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Mucilage is a gelatinous high-molecular-weight substance produced by almost all
plants, serving numerous functions for plant and soil. To date, research has mainly
focused on hydraulic and physical functions of mucilage in the rhizosphere. Studies
on the relevance of mucilage as a microbial habitat are scarce. Extracellular polymeric
substances (EPS) are similarly gelatinous high-molecular-weight substances produced
by microorganisms. EPS support the establishment of microbial assemblages in soils,
mainly through providing a moist environment, a protective barrier, and serving as
carbon and nutrient sources. We propose that mucilage shares physical and chemical
properties with EPS, functioning similarly as a biofilm matrix covering a large extent of the
rhizosphere. Our analyses found no evidence of consistent differences in viscosity and
surface tension between EPS and mucilage, these being important physical properties.
With regard to chemical composition, polysaccharide, protein, neutral monosaccharide,
and uronic acid composition also showed no consistent differences between these
biogels. Our analyses and literature review suggest that all major functions known
for EPS and required for biofilm formation are also provided by mucilage, offering
a protected habitat optimized for nutrient mobilization. Mucilage enables high rhizo-
microbial abundance and activity by functioning as carbon and nutrient source. We
suggest that the role of mucilage as a biofilm matrix has been underestimated, and
should be considered in conceptual models of the rhizosphere.

Keywords: biofilm, EPS, microorganism, mucilage, rhizosphere, root

INTRODUCTION

Plant roots are the major organs responsible for water and nutrient uptake from soil.
Methodological difficulties in sampling belowground traits result in a much more detailed
understanding of above- than belowground plant ecophysiology (Oburger and Schmidt, 2016;
McCormack et al., 2017). Roots exude a diverse set of compounds into the rhizosphere, including
sugars, amino acids, and secondary metabolites, which regulate rhizosphere functions (Walker
et al., 2003; Dutta et al., 2013). Mucilage is a gelatinous high-molecular-weight substance produced
by almost all plants, comprising approximately half of root exudates (Chaboud, 1983). The mucilage
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backbone is built of polysaccharides, but proteins, minerals, and
lipids are also part of the biogel (Nazari, 2021). So far, mucilage
has mainly been recognized to have hydraulic, mechanical, and
physical functions in the rhizosphere. For instance, mucilage
increases the rhizosphere water content, improves plant water
uptake under drought, reduces friction against the growing root,
and stabilizes soil aggregates (Young, 1995; Czarnes et al., 2000;
Iijima et al., 2003; Carminati et al., 2010; Ahmed et al., 2015).
However, only a few studies have investigated the relevance
of mucilage for microbial processes. For example, it has been
indicated that microorganisms utilize mucilage as an energy
source and habitat (Mary et al., 1993; Ahmed et al., 2018a,b). It
has been reported that maize (Zea mays L.) crown root mucilage
harbors nitrogen-fixing bacteria, which contribute to the fixation
of a considerable amount of the plant’s nitrogen requirement
(Van Deynze et al., 2018; Amicucci et al., 2019). Mucilage likely
plays a central role in mediating plant-microbe interactions in the
rhizosphere, but the magnitude of its relevance remains unclear.

Microorganisms can live planktonically, in suspended
aggregates, and in attached biofilms (Flemming and Wuertz,
2019). Extracellular polymeric substances (EPS) produced by
microorganisms are a three-dimensional matrix accounting
for more than 90% of the dry mass of microbial biofilms
(Flemming and Wingender, 2010). EPS are mainly composed
of polysaccharides, but also contain proteins, nucleic acids,
lipids, and minerals (Flemming and Wingender, 2010). EPS
are formed upon the attachment of microorganisms to surfaces
in order to establish biofilms (Fong and Yildiz, 2015; Jamal
et al., 2018). It has been shown that EPS enhance the liquid
phase viscosity compared to water and create an interconnected
network (Stoodley et al., 2002; Flemming and Wingender,
2010; Volk et al., 2016). EPS improve soil water retention and
liquid-phase connectivity (Rosenzweig et al., 2012; Benard
et al., 2019), due to uronic acid-Ca2+ binding in their chemical
structure (Aravamudhan et al., 2014). Alginate is an anionic
polysaccharide found in EPS, consisting of only uronic acids
such as glucuronic acid, galacturonic acid, and mannuronic
acid (Sutherland, 2001; Van Hullebusch et al., 2004; Flemming
and Wingender, 2010). Alginate participates in the formation
of microcolonies at the beginning of the biofilm formation
process, increases EPS hydration, and assists in trapping cations
such as Ca2+, Zn2+, Cd2+, and Ni2+ (Wuertz et al., 2001; Van
Hullebusch et al., 2004; Flemming and Wingender, 2010).

EPS constitute an important part of the carbon pool in
soils that plays key roles in soil microbial ecology (Flemming
and Wingender, 2010). However, a main function of EPS is to
protect microorganisms against environmental stresses such as
drought, acidity, or salinity (Kumar et al., 2007; Vardharajula
and Sk, 2014). EPS improve soil moisture status in microbial
hotspots like the rhizosphere (Kuzyakov and Blagodatskaya,
2015). EPS are capable of absorbing 15–20 times more water
than their dry weight and thus strongly increase the water
holding capacity of soils (Chenu, 1993; Adessi et al., 2018).
EPS strongly influence interactions between bacteria and their
viruses (bacteriophages) by binding virus particles and slowing
down their movement (Vidakovic et al., 2018). EPS also facilitate
chemical communications between microorganisms within the

biofilm, leading to increased microbial turnover and element
cycling (Joubert et al., 2006; Flemming et al., 2007). Furthermore,
EPS in soil can enhance the exchange of genetic material
between microorganisms, trap nutrients, protect microorganisms
against antimicrobial factors, and act as a carbon source for
microorganisms, but they are also a key component involved in
soil aggregate formation and thus in the formation of further soil
micro-habitats (Costa et al., 2018).

Plants may produce mucilage not merely for improving
hydraulic, mechanical, and physical functions in the rhizosphere,
but potentially also to function as a biofilm matrix and support
a rapid establishment of dense symbiont microbial communities
and high microbial activity in the rhizosphere. Mucilage has a
high potential to function as a biofilm matrix by providing a moist
environment, protective barrier, and carbon and nutrient source
for microbial communities. This study analyzes and reviews
existing evidence to determine whether plant mucilage and
microbial EPS have comparable physical and chemical properties,
leading to analogous biophysical and biochemical features. This
indicates similar microbial habitat properties of both biogels.
To support this perspective, viscosity and surface tension as
important physical properties and total polysaccharide, total
protein, neutral monosaccharide, and uronic acid proportions
as important chemical properties of mucilage and EPS are
compared. Furthermore, to assess its quantitative relevance, we
estimate the extent of the “mucilage biofilm” along the root axis,
including bioenergetic viewpoints of microbial advantages living
in a “plant-provided” biofilm and discuss the implications of this
biofilm matrix as a key prerequisite for the high microbial activity
in the rhizosphere.

METHODOLOGY

Data Collection and Standardization
In total, 376 datasets were collected from 83 related
papers published between 1974 and 2019. The online tool
WebPlotDigitizer was used to extract data from the charts1.
The viscosity and surface tension data were considered
physical indices for the comparison of mucilage and EPS.
To evaluate chemical properties of mucilage and EPS, total
polysaccharide, total protein, neutral monosaccharide, and
uronic acid proportions were compared. The investigated neutral
monosaccharides included galactose, fucose, glucose, mannose,
arabinose, rhamnose, and xylose, and uronic acids included
glucuronic and galacturonic acid.

We considered some criteria for selection of the data. For
the physical properties, the viscosity values had been measured
at a solute concentration of 0.5 mg ml−1, shear rate of 0.5 s−1,
and temperature of 20–25◦C, and the surface tension values had
been measured at a solute concentration of 0.5 mg ml−1 and
temperature of 20–25◦C. Only root and seed mucilage, which has
rhizospheric relevance, were considered. All data related to the
chemical properties were derived from pure mucilage and EPS.
Data not fulfilling these criteria were excluded. SI units were used

1https://automeris.io/WebPlotDigitizer
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to standardize the viscosity (Pa s) and surface tension (N m−1)
values. A list of plant and microbial species that produced the
biogel, accompanied by their references, has been provided in
Supplementary Material 1.

Calculations of Spatial and Temporal
Distribution of Mucilage and Bacterial
Cell Abundances Around Growing Roots
To calculate the mucilage spatial and temporal distribution
at a given exudation rate around a growing model root, we
assumed a root-soil system with the following parameters: Soil
porosity = 50%; crown root diameter = 3.3 mm (unpublished
data of maize); mucilage exudation rate = 1.41 mg dry weight per
day and root tip (unpublished data of the same maize plants);
maximum hydration ratio of mucilage = 425:1 (wet mass: dry
mass, unpublished data of the same maize plants), assuming
a 39% water saturation upon exudation at the root tip and a
rapid saturation to 100% within 6 h (Sealey et al., 1995); root
elongation rate = 30 mm per day (Schmidt et al., 2013); and a
maximum decomposition rate of the mucilage = 50% in 7 days
(Ahmed et al., 2018a). Note that the diffusion of mucilage was
neglected. Detailed equations and explanations of the mucilage
spatial and temporal distribution model have been provided in
Supplementary Material 2.

Considering bacteria as main mucilage consumers (Ahmed
et al., 2018b), bacterial abundance in the rhizosphere was
estimated. The mucilage available to bacterial degradation
(Cin) was assumed to produce bacterial biomass under carbon
limitation. The growth and biomass yield of several rhizosphere
bacteria using glucose are comparable to the growth achieved
by mucilage as a sole carbon source (Knee et al., 2001). Here,
we considered the carbohydrate fraction of mucilage obtained in
this study (fc = 0.77) to be available for bacterial consumption
(considering the mass-fraction of carbon for simple sugars; e.g.,
glucose wc = 0.4). The upper bound on mucilage-derived carbon
(Cin) that can be allocated to produce bacterial cell biomass (MB)
was obtained by considering an average carbon use efficiency
(CUE) for a range of carbon sources (MB = fc ×wc ×CUE×Cin).
We assumed that maintenance costs were negligible and all cell
biomass could be produced within a day. For the calculation
presented here, we used an average CUE of 0.6 based on genome-
scale metabolic predictions (Saifuddin et al., 2019). To estimate
the number of cells (Ncell) that could feed on degraded mucilage,
we divided the cell biomass carbon by an average bacterial
cell carbon mass (Mcell) of 10 fg C per cell (Ncell = MB/Mcell)
(Khachikyan et al., 2019).

Furthermore, we estimated the EPS produced (MEPS) by a
given bacterial abundance by using an EPS yield per unit of
cellular biomass (MEPS = MB × YEPS with YEPS = 10 mg g−1)
(Shene et al., 2008). Our model calculation assumed that all
cells produce EPS.

Statistical Analyses
All data were analyzed by IBM SPSS Statistics for Windows,
version 25 (IBM Corp., Armonk, NY, United States). The
data were tested for homogeneity of variance and normality

by Levene’s test and Shapiro–Wilk test, respectively, and
transformed logarithmically if they did not fulfill these
prerequisites. The Independent Samples t-test was used to
test for significant differences between mucilage and EPS in
terms of the investigated properties at the significance level of
0.05. All charts were designed using SigmaPlot 14.0 (Systat, San
José, CA, United States).

RESULTS

Viscosity and Surface Tension
The viscosity of mucilage and EPS did not differ significantly
(Figure 1A). Average viscosities for mucilage and EPS were
0.27 Pa s and 0.43 Pa s, respectively. There was also no significant
difference between the surface tension of mucilage and EPS
(Figure 1B). Average surface tensions for mucilage and EPS were
0.053 N m−1 and 0.051 N m−1, respectively.

Total Polysaccharide and Protein
Polysaccharides were the major chemical constituent of both
biogels (77.4% and 74.6% for mucilage and EPS, respectively)
and did not significantly differ between them (Figure 2A).
The same was true for the total protein proportions of both
biogels, being on average 5.8% and 7.7% in mucilage and EPS,
respectively (Figure 2B).

Neutral Monosaccharide and Uronic
Acid Composition
Six out of nine studied monomers of the biogels’ polysaccharide
backbone did not significantly differ in proportion between
mucilage and EPS, namely galactose (mucilage = 23.8%;
EPS = 22.8%), fucose (13.9%; 9.9%), glucose (16.7%; 28.7%),
rhamnose (12.4%; 15%), xylose (13.4%; 8.1%), and glucuronic
acid (8%; 12.8%). In contrast, mannose (3.9%; 18.6%) was
significantly higher in EPS than in mucilage (nearly fivefold
higher), whereas arabinose (16.3%; 4.8%) and galacturonic acid
(27.3%; 7.8%) had higher proportions (3.4-fold and 3.5-fold
higher, respectively) in mucilage than in EPS (Figures 3A–I).

Spatial and Temporal Organization of
Mucilage Around Growing Roots
Based on simplified assumptions of root growth, exudation rate,
decomposition rate, hydration ratio, and mucilage expansion
into the soil, a simple model for the size and extent of a
potential “mucilage biofilm” was developed (Figure 4). The axial
rhizosphere extent directly at the root tip was 1.12 mm with
a mucilage content of 1.89 mg g−1 soil. The kinetic of water
saturation and swelling is rapid with an average 6 h until the
mucilage of root tips reaches its constant volume. Therefore,
9.2 mm above the root tip, the mucilage is fully hydrated,
reaching its final radial extent of 2.05 mm. By swelling, the
content decreases to 0.8 mg g−1 soil, a value hardly changing
by decomposition along the daily grown segment of 30 mm.
Assuming a linear decomposition rate of 50% in 7 days, mucilage
is only half decayed at a distance 21 cm above the root tip.
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FIGURE 1 | Comparison of mucilage and EPS viscosity (A) and surface tension (B), using Independent Samples t-test at the significance level of 0.05. The dashed
and solid lines on each box indicate the arithmetic mean and median, respectively. The box defines the 25th and 75th percentiles. NS, non-significant; N, number of
data points. The viscosity values had been measured at a solute concentration of 0.5 mg ml−1, shear rate of 0.5 s−1, and temperature of 20–25◦C, and the surface
tension values had been measured at a solute concentration of 0.5 mg ml−1 and temperature of 20–25◦C. Viscosity of water at 25◦C = 0.00089 Pa s; Surface
tension of water at 25◦C = 0.072 N m−1.

FIGURE 2 | Comparison of mucilage and EPS total polysaccharide (A) and total protein (B), using Independent Samples t-test at the significance level of 0.05. The
dashed and solid lines on each box indicate the arithmetic mean and median, respectively. The box defines the 25th and 75th percentiles. NS, non-significant; N,
number of data points.

Microbial Abundance and Extracellular
Polymeric Substances Production in the
Mucilage Matrix
We consider that two different zones around the root receive
degradable carbon at varying rates: (i) the zone within 1.65 mm
from the root tip where the estimated total mucilage C exudation
rate (Cin_rc) is 5 µg d−1, and (ii) the 28.35 mm root zone
above the root tip (grown within 1 day) where the mucilage
concentration is reduced by gel swelling and degradation
(Cinez = 122 µg d−1). The high C concentrations at the root
tip allow for a maximum number of bacterial cells growing on
the basis of mucilage C consumption, which is in the order of
109 cells per day. In contrast, lower C concentrations at the
28.35 mm zone above the root tip resulted in only 3 × 1010

bacterial cells grown per day. Despite its 25 times larger volume,
the 28.35 mm root above the root tip can only host around 10

times more bacterial cells than the small soil volume surrounding
the 1.65 mm of the root tip. The bacterial cells could potentially
produce around 0.01 µg EPS per day at the root tip and 0.29 µg
EPS per day within the 28.35 mm zone of daily growth. Assuming
the above given mucilage exudation of 1.41 mg d−1 and root tip
with a 50% decomposition in 7 days (i.e., 7.1% decomposition
per day), 101 µg of mucilage covering the root gets decomposed
and replaced by 0.3 µg of EPS per day, assuming mucilage as
the sole C source. This leads to a relatively small but continuous
modification and thinning of the biofilm along the root axis.

DISCUSSION

Although individual plant and microbial species and their
physiological conditions crucially affect the biogels produced,
our study revealed an overall high degree of similarity in the
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FIGURE 3 | Comparison of the proportion of mucilage and EPS galactose (A), fucose (B), glucose (C), rhamnose (D), xylose (E), glucuronic acid (F), mannose (G),
arabinose (H), and galacturonic acid (I), using Independent Samples at the significance level of 0.05. The dashed and solid lines on each box indicate the arithmetic
mean and median, respectively. The box defines the 25th and 75th percentiles. NS and * indicate a non-significant and significant difference, respectively. N: number
of data points.

physical and chemical properties of EPS and mucilage. The
selected physical and chemical properties control many of the
beneficial attributes of EPS, such as the maintenance of hydraulic
connectivity, the formation of aggregates or the reduction of
enzyme, carbon and nutrient losses. Therefore, the similarity in
these physical and chemical properties suggests that mucilage can
also function as a biofilm matrix.

Although our study found wide variability among the
investigated plant and microbial species, the physical and
chemical properties of EPS and mucilage varied only within a
moderate range. Hence, both biogels offer similar soil microbial
habitats, shaped by vegetation type and soil conditions. In
the following, we discuss how the physical and chemical
characteristics of mucilage provide three substantial prerequisites
for biofilm formation: a moist environment, a protective barrier,
and carbon and nutrient provision (Flemming and Wingender,
2010; Velmourougane et al., 2017).

Biogels as Microbial Habitats
Our results demonstrate that microbial EPS have high viscosity
and low surface tension. These two key physical properties of

EPS can play important roles in the formation and persistence
of microbial biofilms in soils (Lieleg et al., 2011; Benard et al.,
2019). High viscosity and low surface tension facilitate adhesion
and cohesion of biofilms to mineral or organic surfaces in the soil,
bridging microbial cells for biofilm development, and aggregating
soil particles (Flemming and Wingender, 2010; Costa et al.,
2018). The physical properties of EPS imply several protecting
functions against antibiotics, disinfectants, heavy metals, and
even against harmful effects of oxygen, by reducing the diffusion
of these compounds toward the microbial cells (Flemming
and Wingender, 2010). Furthermore, the enhanced soil water
retention and liquid-phase connectivity provided by EPS protect
microorganisms against drought but also against deep frost (Bore
et al., 2017; Benard et al., 2019). Last but not least, viscos EPS
can protect against grazing protozoa by adhering to their cilia
and blocking their feeding apparatus (Liu and Buskey, 2000;
Flemming and Wingender, 2010).

The results of our analyses showed that the viscosity and
surface tension of mucilage and EPS are not significantly
different. The similarity of mucilage to EPS in terms of these
physical characteristics implies that mucilage can provide
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FIGURE 4 | Spatial and temporal distribution of mucilage around a root segment grown within 1 day (= 30 mm) [(A) along the root; (B) lateral; (C) at the root tip].
Mucilage-affected soil is indicated by yellow to blue color along the root and by yellow to green at the root tip, reflecting the increasing radial extent by swelling as
well as the decreasing content of mucilage by decomposition.

a biofilm-like habitat to support the life and survival of
microorganisms in soils, specifically in the rhizosphere.
Numerous studies have confirmed that mucilage provides a
moist environment and protective barrier against abiotic and
biotic stresses. Mucilage increases the water content of the
rhizosphere, connects soil particles, increases the soil liquid-
phase connectivity, and facilitates root water uptake under
drought, due to its high viscosity and low surface tension
(Young, 1995; Carminati et al., 2010; Ahmed et al., 2015; Benard
et al., 2019; Zarebanadkouki et al., 2019). Mucilage absorbs
27–589 times more water than its dry weight (McCully and
Boyer, 1997; Huang and Gutterman, 1999; Capitani et al., 2013;
Nazari et al., 2020), which is considerably higher than the amount
of water absorbed by a similar quantity of EPS. The binding
of negatively charged uronic acids to Ca2+ governs hydration-
dehydration dynamics in biogels (Dean et al., 2007; North et al.,
2014; Brax et al., 2019). The results of our study indicate rather
similar proportions of glucuronic acid in mucilage and EPS but
significantly higher galacturonic acid in mucilage. This high

proportion of galacturonic acid in mucilage is likely one of
the major reasons for the higher water absorption capacity of
mucilage than EPS. In addition to hydraulic functions, mucilage
is cohesive and adhesive to surfaces and therefore, similar to
EPS, improves soil aggregation in the rhizosphere through
strengthening bonds between soil particles (Czarnes et al., 2000).

Mucilage ameliorates heavy metals toxicity in the rhizosphere,
protects roots against salinity, and functions as a barrier against
harmful effects of oxygen (Horst, 1995; Zarebanadkouki et al.,
2019). It also traps pathogenic and herbivorous insects and
protects microbial symbionts (Haughn and Western, 2012;
Galloway et al., 2020). Moreover, an 8 mm layer of crude
maize mucilage maintained very low oxygen levels (below 5%)
(Van Deynze et al., 2018), which is very similar to oxygen
levels in bacterial biofilms (Wessel et al., 2014; Wang et al.,
2017). The low oxygen levels in the mucilage can support
a microaerobic environment but can also promote crucial
functions like nitrogenase activity (Van Deynze et al., 2018;
Bennett et al., 2020). It can be deduced that mucilage, like EPS,
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provides a moist environment and a protective barrier for soil
microorganisms in order to form biofilms.

Association of Chemical Composition
and Biogel Functions
Generally, polysaccharides and proteins are major components
of EPS and mucilage (Chaboud and Rougier, 1991; Wingender
et al., 2001; Flemming and Wingender, 2010; Lembre et al., 2012;
Behbahani et al., 2017; Pandit et al., 2020), and our analyses reveal
a similar proportional contribution of these components to both
biogels. The combination of EPS polysaccharides and proteins
is important for the formation, organization, and stability of
the biofilm (Flemming and Wingender, 2010; Fong and Yildiz,
2015; Limoli et al., 2015; Shukla and Rao, 2017). Both substance
classes likely jointly contribute to the high viscosity of EPS and
mucilage and to their low surface tension (Benard et al., 2019).
Our analyses also show similar proportions of polysaccharides
and proteins, with similar viscosities and surface tensions.
This suggests that mucilage can also act in biofilm formation,
organization, and stability.

Furthermore, EPS and mucilage have other common
properties such as enzymes, extracellular DNA (eDNA), and
lipids. However, the proportion of these constituents is low
(Nazari, 2021). EPS contain enzymes and eDNA produced
by microorganisms inhabiting the biofilm. EPS enzymes can
degrade matrix biopolymers such as polysaccharides and
proteins in order to provide microorganisms with carbon
and energy, a process occurring in EPS mainly under carbon
starvation (Costa et al., 2018). This can become a central process
of microbial C supply in a plant-provided mucilage biofilm
matrix. In the case of the mucilage biofilm, biogel-producing and
consuming organisms are different and the “biofilm producer”
is an autotrophic organism generally not suffering from low C
supply. Like EPS, mucilage was also shown to contain several
enzyme classes active in the degradation of major mucilage
polysaccharides, releasing monosaccharides such as galactose,
mannose, fucose, xylose, and arabinose (Pozzo et al., 2018;
Voiniciuc et al., 2018; Bennett et al., 2020), supporting the
concept of mucilage as a microbial C source.

Extracellular polymeric substances eDNA increases the
structural stability of biofilms, functions as an important agent
of microbial aggregation, and acts as an intercellular connector
(Molin and Tolker-Nielsen, 2003; Yang et al., 2007; Flemming
and Wingender, 2010). Mucilage also comprises eDNA that
increases the stability of mucilage and protects root tips against
pathogenic infection (Wen et al., 2009; Hawes et al., 2016;
Ropitaux et al., 2020).

Lipids play a part in the hydrophobicity of EPS and help
microorganisms adhere to waxy, plastic (e.g., Teflon), and pyrite
surfaces (Neu and Poralla, 1988; Neu et al., 1992). Similar
functions of lipids were described for mucilage, e.g., they
control mucilage hydrophobicity and thus the interaction of
mucilage with soil solids, water, and transported ions (Read
et al., 2003; Chen and Arye, 2017; Nazari, 2021). Mucilage turns
hydrophobic upon drying (Ahmed et al., 2016), a process that
causes water repellency in the rhizosphere and prevents hydraulic

failure in the rhizosphere under drought (Carminati, 2013;
Zickenrott et al., 2016). This may be an important mechanism
protecting the rhizosphere microbiome from drought effects
and maintaining their activity even under water limitation
(Ahmed et al., 2018a).

Our study also analyzed the monomer composition of
polysaccharides, which are the quantitatively dominant fraction
in both biogels. Our results indicated that EPS and mucilage
have similar proportions of galactose, fucose, glucose, rhamnose,
xylose, and glucuronic acid, while the proportions of mannose,
arabinose, and galacturonic acid significantly differed. EPS
galactose, fucose, and arabinose play an important role in the
enhancement, dispersion, and stability of biofilms (Imberty
et al., 2004; Tielker et al., 2005; Diggle et al., 2006; Johansson
et al., 2008; Byrd et al., 2009; Ma et al., 2009). Pel and Psl
are two major polysaccharides generally present in EPS, which
play essential roles in biofilm establishment (Vu et al., 2009;
Flemming and Wingender, 2010). Pel is mainly composed of
glucose, while Psl is rich in mannose, glucose and rhamnose
(Byrd et al., 2009). Thus, the higher mannose content of
EPS than mucilage can presumably be explained by the
higher proportion of Psl in soil biofilms. Pel and Psl are
also necessary for the formation, adherence, and attachment
of biofilms to abiotic and biotic surfaces and also for the
stability of biofilm architecture (Byrd et al., 2009; Ma et al.,
2009; Franklin et al., 2011; Zhurina et al., 2014). Pel and
Psl often display high functional redundancy, which suggests
that the relative proportions of glucose vs. mannose and
rhamnose have rather minor functional implications in EPS
(Colvin et al., 2011). This suggests that also variations in these
sugars between mucilage and EPS may be of minor functional
relevance. In contrast to Psl and Pel, alginate is an anionic
polysaccharide of EPS responsible for trapping of cations, a
decisive process in biofilm establishment. For instance, calcium
functions like a bridge between alginate molecules, leading to
thick and compact biofilms with enhanced mechanical stability
(Körstgens et al., 2001). The significantly higher proportion
of galacturonic acid in mucilage than in EPS suggests that
the alginate-related features of EPS are more pronounced and
essential in mucilage. Most relevant here is the subsequent
increase in extrinsic Ca2+ bridges in mucilage, which connect
the uronic acids and therefore increase the mucilage stability
(Moore and Fondren, 1988; Brax et al., 2019). Thus, this study
suggests that the mechanical stability of biogels may differ as
a result of the higher galacturonic acid proportion in mucilage
than in EPS.

Moreover, uronic acids, being present in the form of their
carboxylate anions in soils, may also function as buffering agents
in the rhizosphere under extremely acidic conditions. Although
carboxylate anions (oxalate, citrate, malate, etc.) released at the
zone of maximal root exudation also buffer the proton exudation
from the root, these compounds are of low molecular weight and
are consequently rapidly decomposed. In contrast, galacturonic
acid with a logarithmic acid dissociation constant (pKa) of 3.5
might therefore more efficiently and over a larger zone of the
mucilage-covered rhizosphere fulfill this buffering function, at
least in very acidic soils. This might be a mechanism contributing
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to avoiding a very strong rhizosphere acidification and thus a
limitation of microbial life and activity (Malik et al., 2018).

In summary, we found a remarkably similar chemical
composition of mucilage and EPS, which supports the contention
that mucilage can function as a biofilm matrix. Although the
individual role of each chemical mucilage component and its
impact on microbial life has not yet been unraveled, it is unlikely
that the limited deviation in chemical composition between
mucilage and EPS would significantly diminish the potential of
mucilage to function as a biofilm matrix.

Mucilage as a Nutrient and Carbon
Source for Microorganisms
All EPS components are a potential source of nutrients
(Flemming and Wingender, 2010). Since EPS and mucilage
share many compositional similarities, mucilage can also be
decomposed and consumed by microorganisms. Enzymatic
release of highly abundant sugars in mucilage such as galactose,
fucose, and arabinose can feed microorganisms residing in the
mucilage (Bennett et al., 2020). The presence of endogenous
glycosyl hydrolase enzymes in mucilage, which release the
terminal fucose and arabinose residues, further augments this
claim (Pozzo et al., 2018). Other studies also reported that
microorganisms utilize mucilage as an energy source (Mary
et al., 1993; Ahmed et al., 2018a,b; Veelen et al., 2018), with
average times of 7–15 days for the consumption of 50% of
the mucilage carbon added to the soil (Ahmed et al., 2018a).
The high protein content of mucilage leads to a C:N ratio of
approximately 16:1 (Mary et al., 1993), which is approximately
double the C:N ratio of microorganisms (between 7:1 and 8.6:1)
(Cleveland and Liptzin, 2007; Xu et al., 2013). Thus, considering
that 50% of the C is utilized via catabolism and oxidized to
gain energy (Manzoni et al., 2012), mucilage has the ideal
composition to function as a sole energy, C and N source
for microorganisms. Consequently, microorganisms solely need
to be supplied with mineral nutrients (P, K, Ca, Mg, etc.)—a
common interest shared with their mucilage-providing plants.
Our analyses strongly support the claim that mucilage is used
as a source of nutrients covering the C and N demand of
microorganisms and enabling high growth rates in the mucilage-
covered rhizosphere. It is important to note that mucilage
can provide a moist environment and protective barrier for
EPS-producing but also for non-EPS-producing rhizosphere
microorganisms, which can attach to solid surfaces but without
formation of biofilms. Similarly, a study in bulk soil revealed
that non-EPS-producing microorganisms can also benefit from
the biogel produced by EPS-producing microorganisms (Chew
and Yang, 2017). However, EPS production can consume large
proportions of the available energy of a microbial cell. It can
thus be considered as a bioenergetically “expensive” process for
microorganisms. Plants, as photoautotrophs, are (partly) in the
soil and yet have access to photosynthetically fixed C and thus
can invest in extracellular biogels more easily than heterotrophic
microorganisms. Mucilage can synergistically support EPS-
producing as well as non-EPS-producing microorganisms in
the rhizosphere and even overlapping biogel production of

microbial EPS and mucilage can occur (Carminati and Vetterlein,
2013). This mucilage-EPS interaction can further boost the
formation and modification of biofilms in the rhizosphere with
advantageous functions for microorganisms and the plant.

Spatial and Temporal Implications of
Mucilage Matrix for Microbial Life
Around the Root
Holz et al. (2018) measured the mucilage distribution of
approximately 1 mm around the root. Considering the influence
of porosity on the radial extent of mucilage, our estimated
maximum mucilage distribution of 2.05 mm around the root is
well in agreement with the measured mucilage distribution of
Holz et al. (2018). The quantitative relevance of mucilage as a
biofilm matrix is defined by the radial and axial extent around
the root, and the latter is largely defined by its decomposition
kinetics. The maximal decomposition of 50% mucilage within
7 days of incubation under optimal conditions (Ahmed et al.,
2018a), assuming a linear decomposition rate, suggests that only
7.14% of the daily mucilage production gets decomposed per
day. Therefore, the axial extent of mucilage can reach several
decimeters above the root tip without substantial thinning of the
mucilage by decomposition (Figure 5).

The contribution of EPS to the root-covering biogel was
already suggested by Carminati and Vetterlein (2013), but
experimental or analytical studies quantifying the contribution of
both biofilm matrices to the rhizosphere biofilm are still lacking.
Our estimation of maximal EPS production capacity suggests that
only a minor proportion (0.3%) of the decomposed mucilage
is replaced by EPS, assuming mucilage as the sole C source
(Figure 5). However, the proportion of EPS producers as well
as their EPS production rate might be underestimated by our
input data derived from pure culture isolates, and excluding
fungal EPS. However, especially in the root elongation zone, a few
millimeters above the root tip, the exudation of low-molecular-
weight substances provides an additional carbon source to be
potentially utilized for EPS production (Yang and Crowley, 2000;
Sasse et al., 2018; Rüger et al., 2021). Averaging the scarce
data available on root exudation rates or amounts suggest low-
molecular-weight exudate quantities in the range of 2.4× 10−7 g
d−1 cm−1 (Oburger et al., 2013; Gunina and Yakov, 2015). Even
assuming all of this C is readily available for microbial utilization
(Sasse et al., 2018; Rüger et al., 2021), this daily release of C is
still a magnitude lower than the C provided by the mucilage
decomposition (8 × 10−6 g C d−1 cm−1). This suggests that
low-molecular-weight exudates may play a minor role as C
substrate for EPS production, but more importantly, that their
function as a microbial C source might have been overestimated
compared to mucilage C.

An approximation of the maximal number of bacterial cells
growing on the decomposed mucilage C resulted in 1010 cells per
cm3 mucilage-affected rhizosphere volume, or 109 bacterial cells
per g mucilage-affected rhizosphere soil (Figure 5). Although
only a limited number of studies have quantified absolute
bacterial abundance in the rhizosphere, most of them through
gene copy numbers gained by qPCR, 109 is a realistic number
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FIGURE 5 | Spatial and temporal model of mucilage biofilm and its bacterial abundance and EPS production along a maize root segment grown within 1 day
(= 30 mm). Mucilage content decreases away from the root tip due to bacterial decomposition. Mucilage extent increases away from the root tip due to swelling.

for bacterial abundance (Zhu et al., 2016). This suggests that even
under the assumption of only moderate decomposition (∼7% per
day), mucilage C can function as a major C source supporting a
high bacterial abundance in the rhizosphere, potentially without

losing its function as a biofilm matrix for several decimeters
along the root axis.

The production of EPS requires cellular resources and may
be costly for microorganisms (Jayathilake et al., 2017). Hence,
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their fitness and competitiveness are reduced compared to non-
EPS-forming microorganisms if no further environmental stress
provides EPS producers with ecological advantage (Vardharajula
and Sk, 2014). Therefore, an EPS-based biofilm with the
extent of the mucilage-covered rhizosphere volume is impossible
for heterotrophic EPS producers in soils. Compared to EPS
production by heterotrophic soil microorganisms, mucilage
as a biogel does not exhaust soil C sources, but is formed
from the photosynthetically fixed C of the autotrophic plant.
Considering the bioeconomy of the plant-microbe system, the
direct production of the biogel by the autotrophic organism is
more efficient than exuding low-molecular-weight C resources
for heterotrophic organisms, of which only a minor proportion
will be invested in biogel biosynthesis. Consequently, plant
mucilage production is an efficient C investment in the context of
the whole plant-soil continuum providing (a) a stable habitat for
the establishment of the rhizo-microbial community; and (b) a
major C source supporting the observed abundances of microbial
cells in the rhizosphere zone (Sasse et al., 2018; Rüger et al.,
2021). Both properties are “services” provided by the autotrophic
plant to boost the rhizosphere microbiome toward high cell
densities and highly active microorganisms. Consequently, the
microbiological features of the immediate rhizosphere can be
linked to mucilage, providing a biofilm matrix for the rhizosphere
microbiome. Nonetheless, EPS are likely still important in the
rhizosphere, because rhizosphere bacteria capable of producing
EPS are associated with better root colonization (Costa et al.,
2018; Knights et al., 2021).

CONCLUSION

Our analyses revealed similar chemical composition and physical
properties in plant mucilage and microbial EPS. This suggests
that many functions of mucilage and EPS are comparable and
consequently supports the potential of plant mucilage to function
as a biofilm matrix similar to EPS. However, in contrast to an
EPS-based biofilm, the high rhizosphere C investment required
to form the biofilm matrix does not need to be covered by
heterotrophic soil microorganisms. Instead, this functional C
is provided directly by the autotrophic plant. As autotrophic
organisms with substantially higher biomass, the proportional
investment of plants in mucilage C is magnitudes lower than
for an EPS-producing microbial colony that produce their

own biofilm matrix. Therefore, mucilage exudation may be a
major contributor to soil biogels, forming large volumes of
stable microbial habitats around plant roots. The rhizosphere
microbiome is protected against environmental stresses like
drought besides being supplied with moderately available C
that supports a high rhizosphere microbial abundance. The
rather slow decomposition of mucilage compared to the rapid
growth of roots leads to axial root segments in the decimeter
range surrounded by this unique mucilage-based microhabitat.
Therefore, we recommend a reconsideration of mucilage not only
as a physical matrix that affects rhizosphere hydraulics, but as a
biofilm matrix that supports the rhizosphere microbiome and its
resistance to environmental stresses.
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