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Poaceae represent one of the largest plant families in the world. Many species are of great

economic importance as food and forage plants while others represent important weeds

in agriculture. Although a large number of studies currently address the question of how

plants can be best recognized on images, there is a lack of studies evaluating specific

approaches for uniform species groups considered difficult to identify because they lack

obvious visual characteristics. Poaceae represent an example of such a species group,

especially when they are non-flowering. Here we present the results from an experiment

to automatically identify Poaceae species based on images depicting six well-defined

perspectives. One perspective shows the inflorescence while the others show vegetative

parts of the plant such as the collar region with the ligule, adaxial and abaxial side of the

leaf and culm nodes. For each species we collected 80 observations, each representing a

series of six images taken with a smartphone camera. We extract feature representations

from the images using five different convolutional neural networks (CNN) trained on

objects from different domains and classify them using four state-of-the art classification

algorithms. We combine these perspectives via score level fusion. In order to evaluate

the potential of identifying non-flowering Poaceae we separately compared perspective

combinations either comprising inflorescences or not. We find that for a fusion of all six

perspectives, using the best combination of feature extraction CNN and classifier, an

accuracy of 96.1% can be achieved. Without the inflorescence, the overall accuracy is

still as high as 90.3%. In all but one case the perspective conveying the most information

about the species (excluding inflorescence) is the ligule in frontal view. Our results show

that even species considered very difficult to identify can achieve high accuracies in

automatic identification as long as images depicting suitable perspectives are available.

We suggest that our approach could be transferred to other difficult-to-distinguish

species groups in order to identify the most relevant perspectives.

Keywords: deep learning, machine learning, accuracy, Poaceae, plant perspective, image recognition, fine-

grained image classification, automated plant identification
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1. INTRODUCTION

Automated species identification is becoming an important and
widely used tool to monitor the occurrence of species across a
wide taxonomic range (Durso et al., 2021; Høye et al., 2021;
Joly et al., 2021; Mahecha et al., 2021). While a lot of literature
on automated identification of plants in general is published,
little is known about how well certain difficult taxonomic groups
are recognized by automated identification algorithms and how
this might be improved. Most notably, species belonging to the
plant family of Poaceae are all characterized by a uniform visual
appearance, making it a major challenge in image based plant
identification. About 12,000 species and 780 genera of Poaceae
are described (Christenhusz and Byng, 2016; Soreng et al.,
2017) which ranks them among the most diverse plant families
worldwide. Species of this family are circumpolar distributed
and are of great ecologic and economic value. Many species
are cultivated as important food and forage plants while others
are frequent and abundant weeds in various crops (Schroeder
et al., 1993). With only a few exceptions all Poaceae species
are characterized by a unique set of characters that allows
an easy attribution of individuals as members of the this
family (). This more or less uniform morphology leads to the
common perception of “grass” as a single species in the public
(Jäkel and Schaer, 2004; Thomas, 2019). The sometimes very
subtle differences between species or even genera can only
be recognized by careful examination, especially if no flowers
are present.

Automated identification applications achieve moderate
to high accuracies in both, plant recognition from images
(Wäldchen et al., 2018; Joly et al., 2021) and in vivo in the field
(Bonnet et al., 2018; Jones, 2020; Pärtel et al., 2021). Reliable
identifications are crucial for the credibility of the collected data
and also for professional users such as farmers, foresters or
teachers. However, detailed evaluations of identification accuracy
across broader taxonomic groups have identified Poaceae to
be among the families achieving lowest accuracies (Rzanny
et al., 2019; Pärtel et al., 2021). In order to generate valid
plant species distribution data via automated plant identification
apps (e.g., Bonnet et al., 2020; Mahecha et al., 2021) it is of
vital importance to enable users to reliably differentiate Poaceae
species which are often not recognized on species level. Poaceae
species are ubiquitous, often dominate entire landscapes (Veen
et al., 2009) and their occurrence and distribution provide
invaluable information on the condition and development of the
habitat (e.g., Diekmann et al., 2019). Experiments to evaluate
fine-grained classification within a group of visually very similar
plant species have been performed e.g., for Chenopodiaceae,
which represent another plant family with mainly wind- or self
pollinated and inconspicuous flowers (Heidary-Sharifabad et al.,
2021). The developed classifier is able to differentiate between
30 species of Chenopodiaceae with an accuracy of about 90%.
The study by Golzarian and Frick (2011) was an earlier attempt
to distinguish seedlings of ryegrass and bromegrass from wheat
based on a combination of color, texture and shape feature
vectors which were represented as three descriptors derived
from principal component analysis. The authors were able to

distinguish ryegrass from wheat with an accuracy of 88% and
bromegrass from wheat with an accuracy of 83%. Another recent
study (Rzanny et al., 2019) distinguished 12 Poaceae species as
part of a larger species subset with an accuracy of 90% when all
considered perspectives were fused. Combinations of only some
of these perspectives yielded slightly better results (up to 92.5%)
and the authors noted that the utilized perspectives were not
sufficient to reliably identify the species under consideration.
Images of reproductive plant parts are generally more often
identified correctly than non-reproductive parts such as leaves
or stems (Rzanny et al., 2019; Pärtel et al., 2021). We expect the
classification of images depicting inflorescences to achieve better
results than images from vegetative parts. However, it is often not
sufficient for a valid identification to solely rely on the images of
flowers or inflorescences. Especially for a number of congeneric
species, images of more specific characters might be required to
allow a reliable identification.

An important aspect of this study is to assess the predictive
value of vegetative parts of Poaceae species which are present
for longer time periods throughout the year. Here, we consider
images depicting the collar region, the adaxial and abaxial parts of
the lamina and the nodes, which all might display species-specific
characters. However, it is unknown what kind of perspective and
which region of a Poaceae species provides the most relevant
information in a single image or which combination of multiple
perspectives allows a reliable identification of the species even
in the absence of flowers. In order to draw general conclusions
from our experiment we decided to distribute the image analysis
over a range of deep neuronal networks for feature extraction and
the classification of these feature vectors over multiple methods
as well. If certain perspectives provide important information
for the determination of a species, this perspective should also
achieve a high relative accuracy across different feature extraction
and classification algorithms. Although we expect a CNN trained
on plant images to achieve higher absolute values of accuracy, we
expect the relative rank of the different perspectives to remain
comparable across the array of methods if the results are not
influenced by overfitting of certain highly specialized CNNs.

Consequently, the aims of this study are fourfold: (1) We
evaluate six image perspectives regarding the information they
convey for Poaceae species identification. (2) We seek to find
the most accurate combination of image perspectives for the
identification of Poaceae species. (3) We assess how the accuracy
of each perspective differs across the range of used feature
extraction algorithms and classifiers. (4)We explore the potential
of identifying Poaceae species without the presence of flowers.

2. MATERIALS AND METHODS

2.1. Poaceae Morphology
All Poacaeae, and therefore also the largest subfamily Pooideae,
which all considered species belong to, are characterized by
common morphological characters which are responsible for the
uniform appearance of different species (Figure 1). The stems
(culms) are round with solid nodes and hollow internodes. Leaf
position is distichous and alternate and they are attached to
the nodes of the culm. The leaves are lineal with parallel veins
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FIGURE 1 | (A) Illustration of the structure of a typical Poaceae species: Arrhenatherum elatius; drawing by Rita Lüder (Lüder and Lüder, 2011). (B) Two full

observations per species depicted for four different species. The perspective names and their abbreviations are denoted on the right.

and consist of a culm-enclosing sheath at the lower part and
a free lamina at the upper part. At the junction of sheath and
lamina a translucent, membranous outgrowth is located. This
structure is referred to as ligule. It can also be developed as a
fringe of hairs in some genera and in rare cases it is missing.
Some species additionally exhibit a pair of claw-like or ear-like
appendages at the base of the lamina (auricles). The transition of
sheath and lamina is called collar region and is highly indicative
for species identification through often unique combinations of
characters. Poaceae have reduced flowers. Their inflorescences
can be grouped as panicles, spikes or racemes, depending on
the presence and branching of the pedicels. The inflorescence is
composed of spikelets. They represent the flowering unit and are
covered by two glumes. Each spikelet in turn is composed of one
or more florets which form the reproductive unit. The flower
itself is covered by two bracts (palea + lemma) where the midrib
of the latter may or may not be prolonged into a fibrous bristle
termed awn.

2.2. Image Acquisition
We collected 80 observations for each of the studied 31 Poaceae
species (Table 1) in two consecutive years (2019 and 2020).
All images analyzed in this study were collected in different
regions of Germany using the Flora Capture app (Boho et al.,
2020). This smartphone app is designed to collect plant images
from several perspectives. Species taxonomy in this app basically
follows (Roskov et al., 2019) but in some cases very similar
species are summarized to aggregates (Table 1). The following
six perspectives were photographed atminimal focusing distance:
(1) Node (N) - depicts the culm node from lateral position. (2) -
Inflorescence (F) - a lateral image of the entire inflorescence. If
the entire inflorescence exceeded the image at minimal focusing
distance, the distance was increased until the entire inflorescence

could be photographed. (3) Leaf back (LeB)-abaxial side of a leaf
at medium length and in vertical direction. (4) Leaf top (LeT)-
adaxial side of a leaf at medium length and in vertical direction.
(5) Ligule side (LiS)-an image of the ligule in lateral perspective.
If the leaf was also in vertical position and would conceal the
ligule, the leaf was slightly pulled down to ensure visibility of
the ligule. (6) Ligule front (LiF) - image of the ligule in frontal
position (i.e from a position of the lamina). Again, the leaf was
slightly pulled down to ensure visibility of the ligule if necessary.
Whenever possible, more than one species was sampled at a each
location. All images were obtained from flowering individuals
by five different persons using a range of smartphone models
(iOS+Android). Exemplary observations of four different species
are shown in Figure 1.

2.3. Feature Extraction
Since our dataset consists of a comparatively small number
of samples, we approach the expected difficulties of training
a classification model with a high number of parameters end-
to-end, i.e., overfitting, by separating feature learning and
classification tasks. Our pipeline therefore includes two stages:
feature extraction, for which we compare the use of different
neural networks, trained on data from different problem
domains, and supervised classification using a number of
well-established algorithms. In the feature extraction stage we
project the high-dimensional data of our Poaceae observation
images into a lower-dimensional feature space more convenient
for classification.

We compare different state-of-the art architectures of deep
convolutional neural networks, pre-trained on datasets from
various domains, using the feature maps from their final layer as
representation to train classifiers on. The goal is to evaluate how
well features learned on different problems can be transferred
to our independent classification problem. We use the following
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TABLE 1 | List of all species that were used in the identification experiment.

Full species name Abbreviation Code

Agrostis capillaris L. Agr_cap 1

Agrostis stolonifera L. Agr_sto 2

Alopecurus pratensis L. Alo_pra 3

Anthoxanthum odoratum L. Ant_odo 4

Avenula pubescens (Huds.) Dumort. Ave_pup 5

Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl. Arr_ela 6

Brachypodium pinnatum (L.) P.Beauv. Bra_pin 7

Brachypodium sylvaticum (Huds.) P.Beauv. Bra_syl 8

Bromus inermis Leyss. Bro_ine 9

Bromus erectus Huds. Bro_ere 10

Bromus hordeaceus agg. Bro_hor 11

includes Bromus hordeaceus L.

includes Bromus lepidus Holmb.

Bromus ramosus agg. Bro_ram 12

includes Bromus ramosus Huds.

includes Bromus benekenii (Lange) Trimen)

Bromus sterilis L., nom. cons. Bro_ste 13

Dactylis glomerata L. Dac_glo 14

Elymus caninus L. Ely_can 15

Elymus repens L. Gould Ely_rep 16

Festuca altissima All. Fes_alt 17

Holcus lanatus L. Hol_lan 18

Hordelymus europaeus (L.) Jess. ex Harz Hor_eur 19

Lolium perenne L. Lol_per 20

Lolium giganteum (L.) Darbysh. Lol_gig 21

Melica nutans L. Mel_nut 22

Melica picta K.Koch Mel_pic 23

Milium effusum L. Mil_eff 24

Phleum pratense L. Phl_pra 25

Poa compressa L. Poa_com 26

Poa nemoralis L. Poa_nem 27

Poa pratensis L. Poa_pra 28

Poa trivialis L. Poa_triv 29

Sesleria caerulea (L.) Ard. Ses_cae 30

Trisetum flavescens (L.) P.Beauv. Tri_fla 31

Species names are used according to Catalog of Life (Roskov et al., 2019).

three architectures of deep convolutional neural networks in our
experiments. Inception-v3 (Szegedy et al., 2016) is a 42-layer
convolutional neural network that builds on Inception modules,
each applying multiple differently-sized convolution filters and
pooling operations to the same input in parallel. The network has
23.8M trainable parameters and an input resolution of 299x299
pixels. ResNet (He et al., 2016) uses identity shortcut connections
to tackle the problem of vanishing gradients in deep networks.
The variant ResNet-101 is 101 layers deep, has 44.5M trainable
parameters and operates on images of 224 x 224 pixels. NASNet
(Zoph et al., 2018) is a convolutional neural network for which
the architecture of the convolutional layers themselves has been
optimized in an automated process instead of being designed
by experts. The specific version we use has 88.9M trainable
parameters and takes input images with a resolution of 331 x

331 pixels. Our observations images are resized to the network’s
respective input resolution before feature extraction. The neural
networks have been trained for supervised classification tasks on
the following datasets:

• Open Images (Krasin et al., 2017). The dataset consists of
9.4M labeled training images of a great variety of objects,
plants, animals etc. taken in different surroundings without
any systematic process that were originally uploaded by users
of the image-hosting website Flickr under CC-BY license. They
span 5K classes which the authors consider trainable based on
the number of human-verified class labels.

• Leafsnap (Kumar et al., 2012). The dataset consists of 25K
labeled training images depicting leaves from 184 species of
trees from the Northeastern United States. Most images were
taken of pressed leaves front- and backlit under controlled lab
conditions with uniform background, supplemented by less
than 10 percent of field images taken by mobile devices in
outdoor environments.

• Birdsnap (Berg et al., 2014). The dataset consists of 50K labeled
images of 500 species of birds common in North America. The
images show birds in natural surroundings and were taken
under various conditions.

• PlantCLEF 2016 (Goëau et al., 2016). The dataset consists of
113K images of 1K species of trees, herbs and ferns distributed
in West European regions. Images depict plants under a wide
variety of conditions in different surroundings and were taken
by different users on their mobile devices.

• Flora Incognita (Mäder et al., 2021). The dataset consists of
more than 1M images of 4.8K plant taxa common in Western
Europe. It comprises user-contributed images taken fromwell-
defined perspectives via the Flora Incognita app (Boho et al.,
2020) as well as images taken by experts in the field of botany.
Among the taxa included are multiple species of Poaceae.

2.4. Image Classification and Evaluation
We trained four widely used and established classifiers (Zhang
et al., 2017) on the feature vectors extracted by five CNNs from
our image data (Figure 2). These five CNNs specifically are
Inception-v3 for the Leafsnap, Birdsnap and PlantCLEF datasets,
NASNet for Flora Incognita and ResNet-101 for OpenImages.
Our dataset was split into a training (75%) and a test (25%)
subset with the same split used for all subsequent experiments to
calculate classification accuracy. Splitting was stratified by species
to ensure that the number of images for training (65) and test (15)
were the same for each species. All classifiers were trained and
tunedwithin the caret framework (Kuhn, 2021) in R 4.1.1 (R Core
Team, 2020) using the defaults for each classifier but allowing a
greater number of parameter combinations (ten instead of three)
to be evaluated for model tuning. We used bootstrap resampling
(25 iterations) to evaluate the accuracy of the classifier in order
to find the best tuning parameters for each classifier. Accuracy
was calculated as the percentage of correctly identified images for
each species and as the average across all species (recall). We use
the following algorithms for classification:

• Support vector machines (SVM) (Cortes and Vapnik, 1995)
find an optimal linear hyperplane that separates the classes in
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FIGURE 2 | General approach for feature extraction, classification and score fusion used in this study. We used each of the five CNNs (details in the text) to extract

features from all images. In the following four different classifiers are trained on the feature vectors of same subset of training images separately for each perspective.

The resulting scores for the single perspectives were than fused via sum rule, i.e., as the arithmetic mean of the scores for this species for the considered combination

of perspectives. The steps were repeated for all CNN - Classifier combinations.

the feature space. SVMs are known to be reliable, robust and
well-performing learningmodels (Zhang et al., 2017).We used
an SVM classifier with a linear kernel provided by package
e1071 (Meyer et al., 2020).

• Random forests (RF) (Breiman, 2001) are ensembles of
decision trees, each individually trained on randomly
drawn samples of the dataset via bootstrap aggregation,
thereby generating multiple uncorrelated models
whose predictions are combined through voting. We
used the implementation provided by package ranger
(Wright and Ziegler, 2017)

• The k-Nearest Neighbors (KNN) algorithm (Altman, 1992)
assigns a sample’s class membership based on the majority
class of its k nearest neighbors in feature space. We used
the implementation provided by package class (Venables and
Ripley, 2002)

• Naive Bayes (NB) classifiers use Bayes’ rule to estimate the
probability of new data belonging to each of the possible
classes in a given dataset, thereby assuming independence
and gaussian distribution of the descriptors. We used the
implementation provided by package naivebayes (Majka,
2019).

To combine the predicted results for multiple perspectives we use
score-level fusion based on a simple (normalized) sum rule, an
easily comprehensible method that allows for a straightforward
interpretation of the results. The fused score S over the set P
of selected perspectives p ∈ P is calculated as the sum of the
individual scores sp:

S =
∑

p∈P

sp

|P|

3. RESULTS

3.1. Single Perspectives
The Top-1 accuracies for the individual perspectives averaged
across all species range from 87.5 to 26% (inflorescence), 75.3
to 17.2% (ligule front), 70.1 to 18.2% (ligule side), 64.9 to
17.6% (node), 63.7 to 13.1% (leaf back), and 62.3 to 17.6%
(leaf top) (Figure 8). In general, the features derived from the
Flora Incognita CNN combined with an SVM classifier always
achieve the highest accuracies, while the Open Images features
combined with the Naive Bayes classifier always achieve the
lowest accuracies for all single perspectives. This also holds true
for the accuracies of almost all different fused combinations.
For two combinations (N_F_LiS and N_F_LeB_LiS) the random
forest classifier performs slightly better on the Flora Incognita
feature vectors than SVM. The inflorescence perspective always
achieves the highest accuracy no matter which features are
used. The different feature sources maintain a consistent ranking
irrespective of the classifier used. Flora Incognita achieves the
best accuracies, followed by PlantCLEF, Birdsnap, Leafsnap and
Open Images (Figure 8). The difference in accuracy between the
inflorescence and the remaining perspectives seem to decrease in
this order as well.

3.2. Perspective Combinations
The accuracy for the inflorescence perspective alone in the
best-performing feature extractor-classifier combination (Flora
Incognita + SVM) is 87.5% and can be increased by 8.6–96.1%
through a combination of all six perspectives (Figure 5 and
Table 2). If considering only those images depicting vegetative
plant parts, i.e., excluding inflorescence, the improvement
from the best individual perspective (ligule front; 75.3%) to a
combination of all five (90.3%) is 15% (Figure 6 and Table 2).
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The ranking of the classifiers is largely the same across the
entire array of combinations (Figures 6–8). Also, the differences
in usefulness between features from different neural networks
are only of quantitative instead of qualitative nature. The same
perspective combinations that achieve high accuracies with Flora
Incognita features (e.g., N_LiF) also achieve high accuracies
with features from the remaining extractors. On the other hand,
combinations that perform comparably poorly in Flora Incognita

TABLE 2 | Classification results achieved from the best-performing feature

extractor (Flora Incognita) and best-performing classifier (SVM).

Flowers present Vegetative

Perspective name Top-1

Accuracy

Perspective name Top-1

Accuracy

Node (N) 64.9

Inflorescence (F) 87.3

Leaf back (LeB) 63.9

Leaf top (LeT) 62.6

Ligule side (LiS) 70.3

Ligule front (LiF) 75.1

Best Combination Top-1

Accuracy

Best Combination Top-1

Accuracy

F_LiS 92.0 LeB_LiF 82.4

N_F_LiF 94.4 N_LeT_LiF 87.1

N_F_LeB_LiF 95.5 N_LeB_LeT_LiF 89.7

N_F_LeT_LeB_LiF 95.3 N_LeB_LeT_LiS_LiF 90.3

N_F_LeT_LeB_LiF_LiS (All) 96.1

Top-1 accuracies for individual perspectives and for the best combinations of n

perspectives out of all combinations for n=1,...,6. Accuracies are calculated separately

depending on the availability of images depicting the inflorescence.

(e.g., LeT_LeB) are also performing poorly with features derived
from the other networks (Figure 6). In general, the Open Images
features not only perform worst in overall accuracies but also
show the lowest variation across the perspectives and their
combinations (Figures 6–8).

3.3. Species Accurracies
A few species are consistently recognized well based on a
single image perspective regardless of feature extractor and
classifier. Examples for this are Agrostis capillaris, Festuca
altissima, Holcus lanatus and Sesleria varia (Figure 3). For
some species, certain perspectives provide highly inaccurate
information, e.g., the perspective node for Arrhenatherum
elatius, which performs poorly across all feature extractors
and classifiers (Figure 3). The fusion of all perspectives leads
to very few misidentifications (Figure 4). The only species
with three misidentifications out of 15 test observations is
Poa nemoralis (two misidentifations: Arrhenaterum elatius,
Brachypodium sylvaticum, Bromus erectus). 19 of 31 species
are always correctly identified in all test observations. In
general, the strip-like patterns that continues for many species
throughout the entire array of feature descriptors and the
classifiers in Figure 6 indicate that the feature descriptors
and the classifiers largely agree on which species are easy
to classify and which are not. To compare the species
accuracies across the different feature extractors we calculated
relative accuracies as each species accuracy divided by the
maximum of all species for this particular feature - classifier
combination (Figure 7).

4. DISCUSSION

The main goal of this study was to determine which image
perspectives convey the most information to identify 31

FIGURE 3 | Comparison of accuracies per species for all single perspectives across all CNNs and all classifiers. Species codes are explained in Table 1.
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FIGURE 4 | Confusion matrices (Reference vs. Prediction) for the best performing combinations of feature vectors and classifier (Flora Incognita neuronal network

features combined with the SVM classifier) for the single perspectives, for the fusion of all perspectives but Inflorescence and for the fusion of all perspectives. Species

abbreviations are explained in Table 1.
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FIGURE 5 | Accuracies achieved for combinations of image perspectives (columns) and feature extractors (rows). The presence or absence of the respective

perspective in each combination combinations are indicated through the matrix at the top. The results are shown separately for each CNN with the classifiers

color coded.

species belonging to the Poaceae family. We found individual
perspectives to be ranked in the following order: inflorescence
(87.3%), ligule front (75.1%), ligule side (70.3%), node (64.9%),
leaf back (63.9%) and leaf top (62.6%). Our results show that
combining images taken from multiple perspectives further
increases the success rate of identifying Poaceae species.
Fusing all perspectives via sum rule we achieve an accuracy
of 96.3%. Even without inflorescences, the 31 species under
consideration in this study can still be identified with an
overall accuracy of about 90% (Table 2). Combining only
three perspectives (node, leaf top side, ligule frontal) turns
out to be a reasonable compromise of taking as few pictures
as possible while still achieving a high accuracy of 87.1%
(Table 2).

Combining different perspectives has shown to be effective
for improving overall accuracy before (Do et al., 2017; Rzanny
et al., 2019; Nhan et al., 2020; Seeland and Mäder, 2021).
A study using images of 12 Poaceae species from various
perspectives found a maximum accuracy of 90% when all
perspectives were combined (Rzanny et al., 2019). That study
used a different approach and different perspectives compared
to this study, e.g., an image of the ligule was not considered.
The results of the present study, however, show that the frontal
perspective of the ligule (LiF) is the second most informative
one after the inflorescence (F). The ligule, and more generally
the collar region of Poaceae, is also known to be of utmost

importance for manual identification, since shape and size of
the ligule, as well as presence, shape and hairiness of auricles
are important distinctive characters (). Consequently, it is highly
plausible that images of the ligule are also important for
automated identification.

Different combinations of feature extractors and classifiers
achieve a consistent ranking in the results for the same
perspectives (Figure 5). This holds also true if accuracy is
averaged across all species and also for individual species
(Figures 6, 7), although there are larger differences in
the absolute values. The example for the best performing
classification algorithm (SVM) on all fused perspectives shows
that none of the species that achieve less than 100% accuracy
in the Flora Incognita feature extractor achieve 100% relative
accuracy in any other feature extractor, indicating that all feature
extractors more or less agree which species are difficult to
identify and which are not (Figure 7). Similarly, there is a general
agreement on the degree of importance of different perspectives
for the identification of Poaceae species (Figures 3, 8). The
fact that the ranking of classification accuracy among different
classifiers is largely unaffected by the choice of the feature
extractor is an indication that our results are not likely to be
influenced by switching to another classification algorithm,
therefore making our findings more generally valid by being
largely classifier-independent. Even though we observe SVM
to generally achieve highest accuracies, followed by RF, this
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FIGURE 6 | Accuracy per species for individual perspectives and all combinations for all feature extractor (colums) and classifiers (rows). The perspective

combinations are subdivided into two sections: combinations containing inflorescences (upper section) and combinations that do not contain inflorescences (lower

section). Within these sections the combinations are sorted along the number of perspectives combined. Species codes are explained in Table 1.

may be explained by the fact that the features are derived from
CNNs where they would originally be classified in a single
fully-connected linear layer, making the problem more tractable
for other linear classifiers such as SVMs. The differences in
absolute values among feature extractors can be explained by
the varying similarity of the domains and datasets used to train
the original neuronal networks to our Poaceae images. While
a number of grass species observations with partly detailed
images are used to train e.g., the Flora Incognita network and
the PlantCLEF network, such images did not or only marginally
contribute to the training data of BirdSNAP and OpenImages.
LeafSnap in turn is trained on cropped tree leaf images which
do not share many features with the highly structured Poaceae
images used in this study.

4.1. Limitations
Our study considers 31 Central European distributed species
of Poaceae. However, there are more than 200 Poaceae species
occurring in Germany (Müller et al., 2021) where all the
images were taken. It is important to note, that the absolute
accuracies for certain species are dependent on the number
of species that need to be discriminated from each other.
Here, we can only consider a small subset of all Poaceae
species. Therefore, the achieved absolute accuracies need to be
interpreted within the context of the considered species set. On
the other hand, as Poaceae are characterized by a consistent
morphological structure we think that the relative contribution
of information content per perspective is transferable to other
Poaceae species.
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FIGURE 7 | Relative accuracy per species for fusion of all perspectives and the best-performing classifier (SVM). Relative accuracy is calculated as species accuracy

divided by the highest accuracy of all species for the particular feature/classifier combination.

Our main aim is to show how identification accuracy
within a certain group of species can be increased through
an adequate choice of suitable perspectives. And our results
imply that certain combinations of perspectives are consistently
more informative across many different types of CNNs and
classification algorithms.

In practice, it is difficult and requires some effort to take
informative and focused images of specific Poaceae organs
using a smartphone in the field. Poaceae have lineal leaves and
often fuzzy, indistinctive inflorescences (Figure 1). Accordingly,
plant parts only encompass small portions of the entire image
while comparably large parts are covered by background.
Additionally, some species have bristle-like, involute or even
convolute leaves (e.g., Festuca spp., Corynephoros canescens,
or Nardus stricta) which can render certain perspectives less
useful and further diminish the leaf-background ratio of
leaf images. Some taxa, e.g., within the Festuca ovina and
Festuca rubra aggregates, are usually distinguished based on
branching type of the tillers, leaf cross-sections or cytological
differences (Stace et al., 1992; Dengler, 1998) which limits
attempts to automatically identify taxa based on images below
a certain threshold of taxonomic resolution. In other words,
there are limits to certain taxa within Poaceae where a
reliable automated identification based on macroscopic images
is highly unlikely.

5. CONCLUSIONS

While Poaceae are a widespread, highly diverse and
ubiquitous plant family that is shaping entire landscapes,
they are very difficult to identify because its species
closely resemble each other. Our observations show that,
within a limited species pool even for those species, an
accurate automated identification is possible as long as it
is based on suitable images. Even if the most distinctive
perspective, i.e., inflorescence, with which an overall
identification accuracy of 96% can be achieved, is not
available, accuracy only slightly decreases to 90%, which
still leads to accurate predictions in most cases. These
results imply that automated recognition of Poaceae is
already useful for monitoring purposes or smart weeding
approaches where the species pool is known. It remains
to be explored further how reliable image recognition of
Poaceae is in situations, where hundreds of species needs
to be discriminated from each other. Poaceae represent
only a single example of a species group that is difficult
to identify. Other families such as Cyperaceae, Juncaceae,
Equisetaceae, Cactaceae or certain genera such as Alchemilla,
Orobanche or Rosa require their own unique perspectives
of specific distinctive regions for a reliable identification.
Many of these often apomictic and taxonomically challenging
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FIGURE 8 | Accuracies achieved for the six single image perspectives. Values

are shown for five different CNNs (columns) and four different classification

algorithms (rows).

plant taxa (Dressler et al., 2017) have unique ecological
requirements and are of great interest for monitoring and
biodiversity conservation. It is therefore desirable to develop
specific customized recording schemes for certain plant

families to guide users of automated identification devices
in taking images of these distinctive features during the
identification process.
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