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Editorial on the Research Topic

Mixotrophic, Secondary Heterotrophic, and Parasitic Algae

Two biochemical processes built on electron transport chains stand behind the success of life on
Earth: photosynthesis, which transforms the energy of sunlight into the energy of chemical bonds
in primarymetabolites, and heterotrophic respiration of this organic energy. This bioenergetic cycle
has enabled the evolution of the extraordinary living complexity of the planet.

Photosynthesis originated in eukaryotes via several independent acquisitions of the
photosynthetic machinery through the endosymbioses of phototrophic symbionts, giving rise
to “plastids” (also referred to as chloroplasts). The symbionts were either cyanobacteria in
primary endosymbioses or eukaryotic algae in complex endosymbioses (Figure 1) (Keeling, 2013;
Archibald, 2015; Oborník, 2019). The repeated endosymbiotic acquisition of plastids has led to a
rich diversity of photosynthetic plants and eukaryotic algae found in most environments on Earth
with access to light.

Despite the advantage of phototrophy, many lineages retain heterotrophic abilities resulting
in mixotrophy. Mixotrophy is a combination of photosynthesis and heterotrophic lifestyles via
osmo-heterotrophy, phagotrophic predation, or even parasitism (Oborník, 2020). Mixotrophic
organisms perform heterotrophy to acquire organic carbon or scarce and growth-limiting nutrients
(e.g., nitrogen) from their external prey or host. Mixotrophy may re-evolve in species that were
previously only phototrophs, with beautiful examples of carnivory (Venus flytraps, sundews,
pitcher plants) celebrated within the plants (Fukushima et al., 2017; Fleischmann et al., 2018;
Palfalvi et al., 2020). A further form of mixotrophy is found within some obligately heterotrophic
eukaryotes (e.g., Paramecium ciliates, lichens, and corals), which support long-term photosynthetic
symbionts as a source of primary metabolites and may provide us with clues into the cellular
innovations underpinning the endosymbiotic acquisition of the chloroplast (Johnson et al., 2006;
Dorrell and Howe, 2012; Stoecker et al., 2017).

Despite its benefits to primary production, photosynthesis is not necessarily retained in all
plastid-containing organisms forever. Mixotrophs are particularly prone to lose photosynthesis,
which has been documented for many lineages of algae with primary and complex plastids. “Algae”
therefore encompass a wide range of trophic modes, ranging from pure phototrophs, through
mixotrophs with different dependences on external carbon, to obligatory phagotrophs and parasites
unable to live without a host. Although it is an extremely rare event, the plastid can be completely
lost. Such cases are found exclusively among parasites; e.g., in the apicomplexan parasitesGregarina
niphandroides (Toso and Omoto, 2007) and Cryptosporidium parvum (Zhu et al., 2000), and the
parasitic dinoflagellate Hematodinium sp. (Gornik et al., 2015) (Figure 1). In other obligately
heterotrophic algae and plants, the plastid may be retained as a membrane-bound compartment
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FIGURE 1 | The trophic evolution of algae. Algae became phototrophic through endosymbioses with cyanobacteria (A,B; in Archaeplastida and Paulinella), or
eukaryotic algae (D,E; Cryptophyta a Chlorarachniophyta, both retaining the nucleomorph; F, algae with complex plastids surrounded by three membranes, such as

Euglenophyta and Dinophyta, or algae with four membranes plastid envelops, Ochrophyta, Apicomplexa including chromerids, Haptophyta, and Dinophyta with

higher-order plastids). Photoautotrophic algae with primary plastids (B) lost photosynthesis in some lineages (e.g., Helicosporidium, Prototheca, Polytomella),
becoming secondarily heterotrophic (C). Photosynthesis was more frequently lost from algae with complex plastids, particularly from alveolates (G). Plastids were

further completely lost from apicomplexan (Cryptosporidium) and dinoflagellate (Hematodinium) (H) parasitic lineages, with essential compounds typically produced by

plastids, instead scavenged from the host. Particular species studied in the Research Topic are indicated in the figure. *Dinothrix spp. is a dinotom with a much more

complex cell structure: it hosts the diatom endosymbiont, which still retains the nucleus, mitochondrion, and the diatom complex plastid. In addition to that, dinotoms

contain a relic non-photosynthetic dinoflagellate plastid.

with associated metabolic functions but no endogenous DNA
(Molina et al., 2014; Smith and Lee, 2014; Dorrell et al., 2019).

This Research Topic presents eight articles exploring the

diverse taxonomy and metabolic potential of mixotrophic,
secondary heterotrophic, and parasitic algae. Three articles
focus on algae with non-photosynthetic plastids (Bakula et al.;
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Kayama et al.; Kim et al.). A range of metabolic functions have
been assigned to non-photosynthetic plastids across the tree
of life (Hadariová et al., 2018). For example, the apicoplast,
the relic plastid in apicomplexan parasites, synthesizes heme,
isoprenoids, fatty acids, and Fe-S clusters (Ralph et al., 2004),
whereas the osmo-heterotrophic euglenophyte Euglena longa
and the dictyochophyte Pteridomonas danica retain a plastid-
encoded gene for the large subunit of RuBisCo (rbcL), which
may modulate the redox balance of the cell via a linearized
Calvin-Benson pathway (Sekiguchi et al., 2002; Füssy et al., 2020).

The articles presented highlight the diversity of parasitic
plastid genomes, even between closely related species within
individual genera. Kayama et al. present plastomes from other
Pteridomonas species to P. danica that lack the rbcL gene and
encode only housekeeping genes; and present transcriptomic
evidence that the sequenced Pteridomonas spp. plastids are
responsible for heme synthesis, glycolysis, and pentose phosphate
pathways but do not perform Fe-S cluster assembly (Kayama
et al.). Bakuła et al. describe the plastid and mitochondrial
genomes of the non-photosynthetic green alga Prototheca
wickerhamii, a causative agent of human protothecosis (Lass-
Flörl and Mayr, 2007), alongside related non-photosynthetic
species. The analysis suggests that independent losses of
photosynthesis may underpin different plastid genome contents
across Prototheca (Bakuła et al.). Finally, Kim et al. sequence
and analyse the genomes of non-photosynthetic plastids from
Spumella-like chrysophytes, tiny heterotrophic bacterivorous
flagellates. Similar to the sequenced plastid genome of the
related Spumella NIES-1846, the genomes contain housekeeping
genes but still show important lineage-specific differences
(Dorrell et al., 2019; Kim et al.). The diverse trends of
non-photosynthetic metabolism uncovered in all three studies
may reflect the phylogenetic diversity of each lineage, with
both Prototheca and Spumella known to be polyphyletic
(Bakuła et al.; Dorrell et al., 2019).

Three further articles focus on mixotrophic algae (Dal Bo
et al.; Dani et al.; Villanova et al.). Dal Bo et al. investigate
the mixotrophic growth of Microchloropsis gaditana on
different organic compounds, showing through a transcription
activator-like effector nuclease (TALE-N) knockout of the
mitochondrial alternative oxidase AOX1 that this mixotrophic
growth depends primarily on mitochondrial respiration
rather than photosynthetic activity (Dal Bo et al.). Dani
et al. report that the mixotrophic species Chlorella vulgaris
can emit isoprene in phototrophic conditions under light
and also when grown as a pure heterotroph on glucose in
complete darkness. The dark-associated function of isoprene
is unknown and may contribute to anomalies in estimates
of oceanic isoprene concentrations (Dani et al.). Villanova
et al. present an experimental model of biomass production
in the diatom Phaeodactylum tricornutum, to optimize the
composition of cultivation media and light intensity to boost
biomass quantity and quality. These approaches aim to overcome
growth-limiting effects of nitrogen starvation, which is usually
used to induce algal lipid production (Villanova et al.). All

three articles underline that even species typically thought of as
“photosynthetic” may engage in mixotrophy in the wild, and that
this potential may be harnessed to improve biomass production
for aquacultures and sustainable biotechnologies (Lowrey et al.,
2015; Saad et al., 2019).

The final two articles focus on algal phylogeny and
taxonomy (Yamada et al.; Jeong et al.): Yamada et al.
investigate the phylogenetic positions of the dinotoms
(dinoflagellates with diatom endosymbionts) Dinothrix
paradoxa and Gymnodinium quadrilobatum. The authors
show through sequencing and analysis of 18S rRNA and
rbcL genes that these species are close relatives of another
dinotom, Galeidinium rugatum, despite their distinctive
morphologies and life cycles, with flagella-lacking cells as
the predominant stage, and isolate and formally describe
two new dinotom species, Dinothrix phymatodea and
Dinothrix pseudoparadoxa (Yamada et al.). Finally, Jeong
et al. show unprecedented insights into the phylogeny
and diversity of Spumella-like chrysophytes by the use of
nuclear rDNA data, revealing high molecular diversity despite
morphologically convergent forms suitable for heterotrophy
(Jeong et al.). Both studies underline the importance of
molecular methods, alongside classical isolation and taxonomy,
for untangling the complicated origins and diversifications of
heterotrophic algae.

The collection of articles in the Research Topic
illustrates the frequent losses of photosynthesis across
the eukaryotes; and what molecular innovations allow
algae to live as mixotrophs, heterotrophs, and parasites.
The metabolic functions associated with these transitions
transform our understanding of the roles of algae in
supporting the planetary ecosystem and in the evolutionary
plasticity of eukaryotes. Anything that can be used by life
is used.
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