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ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master
regulator that regulates various physiological and biological processes in plants such as
photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient
acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function
among various plant species. HY5 acts as a master regulator of light-mediated
transcriptional regulatory hub that directly or indirectly controls the transcription of
approximately one-third of genes at the whole genome level. The transcription, protein
abundance, and activity of HY5 are tightly modulated by a variety of factors through
distinct regulatory mechanisms. This review primarily summarizes recent advances on
HY5-mediated molecular and physiological processes and regulatory mechanisms on
HY5 in the model plant Arabidopsis as well as in crops.
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INTRODUCTION

Plants utilize light as the predominant energy source for photosynthesis. Besides, light signal
acts as an essential external factor that mediates a variety of physiological and developmental
processes in plants (Paik and Hugq, 2019; Song et al., 2020a; Xu, 2020). Plants are continuously
exposed to dynamically changing light signals due to the daily and seasonal alternation in
natural conditions. The various light signals are perceived by at least five classes of wavelength-
specific photoreceptors including phytochromes (phyA-phyE), cryptochromes (CRY1 and CRY2),
phototropins (PHOT1 and PHOT?2), F-box containing flavin binding proteins (ZTL, FKF1, and
LKP2), and UV-B RESISTANCE LOCUS 8 (UVRS; Paik and Hugq, 2019). These photoreceptors are
biologically activated by various light signals, subsequently initiating a large scale of transcriptional
reprogramming at the whole genome level (Jing and Lin, 2020). Extensive genetic and biochemical
studies have established that the ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription
factor, tightly controls the light-regulated transcriptional alternation. Loss of HY5 function
mutant seedlings displays drastically elongated hypocotyls in various light conditions (Oyama
et al., 1997), suggesting that HY5 acts downstream of multiple photoreceptors in promoting
photomorphogenesis in plants. In addition to inhibiting hypocotyl growth, HY5 regulates other
various physiological and developmental processes including root growth, pigment biosynthesis
and accumulation, responses to various hormonal signals, and low and high temperatures (Nawkar
et al., 2017; van Gelderen et al., 2018; Zhang Y. et al.,, 2019; Li J. et al., 2020; Marzi et al., 2020;
Ortigosa et al., 2020; Yadukrishnan et al., 2020; Bhagat et al., 2021; Wang et al., 2021a,b). This review
summarizes the recent advances and progresses on HY5-regulated cellular, physiological, and
developmental processes in various plant species. We also highlighted emerging insights regarding
the HY5-mediated integration of multiple developmental, external, and internal signaling inputs in
the regulation of plant growth.
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HY5 Is a Signaling Hub

HY5 IS EVOLUTIONALLY CONSERVED IN
PLANT SPECIES

HY5 is originally identified as a positive regulator of
photomorphogenesis, root gravitropic response, and lateral
root development in the model plant Arabidopsis (Oyama et al.,
1997). HY5 gene encodes a bZIP-type transcription factor that
controls approximately one-third of the expression of genes
throughout the whole genome (Lee et al., 2007; Burko et al,
2020b). Extensive studies have revealed that HY5 regulates a
variety of developmental processes, responsiveness of various
hormonal and environmental signals through divergent but
overlapping signaling networks in plants (Gangappa and Botto,
2016; Su et al., 2021). The orthologs of HY5 in distinct plant
species are highly conserved in protein structure and function
(Figure 1). HY5 from most plant species possess a basic region
and a Leucine Zipper Domain responsible for DNA binding and
dimerization, respectively, and the others contain an additional
RING-finger motif in some plant species such as soybean
and pea (Figure 1). These imply HY5 orthologs likely exert
common but divergent functions in regulating physiological and
developmental processes among various plant species. The HY5
orthologs in various plant species have been shown to mediate
multiple light-regulated development and response. The HY5 in
Arabidopsis, soybean, pea, apple, moss, tomato, rice, and maize
regulate the hypocotyl or stem growth, shade avoidance, and
responses to internal signals (e.g., GA and auxin) and external
signals (e.g., light, low, and high temperatures) (Oyama et al,
1997; Yamawaki et al, 2011; An et al,, 2017b; Burman et al,
2018; Wang et al, 2018; Huai et al, 2020; Lyu et al., 2021).
Sweet wormwood, sweet orange, strawberry, pear, peach, tomato,
eggplant, and grape HY5 orthologs are involved in the regulation
of light-induced flavonoid biosynthesis and accumulation
(Loyola et al.,, 2016; Li J. et al., 2017; Liu et al., 2018; Hao et al,,
2019; Huang et al., 2019; Wu et al,, 2019; Li Y. et al, 2020;
Wang et al., 2020; Zhao et al., 2021; Figure 2). The biochemical
functions of HY5 are conserved in distinct plant species. HY5 acts
as a transcription factor that predominantly binds to the ACGT-
containing cis-element (e.g., G-box and T/G-box) and controls
the expression of numerous target genes in response to light
signals, which in turn serves to modulate distinct light-regulated
physiological and developmental processes in plants.

HY5 IS A CENTRAL REGULATOR OF
LIGHT SIGNALING

Light tightly controls the seedling development including
inhibition of hypocotyl growth, promotion of cotyledon
expansion, and accumulation of chlorophyll which is totally
termed photomorphogenesis. HY5 acts as an essential and
indispensable regulator of this developmental process in
Arabidopsis. More importantly, its abundance is correlated with
seedling photomorphogenesis. A variety of factors converge
on HY5, which indirectly or directly controls the expression of
over 3,000 genes, to ensure normal seedling photomorphogenic
development in response to dynamically changing light signals.

In the darkness, CONSTITUTIVELY
PHOTOMORPHOGENIC 1 (COPI1)-SUPPRESSOR OF
PHYTOCHROME A-105 (COP1-SPA) E3 ligase complex
directly targets HY5 for polyubiquitination and degradation, and
thus, the abundance of HY5 remains at an extremely low level
(Osterlund et al., 2000; Han et al., 2020). COP1 SUPPRESSOR
1 (CSU1), CSU2, PHYTOCHROME INTERACTING 1 (PIF1),
and SIZ1 act as negative regulators of COP1-SPA complex to
ultimately maintain HY5 homeostasis in etiolated seedlings
(Xu D. et al, 2014; Xu X. et al, 2014; Xu et al, 2015; Lin
et al., 2016). On light irradiation, the activity of COP1-SPA is
largely suppressed through multiple regulatory mechanisms.
The photoreceptors phyA, phyB, CRY1, and CRY2 directly
associate with COP1-SPA to disrupt the formation of the
COP1-SPA complex (Podolec and Ulm, 2018). Meanwhile,
light-activated CRY1, CRY2, and UVR8 compete with HY5
for COP1 binding through conserved Val-Pro (VP) motifs
(Lau et al., 2019; Ponnu et al,, 2019). As a long strategy, COP1
migrates from the nucleus to the cytoplasm under prolonged
light illumination (Han et al, 2020; Ponnu and Hoecker,
2021). Together, all these molecular regulatory mechanisms
consequently serve to trigger the appropriate accumulation
of HY5 in the light. Accumulated HY5 directly or indirectly
regulates the expression of over 3,000 genes, thereby controlling
diverse physiological growth and responses to various hormonal
and environmental signals (Lee et al, 2007; Burko et al,
2020b).

HY5 together with a group of B-box proteins (BBXs) work
in concert to control the expression of numerous downstream
target genes as well as multiple molecular and biological events
(Figure 3). BBXs function as rate-limiting cofactors in mediating
the molecular action of HY5. BBX20, BBX21, BBX22, and BBX23
enhance the transcriptional activation activity of HY5 by forming
heterodimers (Zhang et al., 2017; Bursch et al., 2020), whereas
BBX24, BBX25, BBX28, and BBX29 repress HY5 biochemical
activity through a similar regulatory mechanism (Gangappa
et al., 2013; Lin et al, 2018; Song et al., 2020b). In addition,
BBX11 and BBX21 directly bind to the promoter regions of
HYS5 to activate its transcription, while HY5 positively regulates
the expression of BBXII, BBX2I, and itself, thus forming a
transcriptional feedback loop in controlling downstream target
gene expression (Xu D. et al., 2016, 2018; Zhao et al., 2020; Job
and Datta, 2021; Song et al,, 2021). These findings suggest that
a subgroup of BBXs and HY5 forms a complex transcriptional
network that orchestrates the expression of light-responsive
genes. Furthermore, HY5 positively controls BBX4 and BBX22,
while negatively controls BBX30 and BBX31 at the transcriptional
level (Chang et al, 2008; Heng et al., 2019; Yadav et al,
2019; Liu et al., 2021), suggesting that HY5 also modulates the
function of some BBXs by regulating their transcript levels in
the light. BBX-HY5 regulatory module likely plays a critical role
in the regulation of the expression of numerous light-responsive
genes, through which HY5 controls diverse light-dependent
development in plants.

In addition to BBXs, other components also
mediate the light signal transduction by modulating
HY5 activity and/or transcription. TEOSINTE
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BRANCHED1/CYCLOIDEA/PROLIFERATING CELL
FACTOR (TCP2) and SHI-RELATED SEQUENCE 5 (SRS5)
positively control the transcription of HY5 to promote
photomorphogenesis (He et al, 2016; Yuan et al, 2018).
INOSITOL REQUIRING 80 (INOS80) affects the chromatin
modifications of HY5 and represses its transcription to inhibit
photomorphogenic development (Yang C. et al., 2020). COLD
REGULATED 27 (COR27) and COR28 directly interact with
HY5 to enhance its transcriptional activation activity toward
downstream target genes, consequently leading to the promotion
of photomorphogenic development (Li X. et al, 2020; Zhu
et al., 2020). HY5 associates with HISTONE DEACETYLASE
15 (HDA15) and recruits it to the promoter regions of target
genes, thereby decreasing the levels of histone H4 acetylation in a
light-dependent manner and repressing their transcription (Zhao
et al., 2019). Similarly, HY5 recruits the SWI-INDEPENDENT3
LIKE (SNL)-HDA19 deacetylase complex to the chromatin
regions of BBX22 and itself, which in turn, decreases the
accessibility and histone acetylation and suppresses their
transcription (Jing et al., 2021). MYC2, MYC3, and MYC5 bind
to E-box cis-element present in the HY5 promoter to activate
its expression, while HY5 inhibits the expression of MYC2,
suggesting that MYCs and HY5 likely form a negative feedback
loop in the regulation of seedling development (Chakraborty
et al, 2019; Yi et al, 2020). These results indicate that plants
acquired a complicated but delicate regulatory mechanism to
fine-tune the HY5 transcript level and activity in the control of
photomorphogenesis.

HY5 directly binds to the G-box cis-element present in
TANDEM ZINC-FINGER/PLUS3 (TZP) promoter to activate its
expression in the far-red light. In turn, TZP competes with
COP1 for binding of HY5, thus leading to the accumulation
of HY5 that promotes phyA signaling (Li C. et al, 2021).
Blue light-activated CRY1 competes with AGB1 for binding
of HY5, thus leading to the enhanced biochemical activity
of HY5 in promoting photomorphogenesis (Lian et al.,
2018). Meanwhile, CRY1 interacts with SWC6 and ARP6 and
stabilizes HY5 in blue light. Stabilized HY5 recruits SWR1
complex to HY5 target loci to regulate the transcription
of its target genes and photomorphogenesis (Mao et al,
2021b). In response to UV-B light signals, WRKY DNA-
BINDING PROTEIN 36 (WRKY36) represses the HY5 at the
transcriptional level to inhibit photomorphogenesis (Yang et al.,
2018). These results suggest that distinct light signals perceived
by different wavelength-specific photoreceptors modulate the
seedling growth at least in part through HY5 and HY5-
mediated signaling.

HY5 CONTROLS LIGHT-MEDIATED
ROOT GROWTH

Although roots grow in the soil, light signaling transduced
from shoot to root affects lateral and primary root
development in plants (Yang and Liu, 2020). Light triggers
the accumulation of HY5 that positively regulates root growth
and development under soil-grown conditions (Lee et al., 2016b;

Zhang Y. et al,, 2019). HY1 activates the transcription of HY5 in
the root cells. Subsequently, HY5 promotes the accumulation
of plant phytohormone auxin in the oscillation zone, leading
to lateral growth and branching (Duan et al, 2021). Light-
induced HY5 in the root cells activates the transcription of
LAZY4 to promote root gravitropism (Yang P. et al., 2020).
Far-red, red, and blue light perceived by PHYs and CRYs in
the shoot regulate lateral and primary root growth through
the HY5 (Lee et al.,, 2016a; van Gelderen et al., 2018; Gao
et al, 2021). HY5 is induced by far-red light in the lateral
root primordia in a phytochrome-dependent manner. HY5
decreases the abundance of auxin transporters PIN-FORMED3
and LIKE-AUXI 3 in the plasma membrane to inhibit lateral
growth under low red:far-red light conditions (van Gelderen
et al., 2018). Red and blue lights stabilize the HY5 dependent
on phyB or CRYs in the root, where it activates the miR163
and itself to promote primary root growth (Gao et al,
2021; Li T. et al, 2021). Thus, these results suggest that
distinct wavelength-specific photoreceptors transduce the light
signals to HY5 in the root cells where it regulates the root
growth in the soil.

HY5 REGULATES THE PIGMENT
ACCUMULATION

Anthocyanins are a class of flavonoids that provide protection
against biotic and abiotic stresses. HY5 integrates distinct
environmental signals such as light, low and high temperatures,
salinity, and drought stresses in the control of anthocyanin
biosynthesis. HY5 not only directly activates the MYBI2
transcription but also directly binds to the promoter regions
of multiple anthocyanin biosynthetic genes to activate their
transcription (Shin et al., 2007; Bhatia et al., 2021). In addition,
HY5 represses the expression of MYB-LIKE 2 (MYBL2),
which is a negative regulator of anthocyanin biosynthesis
(Nguyen et al, 2015; Wang et al, 2016; Kim et al, 2017).
Consequently, these molecular events contribute to anthocyanin
biosynthesis and accumulation. In apple, MdHY5 interacts
with MdBBX22 to promote the expression of genes involved
in anthocyanin biosynthesis (Henry-Kirk et al, 2018; An
et al,, 2019). Meanwhile, MAHY5 directly activates CONSTANS-
LIKE 11 (MdCOL11), MAMYBDL1, MdMYBIO0, and itself but
represses MdWRKY4I transcript level, which in turn promote
anthocyanin biosynthesis (Bai et al., 2014; An et al, 2017a,
2020; Liu et al.,, 2019; Mao et al., 2021a). In tomatoes, SIHY5
also controls the expression of anthocyanin biosynthetic genes
to promote anthocyanin accumulation (Liu et al, 2018; Qiu
et al.,, 2019). Red pear PyHY5 alone or together with PyBBX18
promotes the expression of PyMYB10 and WD40 PROTEIN
GENE (PyWD40), leading to the anthocyanin biosynthesis
(Bai et al,, 2019; Wang et al., 2020). Moreover, the other
HY5 orthologs in multiple plant species such as strawberry,
blood orange, grape, peach, and eggplant have also been
shown to promote the light-induced anthocyanin biosynthesis
and accumulation (Li J. et al, 2017; Huang et al, 2019
Li Y. et al, 2020; Sun et al, 2020; Zhao et al., 2021).
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Basic Region Leucine Zipper
AtHYS | |
1 98 116 143 168
MdAHYS5| |
1 97 115 142 164
PyHYS | |
1 97 115 142 164
PbHYS | |
1 97 115 142 164
FvHYS5 | |
1 98 116 143 166
PpHYS5 | |
1 97 115 142 167
VviHY5 | |
1 98 116 143 169
CsHYS | |
1 97 115 142 168
LeHYS | |
1 96 114 141 158
SmHYS5 | |
1 96 114 141 158
AaHYS5 | |
1 98 116 143 159
ZmHYS5 | |
1 99 117 144 170 . . . .
Basic Region Leucine Zipper
PpHY35a| |
1 208 226 253 277
PpHY5b| |
1 208 226 253 277
Ring Finger Basic Region Leucine Zipper
LONG1
1 36 81 254 272 299 322
Gmrys[— I
1 39 84 258 276 303 326
FIGURE 1 | HY5 orthologs are evolutionally conserved in protein structure. Schematic representations of domains present in multiple HY5 orthologs. AtHY5 (Oyama
etal., 1997), MdHY5 (An et al., 2017a), PyHY5 (Wang et al., 2020), PbHY5 (Wu et al., 2019), FvHY5 (Li Y. et al., 2020), PpHY5 (Zhao et al., 2017), WiHY5 (Loyola
et al., 2016), CsHY5 (Huang et al., 2019), LeHY5 (Liu et al., 2004), SmHY5 (Jiang et al., 2016), AaHY5 (Hao et al., 2019), ZmHY5 (Huai et al., 2020), PpHY5a and
PpHY5b (Yamawaki et al., 2011), LONG 1 (Weller et al., 2009), and GmHY5 (Song et al., 2008). Numbers indicate the position of amino acid residues.

All these facts suggest that HY5 is an essential regulator of
anthocyanin biosynthesis and accumulation, and its function
in promoting this physiological process is conserved among
diverse plant species.

Besides, light-induced HY5 is also involved in many other
secondary metabolite biosynthesis and accumulation in plants.
Knock-down LeHY5 transcription leads to reduced carotenoid
levels and pale green immature fruits and leaves, indicating
that LeHY5 promotes the carotenoid-mediated fruit ripening
in tomatoes (Liu et al., 2004). Consistently, LeHY5 regulates
the transcription of genes involved in carotenoid, anthocyanin
biosynthesis, and ethylene signaling (Wang et al., 2021d). The
expression level of PaHY5 in apricot fruit is correlated with the
content of carotenoids during the ripening process, indicating
that PaHY5 positively controls carotenoid biosynthesis and
accumulation in apricot fruit (Zhang L. et al., 2019). In Artemisia
annua, AaHY5 activates GLANDULAR TRICHOME-SPECIFIC
WRKYI (AaGSW1I) and AaWRKY?Y in a light-dependent manner
to promote artemisinin biosynthesis (Hao et al., 2019; Fu et al.,
2021). HY5 upregulates the expression of TERPENE SYNTHASE
03 (TPS03), a terpene biosynthetic gene, to facilitate the terpenoid
biosynthesis in Arabidopsis (Michael et al., 2020). In summary, all

these studies suggest that light-controlled HY5 plays a critical role
in the regulation of multiple secondary metabolite biosynthesis in
different plant species.

HY5 FUNCTIONS IN THE REGULATION
OF NUTRIENT UPTAKE AND
UTILIZATION

Nutrient acquisition and utilization is essential and necessary
for plant growth and development. HY5 controls the expression
of a set of genes involved in nitrogen uptake and transport
including NITRATE TRANSPORTER 1.1 (NRTI1.1), NITRATE
TRANSPORTER 2.1 (NRT2.1), AMMONIUM TRANSPORTER 1,
2 (AMT1;2), NITRATE REDUCTASE 2 (NIA2), and NITRITE
REDUCTASE 1 (NIRI; Jonassen et al., 2009; Huang et al., 2015;
Chen et al., 2016; Sakuraba and Yanagisawa, 2018). HY5 also
activates the expression of two sucrose efflux genes SUCROSE
TRANSPORTER 11 (SWEET11) and SUCROSE TRANSPORTER
12 (SWEET12) by directly associating with their promoters (Chen
et al., 2016; Sakuraba and Yanagisawa, 2018). It has been shown
that HY5 moves from shoot to root, where it promotes root
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FIGURE 2 | HY5 regulates a variety of physiological and developmental processes in diverse plant species. Various HY5 orthologs are involved in the control of
photomorphogenesis, nutrient utilization, pigment accumulation, and low and high temperature signaling by controlling downstream target genes.

growth and nitrate uptake. In the shoot, HY5 facilitates carbon
assimilation and translocation, while it activates the nitrate
transporter NRT2.1 to enhance nitrate uptake and utilization in
the root cells (Chen et al., 2016). A very recent study has shown
that HY5 protein mobility is likely not required for shoot-to-
root communication. A mobile signal acting downstream of HY5
may function in the shoot-to-root communication (Burko et al.,
2020a). Red light activated phyB promotes the accumulation
of HY5 both in the shoot and root. A portion of HY5 in the
shoot moves to the root, together with root localized HY5, and

directly regulates the phosphate starvation-responsive genes to
facilitate phosphorus acquisition in Arabidopsis (Sakuraba et al.,
2018). SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7
(SPL7) and HY5 act coordinately to regulate the transcription
of MIR408 and its target genes, resulting in the alternation
of copper allocation to the chloroplast and plastocyanin levels
(Zhang et al., 2014).

In apple, MAHY5 promotes nitrate assimilation by positively
regulating the expression of MdANIA2 and MdNRT1.1 (An et al.,
2017a). In tomatoes, SIHY5 controls starch degradation and
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FIGURE 3 | BBX-HY5 regulatory module promotes photomorphogenesis. BBXs and HY5 form a complex transcriptionally regulatory network in promoting
photomorphogenesis. HY5 activates the expression of BBX4, BBX11, and BBX22. BBX11 and BBX21 positively control the transcription of HY5. BBX20, BBX21,
BBX22, and BBX23 form heterodimers with HY5 to enhance its activity, whereas BBX24, BBX25, BBX28, and BBX29 interact with HY5 to inhibit its transcriptional
activation activity. BBX28 and BBX29 inhibit the HY5 action to upregulate BBX30 and BBX31 at the transcriptional level. Together, these events synergistically serve
to control HY5-mediated genes to promote photomorphogenesis. HY5, BBX4, BBX11, BBX20, BBX21, and BBX22 are positive regulators of light signaling, while
BBX24, BBX25, BBX28, BBX29, BBX30, and BBX31 negatively regulate photomorphogenesis.

BBX11

Shortened Hypocotyl

carbon utilization by directly associating with the promoter
regions of starch degradation-related genes (e.g., PWD, BAMI,
BAM3, BAMS8, MEX1, and DPEI) to activate their transcription
(Dong et al,, 2021). SIphyB promotes light-induced Fe uptake
in tomatoes by promoting the accumulation of SIHY5. SIHY5
moves from shoot to root, where it activates the expression
of the FER transcription factor, leading to the increase of Fe
uptake (Guo et al., 2021). Similarly, red light-activated SIphyB
enhances the STHY5 action in the shoot. Therefore, shoot STHY5
moves to the root to promote phosphate uptake under phosphate
starvation conditions (Ge et al., 2021). Altogether, these results
suggest that HY5 is necessary and required for precisely
controlling multiple nutrient uptake and utilization in diverse
plant species in response to fluctuating light signals (Figure 4).

HY5 MEDIATES THE RESPONSIVENESS
OF AMBIENT LOW AND HIGH
TEMPERATURES

As sessile organisms, plants have to cope with the fluctuating
temperatures in adapting to daily and seasonal changing cycles.
Low temperature is one of the most impactful environmental

cues that affect plant growth and development. HY5 controls
the expression of approximately 10% of all cold-induced genes
to promote cold acclimation in Arabidopsis. Low temperatures
trigger the COP1 translocate from the nucleus to the cytoplasm,
thus leading to the inactivation of COP1 and accumulation of
HY5 (Catald et al., 2011). PREFOLDIN 4 (PFD4) accumulates
in the nucleus, where it interacts with HY5 to facilitate its
polyubiquitination and degradation in a COPI-independent
manner in response to low temperatures (Perea-Resa et al,
2017). Low temperatures stabilize phosphorylated blue light
photoreceptor CRY2 which competes with COP1 to interact with
HYS5, thereby allowing the accumulation of HY5 that activates the
expression of BBX7 and BBX8. In turn, BBX7 and BBX8 regulate
the transcription of a set of cold-responsive genes to promote
freezing tolerance in plants (Li Y. et al, 2021). In tomatoes,
SIHY5, SIMYB15, and SICBFs work synergistically in response
to cold (4°C). On the one hand, SIHY5 positively regulates
SIMYBI5 transcription. On the other hand, both SIHY5 and
SIMYB15 upregulate the transcript levels of SICBF1, SICBF2, and
SICBF3. Thus, these molecular events increase the cold tolerance
in tomatoes (Zhang et al., 2020). MdHY5 and MdMYB108L
form a transcriptional feedback loop to promote cold tolerance
both dependent and independent on CBF signaling in apple

Frontiers in Plant Science | www.frontiersin.org

January 2022 | Volume 12 | Article 800989


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Xiao et al. HY5 Is a Signaling Hub

Leaf
miR408
Root
l HYS5 |—' External
NRT2.1
SULTRI2 Sulfate sulfate
External transport
NO; Internal
sulfate
o ) — e
reauction
transport Sulfite
External
Internal Iron iron
NO; transport
Internal
iron
External
hosph phosphate
PHTI; Phosphate
N+ transport Internal
4 phosphate
FIGURE 4 | HY5 acts as a central hub of nutrient signaling. Light triggers the accumulation of HY5 both in the shoot and root. HY5 activates the transcription of
SWEETs and miR408 to promote sucrose and copper utilization. A portion of shoot localized HY5 proteins move to the root. HY5 proteins in the root regulate the
transcription of genes involved in the uptake and/or transport of nitrogen, sulfur, Fe, and phosphate, thereby facilitating multiple nutrient assimilation.

(An et al, 2017b; Wang et al,, 2019). Thus, HY5 regulates the
cold accumulation both independent of and dependent on CBF
signaling in plants.

At elevated high temperatures, HY5 abundance is dramatically
reduced due to the inhibition of COP1 activity, resulting in
thermomorphogenic development (Kim et al., 2017; Park et al,,
2017). In contrast, HY5 competes with PIF4 for repressing
PIF4-regulated gene expression and thermomorphogenesis
(Gangappa and Kumar, 2017). Shoot and root growth occur
simultaneously during early seedling development at high
ambient temperatures (Bellstaedt et al., 2019). HY5 is required
for controlling root thermomorphogenesis (Gaillochet et al.,
2020; Lee et al, 2021). SPA directly phosphorylates HY5
to control its stability, through which HY5 regulates a set
of auxin and BR-mediated gene expression in the root
cells, consequently promoting root thermomorphogenesis
(Lee et al, 2021; Wang et al, 2021c). Therefore, high
temperatures tightly control the mode of HY5 action
that contributes to both shoot and root thermosensory
growth in plants.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Numerous studies have established that HY5 plays pleiotropic
roles in regulating various physiological and developmental
processes and responses to diverse internal and external signals
in plants. A group of components converges on HY5 to modulate

its abundance, activity, and transcription in maintaining its
appropriate biological action. HY5 acts as a signaling hub
that controls the expression of a large number of genes in
response to dynamic changing developmental, hormonal, and
environmental signals. This mechanistic regulation may ensure
the plants adapt to the intracellular and surrounding fluctuating
cues throughout their entire life cycles. Increasing studies have
shown that HY5 functions are evolutionally conserved among
various plant species. The HY5 orthologs in crops control
multiple agronomic traits such as stem growth, root growth,
nutrient uptake, and fruit ripening. Fulfilling a comprehensive
understanding of HY5 functions and signaling will provide
novel knowledge and strategies for the improvement of specific
agronomic traits in crops. According to current fundamental
knowledge on HY5 function and HY5-mediated signaling
network, HY5 most likely have positive roles in the control
of various physiological and developmental processes. It is
therefore loss of HY5 function in different plant species such
as Arabidopsis, rice, and soybean, leading to drastically deficient
in many facets of development and growth. Increasing HY5
abundance or activity may be a helpful strategy to improve
specific agronomic traits in crops. On the one hand, genetic
engineering techniques could be applied to generate specific
plants expressing appropriately increased HY5 abundance. On
the other hand, manipulation of positive or negative regulators
of HY5 could be used to enhance the HY5 action. In
view of the complexity of HY5 signaling, further studies are
required to clarify the detailed HY5 signaling network in
diverse plant species.
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