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In the past and present, human activities have been involved in triggering global
warming, causing drought stresses that affect animals and plants. Plants are more
defenseless against drought stress; and therefore, plant development and productive
output are decreased. To decrease the effect of drought stress on plants, it is crucial
to establish a plant feedback mechanism of resistance to drought. The drought reflex
mechanisms include the physical stature physiology and biochemical, cellular, and
molecular-based processes. Briefly, improving the root system, leaf structure, osmotic-
balance, comparative water contents and stomatal adjustment are considered as most
prominent features against drought resistance in crop plants. In addition, the signal
transduction pathway and reactive clearance of oxygen are crucial mechanisms for
coping with drought stress via calcium and phytohormones such as abscisic acid,
salicylic acid, jasmonic acid, auxin, gibberellin, ethylene, brassinosteroids and peptide
molecules. Furthermore, microorganisms, such as fungal and bacterial organisms, play
a vital role in increasing resistance against drought stress in plants. The number of
characteristic loci, transgenic methods and the application of exogenous substances
[nitric oxide, (C28H48O6) 24-epibrassinolide, proline, and glycine betaine] are also
equally important for enhancing the drought resistance of plants. In a nutshell, the
current review will mainly focus on the role of phytohormones and related mechanisms
involved in drought tolerance in various crop plants.

Keywords: phytohormones, drought stress, microorganisms, tolerance mechanisms, genes

INTRODUCTION

Plants are influenced by both biotic and abiotic factors, and in response to these factors, numerous
internal changes occur in plants. These biotic and abiotic factors influence plant growth and
development along with productivity. Biotic factors are interactions of organisms with plants that
have both positive and negative effects. Positive effects may have a beneficial influence on plant
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growth. Negative effects may include allelopathy, herbivory
influence, or pathogen infection in plants (Ciura and Kruk,
2018). Plant defense systems with various chemical compounds
help to resist those negative effects (Li et al., 2019; Riaz et al.,
2021), as described briefly in Figure 1. Plant cell walls are
proteins (antimicrobial) and secondary metabolites reservoirs
with a highly weighted molecular layer of polysaccharides that
resist pathogen physical penetration and growth.

Notably, the innate immune defense system of plants limits
pathogen expansion through PTI (pattern-triggered immunity),
PRRs (pattern recognition receptors), and ETI (effector-triggered
immunity). ETI forms lesions on plant surfaces that restrict
the further movement of pathogens from the infection site
(Nishiyama et al., 2013). These defense systems activate a league
of defense responses against pathogens in plant infection sites
(Teixeira et al., 2019). In response to biotic and abiotic factors,
plants have growth regulatory hormones that play a crucial
function (Ciura and Kruk, 2018; Ali et al., 2021a). Plant growth
hormones, primarily known as phytohormones, are organic,
natural and small lipophilic compounds. Phytohormones play
a significant role in response to different biotic and abiotic
stresses along with the coordination and regulation among
most developmental and growth functions in plants (Jiang
and Asami, 2018). Also, they regulate cellular processes and
respond very effectively to external stimuli and changing
environmental conditions, even at very low concentrations
(Nowicka et al., 2018).

Phytohormones with low molecular weights are more
frequently adopted defense mechanisms of plants to receive
external stimuli precisely against biotic stresses (Cao et al., 2011;
Parveen et al., 2020). Based on phytohormone physiological
functions and chemical structures, there were only a few
regulatory hormones, namely jasmonic acid (JA), salicylic
acid (SA), ethylene (ET), auxins (IAA), gibberellins (GAs),
abscisic acid (ABA), and cytokinins (CKs), which have been
more often studied by plant biologists (Dubois et al., 2018).
However, presently, brassinosteroids (BRs), jasmonic acid-based
compounds, cytokinins based compounds (zeatin), salicylic acid-
based compounds, strigolactones, and peptides are also being
investigated as plant hormones (Hu et al., 2020). Based on the
chemical structures of some specific groups, phytohormones
are further subdivided (Péret et al., 2013) and are responsible
for the formation of roots and tropism and elongation. Seed
and bud dormancy occurs by inhibiting phytohormones that
resist abiotic stresses, and growth becomes active after the
environment becomes favorable for growth (Liu J. et al.,
2019). Various derivatives of all phytohormones are present,
such as transport, activated or inactivated storage forms,
degradation metabolites and, most importantly, sugar or amino
acid conjugates. The biological effects of many plant growth
hormones are the result of the combined induction of more
than one hormone. Free hormones show similar biological
activity to these derivatives; therefore, a precise concentration
is required for maximum effect estimations (Zhao et al., 2019),
and the estimation of the effect is shown in Figure 2. Many
techniques have been used for phytohormone separation to
study their effects more deeply. First, thin layer chromatography

techniques (Stec et al., 2016) and high-performance liquid
chromatography techniques are most commonly used for plant
growth hormone separation (Floková et al., 2014). GC-MS-
based methods are used to profile and study phytohormone
profiles in citrus species, particularly in Citrus sinensis L., to
recognize the responses to biological and environmental stresses.
Specific ionic monitoring (SIM) methods were used to evaluate
the description of phytohormones. Two derivation reagents,
N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) and
methyl chloroformate (MCF), and one extraction solvent mixture
were used. This method showed recovery with a high extraction
percentage and reproducibility with a low limit of quantification
and detection. With this method, they detected thirteen (13)
phytohormones, such as auxins, salicylic acids, gibberellin,
jasmonic acid, and abscisic acid, that belong to different groups.
Jasmonic acid and auxins were only present in the vegetation
of plants, abscisic acid was in the leaves and roots and salicylic
acid, cytokinins and gibberellins were found in all plants.
Phytohormones are present at extremely low concentrations
in plants, making their analysis more difficult. Salicylic acid
(SA) is the most abundant phytohormone present in various
tissues, mostly ranging from 59 to 70% of growth hormones.
ABA phytohormone was the highest among SA groups, and
GA7 was the most abundant among all GA groups and was
made from GA12 in the 3β-hydroxy gibberellic acid pathway
(Farrow and Facchini, 2014).

Drought being one of the abiotic stresses, is the most
compelling ecological issue that significantly damages plant
photosynthesis, development and growth (Rizwan et al., 2015;
Fahad et al., 2017). Perennial fruit trees and crops demand
well-drained soils for healthy growth and development and to
obtain the maximum level of productivity. Even for a short
time, poor drainage can markedly affect the productivity of
perennial fruit trees for extended durations (Fahad et al., 2017;
Fuller and Stevens, 2019). Moreover, drought stress causes
an imbalance in carbon metabolism, which is the primary
source of carbohydrates, leading to partial stomatal closure at
carboxylation sites with less carbon dioxide availability (Hu
et al., 2019). In addition, drought stress also causes the shoot
respiration level to increase to sustain metabolic activity. Then, a
decrease in the carbohydrate reserves occurs in the storage organs
of citrus plants (Fahad et al., 2017).

Moderate drought stress leads to increased leaf soluble
carbohydrate concentrations, a reduction in starch
concentrations and a low photosynthesis rate in leaves.
Plants may use stored carbohydrates because changes in carbon
availability are observed under low photosynthesis rates. To
meet the plant metabolic demand, these plants stored reservoirs
to overcome stressful drought conditions (Fahad et al., 2017;
Liu Y. N. et al., 2019). However, severe drought stress reduces
starch and soluble fraction levels (Rizwan et al., 2015; Fahad
et al., 2017). Plants exposed to saline environments experience
a decline in plant growth because of the effect of specific ions
on metabolism and antagonistic environmental connections.
Various technologies have been used to exploit citrus plant
growth under drought stress. Attempts are being made through
conventional breeding methods to improve plants tolerance to
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FIGURE 1 | Crop response, from physiological and morphological perspectives to drought stress. Drought stress affects the normal functioning of plants by lowering
the rate of photosynthesis. To overcome this issue, plants increase the production of hormones and photosynthesis-related components as a defense mechanism.

drought stress, and these methods are laborious and based on
the prevailing genetic changeability. Recently various drought
resistance genes were overexpressed in plants, and plants
become tolerant to drought stress. In most cases, a higher
yield was recorded in the transgenic plants than the wild
type plants. Some of the drought-tolerant plants have been
listed in Table 1.

In response to abiotic stresses, i.e., drought and salinity, plants
have developed various physiology, phenology, morphology, and
biochemical-based mechanisms to sustain their cellular osmotic
potential (Fahad et al., 2015, 2017, 2018, 2020, 2021a,b,c,d,e,f;
Kamran et al., 2019; Ali et al., 2021a). Various studies on these
mechanisms are ongoing due to the involvement of multiple
phytohormones acting as sole mediators for avoidance, tolerance,
and the adverse effect of water stress. Plant hormones vitally
regulate the development and growth of plants along with
drought stress reflexes throughout the lifespans of plants (Sah
et al., 2016; Ullah et al., 2017). In response to drought stress,
plants produce phytohormones that transduce the pathway
to regulate its impact (Fahad et al., 2017; Hamayun et al.,
2018). Also, phytohormones activate different developmental
and physiological processes, such as negative phototropism in
roots, osmotic balance, and closing stomata (Lim et al., 2015;
Zahid et al., 2016).

Exogenous applications of plant growth regulators are also
employed to overcome these stressed conditions (Kamran et al.,
2021). As mentioned, phytohormones were applied to improve

drought tolerance in plants (see Table 2) and increase growth,
development, and productivity. Phytohormones play important
roles in modifying the plant reflex to strains at very low
concentrations, and their chemical messenger properties are
produced in one part of the plant and transferred to entire
parts of plants. Phytohormones are natural products synthesized
chemically as plant growth regulators (Sah et al., 2016).

PLANT HORMONES IMPROVE
DROUGHT RESISTANCE IN PLANTS

Auxins
Auxin is an important phytohormone. Auxins are involved in cell
division, cell elongation and the differentiation of cellular tissues,
embryogenesis, root formation, apical dominance, phyllotaxis,
and tropic responses. Auxin genes are important biotechnological
targets for modifying plant size and shape and improving plant
yield. Therefore, they play a vital role in cell and growth
development (Asgher et al., 2015). Auxins also play a dynamic
role in mediating and improving plant tolerance to non-
infectious stresses, such as deficiency conditions, as represented
by many research reports (Kazan, 2013). Indole-3-acetic acid
was one of the first hormones recognized in this group and
is most commonly found among the auxins (Hamayun et al.,
2021c). Indole 3-acetic acid is produced from tryptophan and is
chemically similar to it. Alterations in gene expression patterns
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FIGURE 2 | The role of various phytohormones in plants to defend against different stressed conditions by increasing or decreasing their levels. Unstable levels of
these hormones work within the defense mechanism of plants to ensure healthy normal growth.

were used to control auxin-mediated growth and development.
When plants are exposed to drought and other stress conditions,
varied modulations in the synthesis, metabolism, transport, and
activity of auxins take place, as depicted in various reports (Ljung,
2013). A decline in the IAA level under stress conditions can
increase the ABA level in plants to induce growth modulation by
auxins. Jung et al. (2015) mentioned that among auxin-coding
genes recognized in rice plants, some genes were activated by
drought stress. Previous studies also reported the overexpression
of YUC6 in poplar and potato, resulting in auxin-enhanced
drought tolerance and phenotypes (Ke et al., 2015). Auxins also
promote root branching and have a potential role in drought
tolerance mechanisms in tobacco seedlings (Verma et al., 2016;
Wang et al., 2018). Auxin response factors (ARFs) bind directly
to the promoters of auxin-responsive genes, allowing them to
be activated or repressed transcriptionally and enhance stress
tolerance in tomatoes (Bouzroud et al., 2018). In addition, these
ARFs regulate genes (WRKY108715, MYB14, DREB4, and bZIP
107) involved in drought stress response and enhanced tolerance
in clovers (Zhang et al., 2020).

The role of auxin in drought stress has been explored via
TLD1/OsGH3.13 which encodes indole-3-acetic acid (IAA)-
amido synthase; it then enhanced the expression of late
embryogenesis abundant (LEA) genes, which then increase
the resistance in plants against drought stress. In addition,
genes Aux/IAA genes were identified in rice and most
of these genes were expressed under drought stress. In

a study, YUC6 was overexpressed in potato and poplar
which showed auxin-overproduction phenotypes and enhanced
drought tolerance (Colebrook et al., 2014b). Auxin also enhanced
drought resistance by interacting with other phytohormones.
For example, auxin regulates various members of the ACS (1-
aminocyclopropane-1-carboxylate synthase) gene family, which
is a rate-limiting enzyme in ethylene biosynthesis. This
interaction enhances resistance in plants against drought stress
(Colebrook et al., 2014b).

Cytokinin
Cytokinins were discovered in 1950, and they are the most
important phytohormones that stimulate cell division and induce
variations. The first natural cytokinin was trans-zeatin, which
was isolated from maize (Miller, 1961). These compounds are
adenine byproducts derived from isoprene or an aromatic side
chain at the N6 position of purine. Folke Skoog and his
assistants isolated kinetin (the cytokinesis-promoting factor)
from autoclaved herring sperm DNA (Miller, 1961). These
hormones are essential for the growth of plant regulation and
acclimation to drought stress (Li et al., 2016). Cytokinins have
both negative and positive impacts on drought stress (Ha et al.,
2012; Li et al., 2016).

The enhancement or reduction of the cytokinin level
depends on the period and severity of the drought stress
(Zwack and Rashotte, 2015). The beneficial aspects are
enhanced intolerance against drought stress. CKs are also
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TABLE 1 | Transgenic crops under drought stress experienced altered yields through the phytohormone signaling pathway.

Gene(s) Expressing plant Signaling
pathway

Stress type Environmental condition(s) Effect on yield
(increase (%)

References

AtYUCCA6 Solanum tuberosum Auxin Drought Greenhouse Data not shown Im Kim et al., 2013

LOS5ABA3 Glycine max ABA Drought Growth chamber and field 21% Li et al., 2013

AtEDT1/HDG11 Oryza sativa ABA Drought Greenhouse and field 16% Yu et al., 2013

AtGAMT1 Solanum lycopersicum GAs Drought Greenhouse Data not shown Nir et al., 2014

AtEDT1/HDG11 Gossipium hirsutum ABA Drought and salinity Laboratory, greenhouse and field 43% Yu et al., 2016

GhABF2 Gossipium hirsutum ABA Drought and salinity Laboratory, greenhouse, and field 46% Liang et al., 2016

JIOsPR10 Oryza sativa JA Drought, salt and
Magnaporthe oryzae

Greenhouse No change Wu et al., 2016

GA2ox Oryza sativa GAs Drought and disease Greenhouse and field 10–30% Lo et al., 2017

OsERF109 Oryza sativa JA and ABA Drought Greenhouse 30–45% Yu et al., 2016

TABLE 2 | Phytohormones functions to prevent plants from drought stress.

Functions Hormones References

Involved in cell division, cell elongation, apical dominance, phyllotaxis and tropic responses Auxin Im Kim et al., 2013

Root branching Auxin Im Kim et al., 2013

Growth of plant parts and the flowering stage Cytokinins Liang et al., 2016

Development of female gametes and embryos Cytokinins Wu et al., 2016

Photomorphogenesis and leaf senescence Cytokinins Ha et al., 2012

Cell elongation and increasing the cell division Gibberellins Colebrook et al., 2014a

Enhance the vegetative and reproductive stages of plants Gibberellins Li et al., 2012a

Stomatal closure, gene upregulation and compatible osmolyte synthesis Abscisic acid (ABA) Shi et al., 2018

Photosynthetic activity, stomatal regulation, root growth, and germination Abscisic acid (ABA) Seo and Koshiba, 2011

Defense responses Salicylic acid (SA) Miura et al., 2013

Progressive responses against elevated temperature stress Salicylic acid (SA) Munne-Bosch and Penuelas, 2003

Stomatal closure Salicylic acid (SA) Dempsey et al., 2011a

Drought tolerance by lessening transpiration, squeezing the aperture of the stomata, and thinning the cuticle Ethylene Zandalinas et al., 2016

Appraisal of growth, drought tolerance, and yields Brassinosteroids Li et al., 2012b

Stomatal closing Jasmonic Acid (JA) De Ollas et al., 2013

Increase the antioxidant activity of plants under drought Jasmonic Acid (JA) Dong and Hwang, 2014

Root growth, pollen tube growth, stomatal development Peptides Shi et al., 2018

reported to stimulate transgene expression in transgenic
plants, i.e., isopentenyl transferase gene expression. The
transgenic plants indicated significant drought tolerance
through delayed senescence by restricting drought-induced
leaf senescence. The negative effects of CK accumulation on
drought tolerance have also been reported along with the
positive effects of CK accumulation. CK oxidase/dehydrogenase
(CKX) catalyzes CK and is involved in the overexpression and
breakdown of CKX in Arabidopsis, which results in a decrease
in endogenous CK contents (Werner et al., 2010; Hamayun
et al., 2021b). Therefore, CKX1, CKX2, CKX3, and CKX4
were overexpressed independently in Arabidopsis, resulting in
transgenic lines with reduced CK levels and subsequently greater
drought tolerance.

Cytokinins are helpful in plant tissue culture techniques and
support the thoughtful study of plant biological processes, such
as the growth of plant parts and the flowering stage. These
compounds are responsible for stimulating different processes
during the growth and development of female gametes and
embryos of a plant. Notably, cytokinins also participate in

seed germination, vascular development, photomorphogenesis,
shoot apical meristem development, floral development, and leaf
senescence. It also helps plants to induce adaptive responses to
drought and adverse ecological conditions (Mao et al., 2020).
Moreover, different hormones and macronutrients control the
transcription of cytokinin biosynthetic genes. In Arabidopsis,
cytokinins stimulate cell division by antagonizing auxin. Auxin
promotes the expression of AtIPT5 and AtIPT7, whereas
cytokinins suppress the expression of AtIPT1, AtIPT3, AtIPT5,
and AtIPT7 in the shoot meristem (Ismail H. M. et al., 2020).

All the genes related to cytokinin in Arabidopsis were
overexpressed individually, and transgenic lines of Arabidopsis
with decreased levels of cytokinin gradually improved tolerance
to drought conditions (Nishiyama et al., 2011). The current
need is to elucidate the signaling and role of cytokinins under
drought conditions.

Gibberellins
Gibberellins are tetracyclic diterpenoids of carboxylic acids. The
primary purpose of GAs in plants is as growth hormones and
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to provide resistance against drought stress and other abiotic
stresses. GAs continues their functions in plants throughout the
plant life cycle. The primary purpose of gibberellins is to enhance
the development of plant tissues by cell elongation and increasing
the cell division process enhances the immature and adult stages
of plant growth. It also helps to enhance the vegetative and
reproductive stages of plants (Colebrook et al., 2014b; Kang et al.,
2019).

SIDREB (drought-responsive element-binding protein)
increases drought tolerance in tomatoes by decreasing the
expression of gibberellin biosynthesis genes (Colebrook et al.,
2014a). Drought tolerance is said to be enhanced if the GA
level is reduced in plants. Transgenic tomatoes are produced by
the overexpression of the AtGAMT1 (Arabidopsis thaliana GA
Methyl Transferase-1) gene. AtGAMT1 encodes an enzyme that
causes a breakdown in the methylation of active GA to make
inactive GA methyl esters. The transgenic tomato indicated
a reduction in gibberellins by enhanced drought tolerance.
An increased water level in leaves was observed in transgenic
tomatoes under drought stress because of transpiration in
plants (Nir et al., 2014). The ectopic expression of GA2ox
(GA 2-oxidase) increased drought tolerance. This protein also
helps to enhance resistance in rice plants (Lo et al., 2017). The
DELLAs proteins are the primary stimulators of GA responses in
drought conditions faced by plants. The functions of this group
of nuclear regulators are to suppress gibberellin stimulation
in plants. Gibberellins binding to the receptor GID1 (GA
in-sensitive dwarf 1) lead to the degradation of DELLAs by the
26S proteasome and the stimulation of gibberellin responses
(Li et al., 2012c).

Drought tolerance in plants is appreciably enhanced by
gibberellins, as reported in many studies (Li et al., 2012a;
Colebrook et al., 2014a). Tomatoes make the transgene
by overexpressing the gene (methyltransferase 1). GAMT1
encodes an enzyme catalyzing active gibberellin methylation
to form inactivated GA methyltransferase in Arabidopsis spp.
The resulting tomato plant expressed a typical GA-deficient
phenotype, which showed drought tolerance. A high-water
content was prominent in transgene tomato plants because of
decreased transpiration (Ullah et al., 2018). By contrast, applying
hormones resulted in the reappearance of normal growth, and
plants became prone to drought again (Nir et al., 2014). In
addition, the external expression of GA oxidase enzyme (GA 2-
oxidase) improved drought and disease hindrance in rice plants
(Lo et al., 2017). SIDREB (drought-reflexing binding protein) also
improved drought tolerance in tomatoes by suppressing the genes
involved in GA biosynthesis (Li et al., 2012a). DELLAs protein
factors also primarily regulate response to GA, and this group of
nuclear regulators especially act to suppress the GA response. GA
binding to the insensitive dwarf1 receptor of GA will result in
DELLA degradation, similar to 26S proteasome and GA response
stimulation (Li et al., 2013).

Abscisic Acid
Abscisic acid is an important signaling phytohormone
under drought stress (De Ollas et al., 2013). Abscisic acid
plays a significant role in regulating stomatal closure, gene

upregulation and compatible osmolyte synthesis. 9-Neoxanthin
cis-epoxicarotenoid dioxygenase (NCED) is used in abscisic
acid synthesis and is considered a bottleneck, covering 9-
neoxanthins to xanthins. This enzyme is used in the upregulation
of an increased level of abscisic acid. Abscisic acid is cleaved
into 8′-OH-ABA, and this process is catalyzed by an ABA
8′-hydroxylase (CYP707A) enzyme. This reaction is used to
inactivate abscisic acid. ABA 8′-hydroxylase compounds are
spontaneously converted into dehydrophaseic acid (DPA)
and phaseic acid (PA), the primary degradation products.
Another path that is used to inactivate abscisic acid pools is
through conjugation to hexoses catalyzed by the ABA O-glycosyl
transferase enzyme. This process yielded the ABA-glycosyl
ester (ABAGE) compound (Dong and Hwang, 2014). After
the cleavage of the ABA glycosyl ester (ABAGE) compound
by an ABA glycosyl ester β-glycosidase (BG18) enzyme, active
abscisic acid is released. Both species have increased levels
of phasic acid (PA) and dehydrophaseic acid (DPA) under
drought stress, but Cleopatra exhibited a more increased level of
ABA-glycosyl ester (ABAGE).

Abscisic acid signaling pathways have vital role in the
expression of drought stress-responsive genes because various
stress situations can occur in plants. Abscisic acid receptors are
very important in the transduction of signals. In the subcellular
state, many receptors are recognized. Under normal conditions,
ABA is expressed at low concentrations in plants (Parveen
et al., 2021). SnRK2 activity in protein kinases is inhibited
by the phosphatase PP2C, leading to dephosphorylation. As
plants develop ABA concentrations, they start to bind with
PYRs, PYLs, and RCARs, which bind to deactivate PP2C
phosphatase activity (Danquah et al., 2014). These PYRs and
PYLs are essential receptors for the abscisic acid response
encoded by different genes, such as 11 genes in rice and
14 genes in Arabidopsis encoding these receptors (Klingler
et al., 2010). The autoactivation of SnRK2 (protein kinases
that enhance the abscisic acid response) occurs when the
protein is dissociated from phosphatase PP2Cs (Hrabak et al.,
2003; Ullah et al., 2017), and the rest of the SnRKs are
involved in the abscisic acid response (SnRK2.2, SnRK2.3,
and SnRK2.6) (Feng et al., 2014). In Arabidopsis, only the
A clade participates in the signaling of abscisic acid out of
seventy-six PP2Cs. Additionally, the ABA signaling pathway is
also dependent on branches of various transcription factors,
such as MYC, NAC and MYBs. The responsive elements of
abscisic acid also play a role in ABA signaling (De Ollas and
Dodd, 2016). CDPKs (CDPKs) also proved very important in
the pathway related to signaling. Calcium-dependent protein
kinases also participate in ABA signaling, and 34 CDPKs
have been reported in Arabidopsis, along with 29 in rice,
20 in wheat and 35 in maize. Two CDPKs, CPK4, and
CPK11, have been reported to be involved in the regulation
of ABA signaling in Arabidopsis. SnRK2 activation triggers the
phosphorylation of down–target genes, resulting in the induction
of molecular and physiological responses to ABA triggering,
such as photosynthetic activity, stomatal regulation, root growth,
and germination (Altaf et al., 2020). Abscisic acid also regulates
many other genes related to drought stress to develop drought
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tolerance in plants. The abscisic acid-induced pathway is shown
in Figure 3.

Salicylic Acid
The salicylic acid (SA) hormone is associated with drought
tolerance and signaling in plants (Miura and Tada, 2014). In
response to drought stress, SA biosynthesis takes place via both
the isochorismate pathway and the phenylpropanoid pathway.
Both pathways require the chemical chorismate generated from
the shikimate pathway (Figure 4A). However, the isochorismate
pathway is known to be the major pathway in most plants
(De Ollas et al., 2013). The phenylpropanoid pathway for SA
biosynthesis begins with phenylalanine (Phe) being converted
to trans-cinnamic acid (t-CA) by phenylalanine ammonia lyase
(PAL). It is then transformed into benzoic acid (BA). Researchers
have yet to discover the enzyme that converts t-CA to benzoic
acid. After that, the enzyme benzoic acid 2-hydroxylase catalyzes
the hydroxylation reaction that yields SA from BA (BA2H)
(Figure 4A). The isochorismate pathway requires enzyme

ICS1 (isochorismate synthase 1) that converts chorismate to
isochorismate, and isochorismate is then converted to SA by
isochorismate pyruvate lyase (IPL) (Danquah et al., 2014).
Salicylic acid also plays a significant role in defense responses
against drought stress, as shown in Figure 4B. NPR1 (non-
expresser of pathogenesis-related genes 1) is a master regulator of
defensive signals mediated by SA. SA binds to NPR1 and NPR1
homologs directly, perhaps regulating NPR1 activity and stability.
Increased cellular SA levels cause a redox shift in the cytoplasm,
causing NPR1 to transition from oligomer to monomer forms
(Figure 4B). The active monomers then go to the nucleus, where
SA binds to NPR3 and NPR4 to block their transcriptional
repression activity. NPR1 interacts with TGAs (TGACG-binding
factors), activating defense responses against drought stress.
However, in cells with low SA levels, NPR1 forms oligomers and
persists in the cytosol, while NPR3 and NPR4 bind residual NPR1
in the nucleus to block NPR1 function (Figure 4B; Dempsey
et al., 2011b). Salicylic acid accumulation in plants improves
responses to various abiotic stress conditions, such as drought

FIGURE 3 | ABA’s fundamental signaling mechanism during stressful situations. The ABA levels are lower under ideal circumstances, and the function of SnRK2
protein kinase is blocked by PP2C phosphatases. The cellular ABA level rises during high-pressure situations, and ABA then attaches to PYR/PYL/RCARs, which
connect to and deactivate PP2Cs in response. If they are detached from PP2C, then SnRK2s are automatically activated. Switched on SnRK2s phosphorylate the
following targets and provoke molecular and physiological reactions through ABA.
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FIGURE 4 | Biosynthesis and signaling of salicylic acid. (A) In Arabidopsis, a model for salicylic acid (SA) production has been proposed. Genetic investigations
showed the isochorismate pathway in the upper panel. Biochemical research showed the phenylpropanoid pathway in the lower panel. (B) NPR1 forms an oligomer
in the cytosol in cells with low SA levels, and NPR3 and NPR4 bind leftover NPR1 in the nucleus to block NPR1 activity. NPR1 becomes monomeric and reaches the
nucleus in cells with high SA levels, where SA binds to NPR3 and NPR4 to disrupt their transcriptional repression action. NPR1 interacts with TGAs in SA-responsive
promoters, causing defensive responses to be activated. BA2H stands for benzoic acid 2-hydroxylase; ICS stands for isochorismate synthase; IPL stands for
isochorismate pyruvate lyase; NPR stands for non-expresser of pathogenesis-related genes; PAL stands for phenylalanine ammonia lyase; SA stands for salicylic
acid; TGA stands for TGACG-binding factor. Adapted from Li et al. (2019).

and salinity (Miura and Tada, 2014), antioxidant activity and
photosynthetic machinery protection, which prevents electron
leakage (Ismail I. et al., 2020; Malik et al., 2021). Previous studies
showed that drought increased endogenous levels of abscisic acid
(ABA) and jasmonic acid (JA) in Brassica napus, resulting in
a rise in ABA/SA and (ABA + JA)/SA (Lee et al., 2019). The
increase of ROS and proline, as well as a loss of reducing potential
[NAD(P)H/NAD(P) + and GSH/GSSG], paralleled the changes
in endogenous hormonal balance. Drought-induced O2 buildup
was scavenged by SA pretreatment (Lee et al., 2019). Moreover,
drought increased ROS generation and, as a result, lipid
peroxidation, which is a specific indicator of oxidative damage.
On the other hand, Exogenous SA application substantially
reduced oxidative damage in rice seedlings in hydroponic and soil
systems by upregulating antioxidant enzymes (Ali et al., 2021b).
Furthermore, drought stress lowered photosynthetic pigment
concentration, gas exchange parameters, proline, soluble sugars,
total phenolic, flavonoids, growth, and biomass output. On

the other hand, SA promoted Portulaca oleracea growth and
biomass production by improving photosynthetic pigments, gas
exchanges, suitable solutes, and secondary metabolites (Hamayun
et al., 2021a). In Impatiens walleriana, dehydration increased the
quantity of electrolyte leakage (EL), malondialdehyde (MDA),
peroxidase (POD), and ascorbate peroxidase (APX) activities,
along with proline content. P5CR (gene for 1-pyrroline-5-
carboxylate reductase) has a similar expression pattern to P5CS,
with minor changes in intensity. Through improved antioxidant
activity and water balance, SA lowered the amount of EL and
MDA in the plant (Safari et al., 2021). When compared to
non-SA pretreated Brassica rapa, SA pretreatment dramatically
boosted proline concentration via upregulating the expression
of genes expressing pyrroline-5-carboxylate synthase (P5CSA
and P5CSB) and down-regulating the expression of the gene
encoding proline dehydrogenase (PDH). In another case, the
Carrizo citrus plant variety showed greater tolerance to drought
and heat stress in combination. Drought stress increased salicylic
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acid levels in the leaves of certain citrus species, such as
Carrizo and Cleopatra. Chlorophyll fluorescence, gas exchange
parameters and malondialdehyde (MDA) accumulation indicate
that Cleopatra mandarin is susceptible to drought and heat stress
(Hamayun et al., 2018). Phenotypic traits of citrus plants occur
in response to a combination of drought and heat stress. Whole
sprouts (%) of Cleopatra and Carrizo seedlings were exposed to
drought and heat stress (40◦C) in combination for 10 days. For
each genotype, asterisks denote statistical significance concerning
the initial values at P ≤ 0.05 (Hamayun et al., 2021a).

The salicylic acid levels also increased in plants under drought
stress, which may be five times that of the normal level recorded
in evergreen shrubby plants in Phillyrea augustifolia (Munné-
Bosch and Peñuelas, 2003; Hamayun et al., 2021c). The enhanced
drought tolerance and disorder resistance found in mutants of
Arabidopsis spp. such as adr1, acd6, myb96−1, and cpr5 are due to
the presence of salicylic acid (Seo and Koshiba, 2011; Miura et al.,
2013). In Arabidopsis, stomatal closing was also observed due
to salicylic acid accumulation under stressed conditions because
the SA-regulated induction of PR gene expression led to drought
tolerance by shutting the stomatal openings (Liu et al., 2013;
Miura et al., 2013), and stomatal closure occurred through the
accumulation of SA under the influence of SIZI in Arabidopsis,
significantly increasing the drought tolerance.

In another study, the exogenous application of SA positively
regulated ICS1 gene (isochorismate synthase) and enhanced
drought tolerance in Arabidopsis. Furthermore, it revealed
that SA activated WRKYs and TGAs genes, which then
enhanced the plant immune system against drought stress
(Klingler et al., 2010).

Jasmonic Acid
Drought tolerance in plants is induced by closing stomata,
shifting reactive oxygen species, and deep root growth in the case
of jasmonic acid. Studies have revealed that JAs participate in
stomatal closing regulation as a result of drought stress (Riemann
et al., 2015). A case study revealed that treating Arabidopsis
with 12-OPDA led to stomatal shutting. It is also involved in
indirectly decreasing stomatal gaps, favoring drought tolerance.
Drought also prevents the alteration of OPDAs to jasmonic
acid; in this case, OPDA coupled with ABA or individually
leads to the closing of stomata (Savchenko et al., 2014; Kazan,
2015). High ROS foraging was found (Fang et al., 2016)
in transgenic plants overexpressing VaNAC26, which showed
relatively more drought tolerance. JA-related genes were highly
regulated in overexpressed lines under drought and ordinary
conditions. The external application of JA led to a perfect reflex
by plants to drought stress. External JA application was also
shown to enhance the activity of antioxidants under drought
stress (Shan et al., 2015). Another case revealed that JA was
found to be an enhancer of different enzymes in young wheat,
such as ascorbate peroxidases (APX) and ascorbate reductases
monodehydroascorbate reductase and glutathione reductase,
under stress conditions (Shan et al., 2015). JA also plays a
significant role in water conductivity from soil under restricted
moisture conditions (De Ollas et al., 2013; Sánchez-Romera et al.,
2014) found that the transient presence of jasmonic acid in roots

is required under drought stress to increase the abscisic acid
levels. However, the function of JA still must be clarified under
drought stress to obtain highly tolerant plants. The exogenous
application of JA increased the antioxidant activity of plants
under drought conditions, as shown in Figure 5. The proteins
JAI3/JAZ bind to various transcription factors, including MYC2,
and limit their activity under normal conditions. However,
during drought stress, the degradation of JAZ proteins occurs,
resulting in active transcription factors that upregulate genes of
JA, which enhances tolerance in plants against drought stress (De
Ollas and Dodd, 2016). Moreover, JA signaling pathways interact
with ABA signaling pathways, suggesting their role in response
to drought stress. It has been recently revealed that JA enhanced
the hydraulic conductivity of plant roots under drought stress by
interacting with calcium and ABA-dependent and independent
signaling pathways (De Ollas and Dodd, 2016).

Brassinosteroids
Brassinosteroids play a role in stress responses along with roles in
plant growth and nourishment. These stresses include drought,
cold, hypersalinity, metallic heaviness, raised temperature, and
infectious agents (Chen et al., 2017). It was previously mentioned
that in Arabidopsis, wheat, and Brassica spp., brassinosteroids
played a positive role in response to drought stress (Divi et al.,
2010). Arabidopsis biosynthetic gene (DWF4) overexpression
resulted in the appraisal of growth, drought tolerance, and yields
(Sahni et al., 2016). By contrast, there was a negative response
from the brassinosteroids. Additionally, mutants of Brs showed
functional loss, but increased drought tolerance (Northey et al.,
2016; Ye et al., 2017), and knocking out BR1 by miRNA technique
led to more drought tolerance in Brachypodium distachyon
(Feng et al., 2015). These phytohormones play a crucial role
in drought stress tolerance. They act synergistically in response
to drought stress.

Recently, various WRKY transcription factors have been
discovered in Arabidopsis thaliana and these transcription factors
are reported to be involved in plant growth and response to
drought stress. To regulate plant growth, BRs extensively interact
with these transcription factors and GA in response to drought
stress (Clarke et al., 2004; Xue et al., 2013; Sánchez-Romera et al.,
2014; Sánchez-Martín et al., 2015).

Ethylene
Ethylene was found to be actively involved in enhancing drought
tolerance in plants. In a study on cotton, ethylene-responsive
genes or binding protein elements such as AP2, EREBPs, and
APETELA2 were identified in response to heat and drought stress
(Liu and Zhang, 2017). One analysis revealed that members of
ERFs (responsive factors of ethylene), GmERF3 isolated from
Glycine max, whose expression was induced by drought stress,
ABA, SA, JA, and ET. GmERF3 in overexpressing tobacco
plants exhibited more tolerance to drought stress because of
the high contents of proline and solubilized sugar compared
to wild plants. Transgenic plants showed increased resistance
to Ralstonia solancearum, Alternaria alternata, and tobacco
mosaic virus due to the high expression of pathogenesis-related
protein-coding genes (Hamayun et al., 2019). The overexpression
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FIGURE 5 | Changes in JA signals under stressful situations. JAI3/JAZ proteins attach to different transcription components and restrict their function along with
reduced levels of JA under ideal circumstances. The JA concentrations are high and deteriorate JAZ proteins under stressful situations, leading to the activation of
transcriptional components that upregulate genes associated with stress responses.

of the ERF gene (ERF019) in Arabidopsis delayed aging and
flowering time. Transgenes also exhibit drought tolerance by
lessening transpiration, squeezing the aperture of the stomata,
and thinning the cuticle (Scarpeci et al., 2017). In signal
transduction, ETR1 codes for receptors of ET but negatively
regulates the response; other receptors of this family always close
down the signaling, whether ethylene is present or not (Shi et al.,
2016) of the other members of the family include ERS1, ETR2,
EIN4, and ERS2. CTR1 regulates ET signaling. In Arabidopsis,
CTR1 is involved in ET signaling, while in tomato 3, CTR1 is
involved in ET signaling. There is no evidence of a decrease in
the stream substrate of CTR1. When the receptor finds ethylene,
it shuts off the activity of ethylene, thus leading to a reflex action
for tolerance to drought conditions.

Peptides
Recently several secreted peptides were found to mediate the
cellular development in plants. However, it was unclear whether
these peptides mediate long-distance signaling in response to
drought stress. Among the peptides, CLAVATA3 (CLV3) is a well-
characterized plant peptide involved in shoot apical meristem
formation. In land plants, phytohormone abscisic acid plays a
significant role in the regulation of stomatal movement to prevent
water loss. However, no mobile signaling molecules have yet
been discovered that can enhance the abscisic acid accumulation
in leaves (Nir et al., 2014). Recently, CLE25 peptide was found
to transmit water-deficiency signals through vascular tissues in
Arabidopsis and affects abscisic acid biosynthesis and stomatal
control of transpiration. The gene related to these peptides was

expressed in the vascular tissues and enhanced root response
to drought stress. These peptides move from the roots to the
leaves and induce stomatal closure by modulating abscisic acid
accumulation, enhancing resistance to drought stress. Recently,
another peptide gene in rice, OsDSSR1, was discovered, which
was expressed mainly in the root, stem, node, leaf, and panicle,
and this expression was induced by drought stress. The peptide
is localized in the nucleus and cytoplasm and exhibited enhanced
drought stress tolerance and decreased ABA sensitivity compared
to the wild type (Yu et al., 2016). Other peptides such as
phytosulfokine (PSK), a growth related to cell proliferation;
rapid alkalinization factor (RALF), which regulates root growth;
LUREs, which guides pollen tube growth; STOMAGEN, which
is related to stomatal development; and casparian strip integrity
factor (CIF), which is associated with the formation of the
casparian strip diffusion barrier; Another peptide, AtPep3 which
plays an important role in the drought and salinity stresses were
also recently discovered (Nir et al., 2014; Liang et al., 2016; Yu
et al., 2016).

CONCLUSION AND FUTURE
PERSPECTIVES

An ever-growing population and diminishing natural resources
have made it difficult for farmers to produce enough food
to meet their needs. Drought is a major constraint on
crop productivity worldwide and is expected to worsen
in the near future. Besides, droughts are becoming more

Frontiers in Plant Science | www.frontiersin.org 10 January 2022 | Volume 12 | Article 799318

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-799318 January 8, 2022 Time: 16:11 # 11

Iqbal et al. Phytohormones: Drought Tolerance in Plants

common, severe, and widespread due to climate change. Hence,
scientists are attempting to develop drought-tolerant crops
and understand different drought tolerance mechanisms. This
review’s underlying theme is that plants typically respond to
drought stress by adjusting the levels of phytohormones, such
as abscisic acid, jasmonic acid, auxin, ethylene, and gibberellin,
cytokinin, brassinosteroids, and small peptide molecules.
These phytohormones trigger tolerance to drought stress via
regulation of various morphological, physiological, biochemical
and molecular processes. The morphological and physiological
processes involve changes in the composition of the leaves,
root growth and stomatal control. The biochemical process
includes adjusting the levels of phytohormones. Molecular
processes include phytohormone-mediated signals, leading to
the activation of various transcription factors that causes the
expression of genes required for plant survival in drought stress
(Saleem et al., 2020).

However, due to the high level of complexity, most of the
mechanisms by which phytohormones trigger drought tolerance
in crops are poorly understood and requires further study.
Besides, scientists could not comprehend the crosstalk among
the phytohormones against drought stress. Since crosstalk is
so intricate, the underlying mechanisms are also unknown and
need further investigation. Recently scientists are attempting
to understand the mechanisms of drought tolerance in plants
through the exogenous application of phytohormones. In
addition, drought stress in plants is alleviated by applying plant

microbiomes. These plant microbiomes induce drought stress-
responsive genes and play a crucial role in the acquisition
of drought tolerance (Ismail A. H. et al., 2020). In the
future, newly developed large-scale OMIC methods and high-
throughput bioinformatic analysis will be used to seek a better
understanding of the mechanisms by which phytohormones
trigger drought tolerance in crops, which will ultimately lead to
the development of drought-resistant crop plants with significant
agronomic features.
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