4 mm diameter leaf disk was harvested from
a systemic leaf and fixed adaxial on a 8 well chambered
coverslip (IBIDI) using medical adhesive (Ulrich Swiss) and
immersed with distilled water. Selection of local and systemic
leaves as described in Dubiella et al. (2013). The sample was
transferred back to prior growth condition and incubated
overnight to minimize calcium signals induced by wounding.
The next day calcium imaging of the sample was conducted
on the upright fluorescence stereomicroscope Leica M165 FC
and M205 FA (Leica, Germany) using a 2x/0.04 objective and
a zoom factor of 0.83. During in planta imaging, single RGB
images (frame size of all images: 1920 × 1440 pixels) of the
R-GECO1 (λEx = 546/10 nm, λEm = 605/70 nm, exposure
time 1.5 s) and mTurquoise channels (λEm = 436/20 nm
λEm = 480/40 nm, exposure time 1.5 s) were acquired. In the
following experiment to enable, a high imaging frequency only
R-GECO1 was detected every 4 s over 42 min. This step was
required due to the technical limitations of the microscopes
fluorescence filter system. After 2 min 10-fold concentrations
of flg22 (200 nM final conc.) prepared in water was added in a
1:10 volume ratio to the imaging chamber as triggering-stimulus
to avoid sample movement. Finally, another single image with
both channels was recorded. Images acquired during the calcium
assay in LAS X (Leica application software) were imported into
Fiji and all following steps were conducted for the R-GECO1
channel: Conversion to 8-bit; brightness and contrast adjustment,
conversion into 32-bit, threshold adjustment (stack histogram)
and selection of 16 colors look-up table. R-GECO1 fluorescence
during the time course was normalized to R-GECO1 fluorescence
at 2 min (flg22-application; fluorescence time point t0 = F0)
via dividing each of the following created 600 images over
the R-GECO1 signal at time point t0 (F/F0) using the image
calculator tool in Fiji. The resulting mean gray value was used
for further calculations. The RGmT ratio in the beginning and
at the end of the assay was calculated via dividing R-GECO1
mean gray values by mTurquoise mean gray values using the
acquired raw data.

Aequorin-Based Calcium Assays
Individual 8–10-day-old seedlings were transferred into 96-
well plates, reconstituted with 10 µM coelenterazine and
cytosolic calcium measurements were performed as described
(Trempel et al., 2016). The calculation for intracellular calcium
concentrations is based on the previously described equation:
pCa = 0.332588 (−log k) + 5.5593 (where k = L/Lmax
i.e., luminescence counts per s/total remaining luminescence
counts) (Rentel and Knight, 2004). To facilitate visualization of
small differences, the values for relative calcium concentrations
(L/Lmax) are shown. An aequorin-expressing line in the rbohD
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background (Ranf et al., 2011) served as a control for the lack of
a second flg22-induced calcium peak.

Western Blotting and Immunodetection
Leaf material was homogenized in liquid nitrogen in a
laboratory mill and incubated with a 2:1 weight ratio of 2x
SDS sample buffer (60 mM Tris, pH 6.8; 100 mM DTT;
10% (v/v) glycerol; 2% (w/v) SDS; 0.004% (w/v) bromophenol
blue) for 5 min at 95◦C for subsequent SDS-Page western
blotting and immunodetection. For RGmT detection the
α-RFP (Rockland, United States) primary antibody was used.
For visualization a HRP-conjugated secondary α-rabbit-HRP
antibody (Sigma-Aldrich, United States) was applied. Blots
were developed using enhanced chemiluminescence (Thermo
Scientific, United States) detection.

Gene Expression Analyses (RT-qPCR)
RNA, isolated with Trizol reagent, was treated with DNAseI
(to remove any remaining DNA contamination) and cDNA
was synthesized using the RevertAid kit (Thermo Scientific).
For realtime quantitative PCR (qPCR), amplicons from
cDNA samples were analyzed on an Mx3005P qPCR system
(Agilent, United States) after amplification with Maxima SYBR
Green qPCR Master Mixes (Thermo Scientific). Relative gene
expression values of the genes-of-interest were calculated with
the comparative CT method (Schmittgen and Livak, 2008) using
the reference gene PP2A [AT1G13320; (Czechowski et al., 2005)].
Primers are listed in Supplementary Table 1.

RESULTS

Generation and Characterization of
R-GECO-mT Calcium Reporter Lines in
cpk5 and CPK5-OE Lines
To be able to investigate stimulus-induced [Ca2+]cyt changes
in response flg22 perception, we generated Ca2+ reporter lines
expressing R-GECO1-mTurquoise (RGmT) in cpk5 and CPK5-
OE (CPK5#7) backgrounds by crossing. Since all GECI lines
have been reported to exhibit some level of reduced growth
(Waadt et al., 2017), we first characterized the resulting RGmT
crosses for any obvious growth phenotype. In 6-week-old plants
grown under short day conditions, no obvious defects were
observed, except for the slightly smaller plants in the CPK5#7
overexpressing background and in rbohD. Both genotypes have
already been previously reported to be smaller compared to wild-
type (Torres et al., 2002; Dubiella et al., 2013). Importantly,
the smaller stature of CPK5#7 that was previously correlated
with a constitutively higher basal resistance compared to wild-
type (Dubiella et al., 2013), was not further aggravated through
introgression of the RGmT reporter (Figure 1A). Elevated basal
expression of the defense marker genes, PR1 and NHL10,
characteristic for enhanced CPK5 signaling and a constitutively
higher immune status in CPK5-OE, was also confirmed for
the CPK5#7xRGmT cross (Supplementary Figures 1A,B). In
addition, this leads to an enhanced flg22 responsiveness in the

CPK5#7 background as is evident from the expression pattern of
the flg22-responsive gene, FRK1 (Supplementary Figure 1C).

To verify comparable expression of the RGmT reporter, both
RT-qPCR and immunoblotting were performed where RGmT
was shown to be well expressed in all lines. However, the
CPK5#7xRGmT line expressed about threefold as much RGmT
compared to the parental line or RGmT crosses with cpk5, rbohD,
or fls2 (Supplementary Figures 2A,B). We next compared
resting [Ca2+]cyt based on R-GECO imaging normalized to
mT. Interestingly, an apparently lower FR−GECO1/FmT ratio
indicative of a lower [Ca2+]cyt was observed in CPK5#7xRGmT
(Supplementary Figure 2C). We thus addressed whether
differential levels of the RGmT reporter can distort the [Ca2+]cyt
calculation. Using the N. benthamiana transient expression
system, increasing protein levels were independently assessed for
R-GECO and mT emissions. The FR−GECO1/FmT ratio showed
that higher reporter levels indeed generated a lower estimation
of the apparent [Ca2+]cyt (Supplementary Figures 2D,E) (see
the section “Materials and Methods” for further details). This
must be taken into consideration for data interpretation of resting
[Ca2+]cyt when comparing lines of different genetic backgrounds.
Despite this caveat, the RGmT reporter is still one of the
most suitable systems for imaging stimulus-induced changes in
Ca2+ transients within systemic tissues of adult plants with
high sensitivity.

Enhanced CPK5 Signaling Triggers
Distinct Flg22-Induced Calcium
Signatures
Since both, basal and flg22-stimulated defense transcription
responses were elevated in the CPK5#7 plants (Supplementary
Figure 1C), we asked if Ca2+ signaling responsiveness is
also primed. We first focused on the Ca2+ response in local
tissues exposed to flg22 peptide as a trigger and compared the
different lines for stimulus-induced changes in Ca2+ transients
in epidermal cells of 6-week-old plants. Mathematical models
have previously predicted that Ca2+ responses reflect the number
of measured cells (Dodd et al., 2006), which was proven using
R-GECO1-based [Ca2+]cyt imaging (Keinath et al., 2015) where
the “oscillatory behavior” of the flg22 response was better
resolved by focusing on a specific region (i.e., encompassing
fewer cells) than an area covering more cells. Hence, we chose
similar experimental conditions, where we imaged a region-
of-interest (ROI_1) covering 47 ± 17 epidermal cells for a
global view and a second smaller ROI (designated as ROIS)
of 6 ± 2 cells for improved resolution of the Ca2+ dynamics
(Figure 1B, left panels). ROIS was selected to represent a sub-
region with more defined flg22-induced [Ca2+]cyt transients
(for details of ROI selection see Materials and Methods and
Supplementary Figure 6).

Overall, flg22-elicitation induces RGmT responses that are
predominantly of a monophasic shape for ROI_1 (i.e., the average
of multiple cells) over 40 min, and a more pronounced spiky
response for ROIS (Figure 1B, right panels, Supplementary
Movie 1). This Ca2+ response is specific since no flg22-
induced rise in [Ca2+]cyt was detected in the fls2 receptor
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FIGURE 1 | Flg22-induced calcium transients by R-GECO1-mT imaging in
epidermal cells of defense signaling mutant- and CPK5 overexpression lines.
(A) Pictures of 6-week-old plant rosettes of Col-0, line CPK5#7

(Continued)

FIGURE 1 | overexpressing CPK5-YFP, and plants carrying the ratiometric
Ca2+-sensor R-GECO1-mTurquoise (RGmT) generated by crossing with
CPK5#7, cpk5, rbohD, and fls2 as indicated. (B) Changes in the cytosolic
calcium concentration [Ca2+]cyt were visualized in response to 200 nM flg22
in epidermal peels of 6 week old plants (left panels) recorded using RGmT for
a time period of 40 min after flg22 treatment (right panels). Normalized
fluorescence ratios (R/R0) over time were calculated from the total acquired
image (Region of interest 1 (ROI_1) – left axis) and from a selected ROI (ROIS;
marked by small squares – right axis) that exhibited the highest number of
peaks. Graphs were normalized to mean RGmT ratio of the 10 min before
flg22 treatment. The 40 min time interval of recording after the 200 nM flg22
treatment is indicated by the underlying gray area (right panels). Microscopic
images represent R-GECO1 fluorescence intensities at the time point of the
maximal calcium signal change. Shown are representative experiments with
n ≥ 6 per analyzed line from three independent sets of plants. Scale bars in
panel (B) represent 100 µm and 4 cm in panel (A).

mutant (Figure 1B, bottom traces). Important to note is that
there is substantial variation in the Ca2+ response traces
between experiments (Supplementary Figure 3), possibly due
to asynchronous responses across the tissues, or variations in
the perception of the flg22 peptide in the imaged regions. For
instance, the lag time between flg22 application to the first
Ca2+ peak is 9.2 ± 5.8 min (n = 36). Here, the large variation
in onset of Ca2+ signaling may be attributable to technical
restrictions related to poor flg22 diffusion/accessibility in the
tight space between the leaf surface and the coverslip in the
bottom imaging mode. Interestingly, however, traces of the
overexpressing CPK5#7xRGmT line exhibited a distinct Ca2+

signature characterized by defined peaks and longer intervals
between the peaks (Figures 1B, 2 and Supplementary Movie 2).
To substantiate this perceived difference in [Ca2+]cyt changes
in CPK5#7xRGmT, we consolidated the data of all our RGmT
measurements into three parameters defining the Ca2+ signature:
(1) the number of peaks within the 40 min recording time,
(2) the maximum signal change (amplitude), and (3) the time
between the first and second peak. A distribution plot showed
a shift toward Ca2+ traces with an increased “number of
peaks” in the CPK5#7xRGmT line, which is consistent for
both ROI_1 and ROIS (Figures 2A,D). Additionally, the “time
between first and second peak” for ROIS (Figure 2F) was
significantly enhanced in the CPK5#7xRGmT line. Moreover,
a statistically significant difference between CPK5#7xRGmT
compared with cpk5xRGmT in the “maximal signal change” for
ROI_1 was observed (Figure 2B) with a higher amplitude in
the overexpressing and lower amplitude in the corresponding
mutant line, respectively. Notably, this apparent boost of the
signal amplitude in CPK5#7xRGmT or reduction in cpk5xRGmT
was not seen when ATP was used as a trigger (Supplementary
Figure 4A), so that this change in Ca2+ signature is elicitor
specific. In addition, we could rule out that a somewhat smaller
plant size as seen in the CPK5#7 and rbohD crosses may lead to
different number of cells being imaged within the ROI compared
to the other lines, which has been reported to possibly affect the
features of a Ca2+ response and confound data interpretation
(Dodd et al., 2006). However, no correlation between the flg22
response and the number of imaged cells per ROI_1 for the
different genotypes was observed (Supplementary Figure 4B).
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FIGURE 2 | Enhanced CPK5 signaling in line CPK5#7xRGmT results in a higher percentage of defined flg22-induced calcium concentration changes (peaks)
compared to the wild-type and to cpk5 or rbohD mutant lines. (A,D) Number of defined calcium concentration changes (peaks) after treatment with 200 nM flg22 in
analyzed genotypes. Shown is the fraction of measurements with the specified number of peaks in percentage. In panels (B,C,E,F) dot plots represent maximal
signal change and time between the first and second local maximum after flg22 treatment. Shown are means ± SD. Dots represent the individual measurements.
Different letters indicate significant differences between the analyzed genotypes [one-way ANOVA and Tukey’s multiple comparisons post hoc test (p ≤ 0.05)]. For
panels (A,B,D,E) 6–12 biological replicates per line from three independent sets of plants were analyzed. In panels (C,F) measurements with more than one peak
were selected [(C), RGmT, and cpk5xRGmT n = 5, CPK5#7xRGmT n = 10, rbohDxRGmT n = 3; (F), RGmT n = 7, cpk5xRGmT n = 10, CPK5#7xRGmT n = 11,
rbohDxRGmT n = 6]. Data from total acquired image (ROI_1) are shown in panels (A–C) and from selected ROIs (ROIS) in panels (D–F).

These data indicate that enhanced immune signaling through
overexpression of CPK5 triggers a distinct Ca2+ signature
in epidermal cells of 6-week-old plants. This can largely be
described as increasing number of well-defined peaks with
higher amplitude and an increased time-gap between first
and second peak.

We next compared the flg22-induced Ca2+ response using the
well-established aequorin-based assay, which has been shown to
typically produce a highly reproducible and quantitative response
in young seedlings. Therefore, the aequorin-expressing line,
pMAQ2, was crossed into cpk5 and CPK5#7. We observed the
typical flg22-induced Ca2+ change reported for the aequorin
system, which comprises of a rapid Ca2+increase with twin peaks
at 2–3 min and 5–6 min, respectively, and a gradual return
to resting [Ca2+]cyt within 20–25 min (Figure 3). The overall
calcium signature is thus very similar to the monophasic response
(ROI_1) recorded with RGmT (Figure 1B). When the previously
described aequorin-expressing rbohD line (Ranf et al., 2011)
was used as a control, the second flg22-induced [Ca2+]cyt peak
was not detected. This indicates that the second peak is ROS-
dependent. The profile of the calcium response (kinetics and
twin peak profile) is generally not affected by cpk5 mutation or
CPK5 overexpression. However, a significant reduction in the

Ca2+ amplitude in the CPK5#7 line and an increase in the cpk5
mutant was observed (Figure 3). Taken together, both aequorin
and RGmT imaging techniques report an altered Ca2+ signature
upon a local flg22 stimulus in the CPK5 overexpressing line.
These data imply that enhanced CPK5 signaling, correlating with
an increase in basal immunity status, display a different Ca2+

signature in response to a local PAMP trigger (such as flg22).

Establishment of an Experimental
Set-Up for Systemic Calcium Response
Analyses
We next investigated whether systemic tissues of plants pre-
treated with a first local flg22 trigger, and thus having been
“primed” toward an immune memory, display an altered Ca2+

response when exposed to a secondary flg22 trigger. As illustrated
in the scheme in Figure 4A, three leaves of 6-week-old plants
were infiltrated with 200 nM flg22 (or 10 mM MgCl2 as a mock
control). After 2 days incubation in a growth chamber, a disk
from a systemic leaf was sampled and mounted on a microscope
chamber slide, incubated again over-night in a growth cabinet for
recovery, and incubated for 1 h in light before the second flg22
treatment and RGmT-based calcium imaging. This modification
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FIGURE 3 | Aequorin-based Ca2+ measurements show altered flg22-induced
Ca2+ response in CPK5-overexpression and cpk5 mutant lines.
Flg22-induced calcium elevations were measured in 8-day-old seedlings.
pMAQ2 is the corresponding apoaequorin-expressing parental line used for
crosses into the indicated genotypes. Error bars denote standard error of the
mean (of the indicated number of seedlings). One-way-ANOVA and Dunnett’s
multiple comparisons post hoc test (p ≤ 0.05) indicate statistical significance
to pMAQ2 for all genotypes.

of the experimental setup was necessary because the preparation
of epidermal peels (as used in investigation of local responses,
Figure 1) can interfere with the priming stimulus in the systemic
tissues. The Ca2+ response was monitored for 2 min before and
40 min after the flg22 stimulus. We could verify that the mT
fluorescence monitored before and after measuring remained
uniform for all lines indicating constant RGmT protein level
throughout the analysis period. This allowed us to apply an
intensiometric quantification for R-GECO1, which simplified
data recording at high imaging frequencies. Figure 4B shows the
first 13 min after flg22 treatment of an exemplary imaging series,
depicting the flg22-induced [Ca2+]cyt increase beginning from
the edge of the leaf disk and moving toward the middle. This
inward movement [Ca2+]cyt signals may reflect a gradual access
of flg22 from the wounded leaf disk edges or perhaps cell-to-
cell Ca2+ propagation. Additionally, we also observed occasional
local spots of Ca2+ increase in some leaf disks but these were
not associated to a certain genotype or pre-treatment (see
Supplementary Movie 3). Nevertheless, the described system
is suitable for monitoring Ca2+ responses in systemic tissues
of primed plants.

Flg22-Induced Calcium Response
Patterns Are Independent of Priming
For comparing flg22-induced [Ca2+]cyt changes in systemic leaf
disks from primed vs. mock-treated plants, the pooled data

of all measurements are summarized in Figure 5, with the
individual Ca2+ traces of the 40 min recording period displayed
in Supplementary Figure 5. The whole area of the leaf disk
was quantified for a global overview of all cells within these
disks. We have decided for this global overview analyses, in
contrast to the analyses of selected smaller regions (as in Figure 1)
for two reasons: (1) we cannot predict which cell has been
“primed” for systemic immunity, and (2) it is known from our
RGmT measurements that the flg22-induced response may not
be synchronous (Figure 1 and Supplementary Figure 3).

In general, no significant differences were discernible that
could be associated with the priming status of the plants, neither
in wild type (Figure 5A), nor in the cpk5 mutant (Figure 5B) or
CPK5-OE lines (Figure 5C). More specifically, the quantitative
data did not reveal any differences in the Ca2+ response in
terms of the overall Ca2+ signature (Figures 5A–C), maximal
fluorescence signal chance (Figure 5D) or peak response time
(i.e., time after flg22 application until maximal signal chance)
(Figure 5E). When assessing the basal resting [Ca2+]cyt, we
observed an apparent lower value in CPK5#7 similar to what we
have seen before in a local flg22 response in the absence of a
pre-treatment. We therefore re-evaluated the resting [Ca2+]cyt
based on R-GECO1 imaging normalized to mT (fluorescence
ratio) within our priming experiments and found that the resting
[Ca2+]cyt was with statistical significance lower in the CPK5-
overexpressing line CPK5#7xRGmT compared to the wild-type
or cpk5 carrying RGmT (Figure 5F), irrespectively of a priming
or a mock pre-treatment.

Taking our data from wild-type subjected to a priming and
triggering treatment together with those obtained with the CPK5-
OE line, which is already constitutively “primed” and capable
of stimulus-dependent “super-priming,” these data indicate that
the immune status of a plant has no (detectable) influence on a
stimulus-induced Ca2+ response downstream of flg22 perception
in systemic tissues under the imposed conditions.

DISCUSSION

“Priming” in plant immunity describes the state of a plant, in
which a preceding primary infection by microbial pathogens
induced an immune memory, so that the plant is prepared when
challenged by subsequent infection. In SAR, the ability to display
faster and stronger defense reactions is correlated with molecular
changes of the plant characterized by distinct patterns of systemic
defense signaling molecules (NHP), phytohormone levels (SA,
JA) and expression of key transcription factors (SARD1) (Truman
et al., 2007; Chen et al., 2018; Hartmann et al., 2018; Sun
et al., 2018, 2020; Kim et al., 2020; Lim et al., 2020; Schnake
et al., 2020; Vlot et al., 2021). Furthermore, these characteristic
responses are often interconnected with each other in auto-
activation and -synthesis loops. Our objective in this work is to
investigate whether the intracellular Ca2+ change in response to
a direct secondary, triggering stimulus is likewise altered as a
consequence of its integration in such a systemic activation loop.

In the context of priming, we quantified the Ca2+ response
in leaf disks of adult plants upon a triggering flg22 stimulus
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FIGURE 4 | Experimental scheme and imaging analysis of flg22 triggering stimulus-induced calcium changes in systemic leaf tissue disks. (A) Experimental scheme
of treatment, sampling, and imaging to assess mock-triggered vs. primed-triggered calcium concentration changes. Plants were grown under short day conditions
(light periods from 9 am – 5 pm marked in yellow, dark periods marked in blue) over 6 weeks. Three local leaves were infiltrated with mock (10 mM MgCl2) or 200 nM
flg22 as priming-stimulus (0 dpi). After 2 days post infection (dpi), a systemic leave sample was fixed into a chamber slide. The next morning, samples were
transferred to light, 1 h before the measurement, to ensure that each sample received equal amounts of light. In the beginning and at the end of the assay (purple
timeline) one single image of each, R-GECO1 and mTurquoise channel was acquired. The R-GECO1 fluorescence was recorded for 42 min with a frame rate of 1
image/4 s. After 2 min, 200 nM flg22 as triggering-stimulus was added to the sample (t0). (B) Representative image series of flg22 induced calcium concentration
changes in a systemic leaf disk. Shown is an example of a mock-triggered sample. The 7 images indicate the increase of [Ca2+]cyt in false-colors (16 colors LUT)
relative to the time point of flg22 application during the Ca2+-Assay (t0).

from plants that had or had not experienced a previous flg22
priming treatment. The leaf disk approach bears the opportunity
to average signals over a multitude (>n 103) of cells. While
the aequorin-based system (Ranf et al., 2011) can similarly
provide global Ca2+ response of multiple cells simultaneously,
it is not suitable for our study because the seedlings commonly
used are too young to mount a systemic immune memory.
Furthermore, concurrent observation of multiple cells is of
particular importance in SAR because it is unpredictable which
and how many cells have undergone systemic priming and built
an immune memory upon the pre-treatment 2 days earlier.

Only these cells would give rise to priming-dependent [Ca2+]
changes. To exclude that our chosen imaging approach may
average out the individual cell responses if only a minority
of cells react differently after priming, we included the CPK5-
OE line in our studies. This line is characterized through
molecular markers to be constitutively primed (Supplementary
Figure 1) and capable of “super-priming” responses (Guerra
et al., 2020). Additionally, averaging of single cell Ca2+

signals led successfully to the characterization of priming in
response to cold stress (Knight et al., 1996; Knight and Knight,
2000).
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FIGURE 5 | Defense priming has no significant effect on stimulus-induced calcium concentration changes in systemic tissue. (A–C) Flg22-induced calcium changes
were recorded in systemic leaf disks 2 days after pre-treatment via infiltration of local leaves with 10 mM MgCl2 (mock) or 200 nM flg22 (primed). As triggering
stimulus in the systemic leaf, 200 nM flg22 was applied, leading to the samples mock – triggered (T) or primed – triggered (PT), respectively. For detailed
experimental setup, see Figure 4. As a control, inactive flg22 from A. tumefaciens was used as triggering stimulus with local mock pre-treatment. Data are averages
of R-GECO1 fluorescence over time normalized to R-GECO1 fluorescence intensity at time point of flg22 application (t0). Error bars denote mean ± SD for n
replicates (RGmT nT = 7, nPT = 7, ninactiveflg22 = 3, (B), cpk5xRGmT nT = 6, nPT = 6 and (C), CPK5#7xRGmT nT = 9, nPT = 9). Parameters of flg22 induced calcium
changes of measurements shown in panels (A–C) are analyzed in panels (D–F). In panel (D) dot plots represent the amplitude of the maximal signal change, while in
panel (E) the correlating time points of maximum signal after flg22 treatment are shown. Dots represent the individual measurements. Shown are means ± SD of 6 –
9 biological replicates per line for each treatment (T vs. PT). (F) Apparent resting FR−GECO1/FmT in systemic leaf disks of local mock (10 mM MgCl2, control = C) or
200 nM flg22 (primed = P) treated plants. Shown are means ± SD (n ≥ 6). Dots represent the individual measurements. Two-way ANOVA and Bonferroni post test
(p ≤ 0.05) reveals no significant differences between the pre-treatments but significant differences between genotypes indicated by different letters.

By contrast, when comparing a local induced Ca2+ response
in different genetic knock-out lines, Ca2+ changes can be traced
in a few or even a single cell resolution, assuming that all cells
are equally affected in a defined genetic background. Indeed,
when selecting ROIs that cover only few cells, we observed
distinct traces that displayed an oscillating Ca2+ pattern for
approximately 30 min reminiscent to what has been reported by
Keinath et al. (2015). While these distinct peaks became evident
in selected ROIs covering single to few cells, an oscillatory Ca2+

pattern was less pronounced in the whole ROI image. These
data validate the suitability of the R-GECO1 calcium sensor

for investigating calcium changes in 6-week-old plants, required
for priming experiments, and for the recording in epidermal
peels combined with a bottom imaging setup. Under conditions
of enhanced CPK5 signaling, more distinct Ca2+ peaks with
slightly higher amplitudes could be recorded compared to the
wild type and even more so compared to cpk5 and rbohd mutants
(Figures 1, 2 and Supplementary Figure 3). We have validated
for the whole imaging ROI that the Ca2+ pattern was not
affected by the number of imaged (47± 17) cells (Supplementary
Figure 4). Therefore, the more distinct Ca2+ transients observed
in the CPK5-OE lines may have a biological cause directly related
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to CPK5 activity itself. CPK5 is known to activate NADPH-
oxidase RBOHD, and a Ca2+- and ROS-mediated defense signal
propagation has been discussed (Dubiella et al., 2013). Our data
suggest that upon flg22 stimulation, enhanced CPK5 activity
leads to a reinforcement and local synchronization of Ca2+

signaling in these lines. Such interpretation is corroborated by the
video depicting distinct (local) waves of Ca2+ signals induced by
flg22 in the CPK5-OE line compared to RGmT (Supplementary
Movies 1, 2). It is tempting to speculate that this reinforced
Ca2+ signature mediated by CPK5 is not only part of the signal
propagation to neighboring cells but is likewise responsible in
each single cell to translate the Ca2+ signature into downstream
defense reactions. In this context, it is worth to note that the
whole image ROI shows fewer distinct peaks in the rbohd and
cpk5 mutants (Figure 2A). Likewise, the selected ROIs single
cell traces also show fewer peaks in cpk5 (Figure 2D). In
support of the proposed amplificatory role of CPK5 in signal
propagation (Dubiella et al., 2013; Guerra et al., 2020), statistically
significant increase of the peak intervals is seen in the CPK5-
OE (Figure 2F). Taken together, these data indicate that CPK5
may synchronize Ca2+ signaling within and between cells, and
the absence of CPK5 leads to a reduction in both. RBOHD,
which is biochemically phosphorylated and activated by CPK5,
is required for the Ca2+ signal propagation to neighboring
cells. This interpretation is consistent with our previous data
showing that RBOHD and CPK5 constitute an auto-activating
mechanism for defense signal spread to distal tissues (Dubiella
et al., 2013). Here, we provide evidence that RBOHD contributes
to the CPK5-reinforced synchronization for intercellular Ca2+

signal propagation.
How can the “oscillatory” Ca2+ signature in the CPK5-OE

line be explained mechanistically? One possible explanation is a
more coordinated in- and efflux of cytosolic Ca2+, i.e., activation
of the Ca2+ efflux and inhibition of Ca2+ influx. Thus, CPK5
may contribute to the [Ca2+]cyt homeostasis by promoting
Ca2+ efflux out of the cytosol. Corresponding Ca2+ efflux
transporters may be found among Ca2+/H+ exchangers (CAX)
driven by electrochemical gradients of H+ and autoinhibited
P-type II Ca2+-ATPases (ACA) (Sanders et al., 2002; Kudla
et al., 2010; Bose et al., 2011; Demidchik et al., 2018). ACAs
have been described in immune signaling (Boursiac et al., 2010;
Frei dit Frey et al., 2012). Interestingly, the analysis of aca4
aca11 mutants lacking ACA type of Ca2+ pumps revealed an
increase in basal and flg22-induced rise in [Ca2+]cyt (Hilleary
et al., 2020). P-type II ACA- Ca2+-pumps are regulated by
protein phosphorylation and some members are characterized by
an N-terminal autoinhibition domain (Giacometti et al., 2012;
Costa et al., 2017). Similarly, PAMP-responsive Ca2+-permeable
channels are known to be regulated by phosphorylation (Tian
et al., 2019; Thor et al., 2020). Whether such Ca2+ pumps
and Ca2+ channels can be directly phosphorylated by CPK5
and contribute to the encoding of oscillations remains to be
shown. It is noteworthy, in this context, that CPK5 displays a
rather low Kd for Ca2+ of ∼100 nM for kinase activity. For
other CDPKs auto-phosphorylation at its N-terminal domain can
shift substrate accessibility (Ito et al., 2010, 2017, 2018). Such a

mechanism could provide an additional layer in CPK5 regulation.
Both mechanisms may render CPK5 as a suitable Ca2+ sensor-
kinase effector-protein to reinforce “oscillatory” Ca2+ changes,
which possibly include a Ca2+-induced Ca2+ release mechanism
(Choi et al., 2014).

A natural follow-up question is: “How are the “more
pronounced and defined number of Ca2+ peaks” observed in the
CPK5-OE line decoded into enhanced basal defense responses
within a cell?” Based on what is known from plant immune
signaling in pattern-triggered, effector-triggered or systemic
immunity in SAR, this will involve the myriad of different Ca2+-
sensor, -relay and -effector proteins, such as CaM/CML, kinases
or CAMTA transcription factors (Kudla et al., 2010). In the
absence of additional evidence, one may further speculate that the
decoding of Ca2+ transients into downstream defense responses
may depend on the “counting” of encoded cytosolic (and/or
nuclear) Ca2+ changes (up and downs in [Ca2+]) rather than a
monophasic Ca2+ change.

In summary, our data provide evidence for an altered CPK5-
dependent Ca2+ signature upon flg22 treatment in local tissues.
This is consistent with CPK5 function as a predominant Ca2+

sensor and effector in pattern-triggered immunity mediating
Ca2+ signal synchronization and defense response activation.
However, the flg22-induced [Ca2+]cyt increase in systemic cells
are not different in the various priming context. Therefore, at
least according to our experimental system, rapid Ca2+ changes
in systemic tissues do not reflect the plant memory of “having
been primed.”
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