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A subfamily of transcription factors known as HD-ZIP III plays distinct roles in the
secondary cell wall biosynthesis, which could be attributed to the quality of cotton fiber
and adaptation to drought stress. In this study, 18 HD-ZIP III genes were identified as
genome wide from the upland cotton (Gossypium hirsutum). These genes are distributed
on 14 different chromosomes, and all of them have undergone segmental duplications.
Numerous cis-elements were identified in the promoter regions, which are related to
phytohormone responses and abiotic stresses. Expression profiling of these genes
by quantitative real-time (qRT)-PCR illustrated their differential spatial expression, with
preferential expression in cotton fiber. Among these genes, GhHB8-5D was predicted
to encode a protein that is targeted to the cell nucleus and having self-activation ability. In
addition, the ectopic expression of GhHB8-5D or its synonymous mutant GhHB8-5Dm
in Arabidopsis resulted in stunted plant growth, curly leaves, and twisted inflorescence
stems. Microscopy examination revealed that the morphology of vascular bundles and
deposition of secondary wall had substantially altered in stems, which is concomitant
with the significant alteration in the transcription levels of secondary wall-related genes in
these transgenic Arabidopsis. Further, ectopic expression of GhHB8-5D or GhHB8-5Dm
in Arabidopsis also led to significant increase in green seedling rate and reduction in root
length relative to wild type when the plants were grown under mimicked drought stress
conditions. Taken together, our results may shed new light on the functional roles of
GhHB8-5D that is attributable for secondary cell wall thickening in response to drought
stress. Such a finding may facilitate a novel strategy for improving plant adaptations to
environmental changes via regulating the biosynthesis of secondary cell wall.
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INTRODUCTION

As the most important crop producing natural fibers, upland
cotton (Gossypium hirsutum) is broadly cultivated in the
temperate regions in the world and the quality of fiber is
of paramount economic significance (Paterson et al., 2012).
Fiber development undergoes four distinctive but overlapping
stages: initiation, elongation (primary cell wall biosynthesis),
secondary cell wall (SCW) thickening (cellulose biosynthesis),
and maturation (Haigler et al., 2012). The formation of SCW in
fiber cells has been recognized as one of the most crucial steps
that directly affect cotton fiber quality (Li et al., 2015).

In mature cotton fiber, SCW is mainly composed of cellulose
that is a polysaccharide synthesized by cellulose synthase
(CESA) complex (McFarlane et al., 2014; Hernandez-Gomez
et al., 2015). Transcriptional regulation network controlling
SCW biosynthesis has been extensively elucidated in the model
plant Arabidopsis (Arabidopsis thaliana), in which numerous
transcription factors (TFs) such as NAC acting as master
switch coordinate the expression of CESAs by coupling with
MYB and others (Taylor-Teeples et al., 2015; Zhong and
Ye, 2015). However, in cotton, only a limited number of
TFs that regulate SCW synthesis have been identified, while
their functionality and intricate relationship remain poorly
understood (Zhang et al., 2018a; Huang et al., 2019, 2021; Cao
et al., 2020). This is despite the recent premise of a model of
a four-layered transcriptional regulatory network consisting of
GhTCP4, GhMYB7, GhFSN1, and GhMYB46_D13 regulating
fiber SCW GhCesA genes (Huang et al., 2021). Such a network
model may still fall short in sophistication, as many other
TFs that function in concert in SCW formation, such as
HD-ZIP III TFs, remain unexplored (Robischon et al., 2011;
Du et al., 2015).

HD-ZIP III subfamily contains five members in theA. thaliana
genome, including REVOLUTA/INTERFASCICULAR
FIBERLESS1, ATHB8, PHAVOLUTA/ATHB9, PHABULOSA/
ATHB14, and CORONA/ATHB15, all of which harbor a leucine
zipper motif (LZ) downstream of the homeodomain (HD)
(Schena and Davis, 1992). The HD is responsible for the specific
binding to target DNA, whereas LZ acts as a dimerization motif
(Ariel et al., 2007). The conserved amino acids then form a
START (steroidogenic acute regulatory protein-related lipid
transfer) domain and an adjacent conserved region known
as SAD (START-adjacent domain). HD-ZIP III genes are
posttranscriptionally regulated by miR165/166 that targets
the START domain of the subfamily (McConnell et al., 2001;
Kidner and Martienssen, 2004; Kim et al., 2005). Additionally, all
members of this subfamily have a conserved domain known as
MEKHLA in their C-termini, which shares significant similarity
with the PAS domain and is involved in light, oxygen, and redox
potential sensing (Mukherjee and Burglin, 2006).

Previous studies showed that all the members in the HD-
ZIP III subfamily were required for xylem cells differentiation
and secondary wall biosynthesis. For example, REV is a positive
regulator of secondary wall deposition in interfascicular fibers,
and its defective mutant rev lacked normal interfascicular
fibers in stems (Zhong et al., 1997; Zhong and Ye, 1999).

REV is also negatively regulated by KNAT7 and BLH6, the
expression of which promoted SCW deposition in the knat7/blh6
double knockout mutant (Liu et al., 2014). ATHB8, a gene
positively regulated by auxin (Baima et al., 1995), was considered
as an early marker of the procambial and cambial cells
during vascular development. Ectopic expression of ATHB8 in
Arabidopsis increased the production of xylem tissues (Baima
et al., 2001). Similarly, a Populus trichocarpa HD-ZIP III gene,
PtrHB7, was preferentially expressed in the cambial zone; on
the other hand, PtrHB7-suppressed plants displayed significant
changes in vascular tissues with a reduction in xylem but
increase in the phloem (Zhu et al., 2013). In the phylogenetic
analysis of A. thaliana genes, ATHB9, ATHB14, and REV
comprised a clade and exhibited similar expression patterns
in the vasculature, with ATHB9 and ATHB14 as a sister pair
(McConnell et al., 2001; Emery et al., 2003). Mutations in the
ATHB9 and ATHB14 genes enhanced the vascular defects of
the rev mutant (Prigge et al., 2005). The coordinated expression
of REV, ATHB9, and ATHB14 are necessary for xylem cell
specification and secondary wall biosynthesis (Carlsbecker et al.,
2010). The overexpression of OsHB4, a member of the rice
HD-ZIP III subfamily, resulted in leaf rolling and altered
stem xylem in rice, and the polysaccharide synthesis-related
genes could be regulated by miR166-OsHB4 as revealed by
transcriptomic analysis (Zhang et al., 2018b). Therefore, OsHB4
may contribute to cell wall formation and vascular development
in rice. In Arabidopsis, overexpression of a miRNA-resistant
ATHB15 resulted in moderate dwarfing, upcurling leaves, and
a drastic reduction in xylem and lignified interfascicular tissues
(Kim et al., 2005). Transgenic Populus expressing a synthetic
miRNA targeting ATHB15 led to abnormal lignification in cells
of the pith, while the overexpression of a miRNA-resistant
ATHB15 caused delayed lignification of xylem and phloem fibers
during secondary growth (Du et al., 2011), hence ATHB15
was believed to be involved in secondary wall transcriptional
pathway by regulating wall-related TFs and synthetic genes
(Du et al., 2015).

The plant root xylem is a specialized tissue that distributes
water to the shoot. In Arabidopsis, water deficiency enhanced
the levels of miR165, which in turn negatively affected HD-
ZIP III expression and impacted on xylem development and
hydraulic conductivity of root (Ramachandran et al., 2018). On
the other hand, the overexpression of a miR166-resistant form of
OsHB4 contributed to cell wall formation, vascular development,
and drought resistance in rice (Zhang et al., 2018b), which was
well in line with the overexpression of OsHOX32 in rice that
displayed narrow rolled leaves, reduced stomatal conductance,
and transpiration rate, leading to the improvement in water use
efficiency (Li et al., 2016). In cotton, deep sequencing of salt-
and drought-treated small RNA libraries, led to the identification
of ghr-miR166a-j that was downregulated in both drought and
salinity treatments, and its target gene ghr-HD-ZIP IIIs was
significantly upregulated as a result (Xie et al., 2015).

In this study, we performed a comprehensive genome-
wide analysis of HD-ZIP III genes in cotton and presented
characteristics of this subfamily. In addition, we further
investigated the function of GhHB8-5D in Arabidopsis,
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overexpression of which altered the morphology of vasculature,
secondary wall deposition, and drought tolerance. This study may
not only provide new insight on the functions of GhHB8-5D but
also facilitate additional useful tools for genetic improvements of
cotton fiber quality and drought resistance.

MATERIALS AND METHODS

Identification of HD-ZIP III Genes in
Upland Cotton
Five protein sequences of Arabidopsis HD-ZIP III members were
obtained from TAIR1 as queries to search cotton (Gossypium
hirsutum L. acc. TM-1) genome database2. The conserved HD
(PF00046), START domain (PF01852), and MEKHLA domain
(PF08670) of HD-ZIP III subfamily were found by using Pfam3,
HMMER4, and the Batch Web CD-Search5. The molecular
features and subcellular localization of the cotton HD-ZIP III
proteins were predicted using the ProtParam tool6 and Plant-
mPLoc7, respectively.

Gene Structure and Conserved Motif
Analysis
The genomic and coding sequences of HD-ZIP III genes were
compared by Gene Structure Display Server8 to investigate the
distribution of exon/intron. A total number of 18 HD-ZIP III
protein sequences were used to predict the conserved motifs by
using the MEME online program9, which were further validated
by the Batch Web CD-Search, Pfam, and Batch SMART10.

Chromosomal Location and Collinearity
Analysis
Chromosomal location information of HD-ZIP III genes was
extracted from the cotton genome database. All the members
of the HD-ZIP III subfamily were mapped to their respective
locus of chromosomes and visualized using TBtools (Chen et al.,
2020). For collinearity analysis, the protein sequences of 18 HD-
ZIP III genes were served as queries for BLASTP to search the
cotton genome database. Duplicated sequences of HD-ZIP III
genes were identified as previously described. The alignment
covers > 80% of the longer gene and the aligned region has
an identity > 80% at the nucleotide level (Wang et al., 2020;
Zhang et al., 2020). MCScanX software was employed to estimate
the collinear pairs and gene duplication type and the result was
visualized by using Circos software (Krzywinski et al., 2009;
Wang et al., 2012).

1http://www.arabidopsis.org
2https://www.cottongen.org
3http://pfam.xfam.org
4https://www.ebi.ac.uk/Tools/hmmer
5https://www.ncbi.nlm.nih.gov
6https://www.expasy.org/resources/protparam
7http://www.csbio.sjtu.edu.cn/bioinf/plant-multi
8http://gsds.gao-lab.org
9https://meme-suite.org/meme/tools/meme
10http://smart.embl-heidelberg.de/smart/batch.pl

Cis-Element Distribution in Promoter
Sequences of HD-ZIP III Genes
A fragment of 2 kb upstream region of the transcriptional
start site of each HD-ZIP III gene was retrieved as the
promoter sequence and analyzed using the PlantCARE11 for
cis-element prediction.

Phylogenetic Analysis
The putative protein sequences of HD-ZIP III derived from
A. thaliana, Gossypium arboretum, G. hirsutum, G. raimondii,
Oryza Sativa, Populus trichocarpa, and Zinnia elegans genes were
aligned using ClustalX and a phylogenetic tree was constructed
by using MEGA7 and the maximum likelihood method with 1000
bootstrap replications (Larkin et al., 2007; Kumar et al., 2016).

Plant Materials and Growth Conditions
Gossypium hirsutum cv. ZM24 plants were grown to maturation
in a controlled growth chamber under 30◦C with a 16 h
photoperiod. The seeds ofA. thaliana ecotype Col-0 were surface-
sterilized and sown on half strength Murashige and Skoog
medium supplemented with 2% sucrose. After a vernalization
period at 4◦C for 48 h, the plates containing Arabidopsis seeds
were transferred to a plant growth incubator for a further 7 days
before being transplanted to soil in a greenhouse at 22◦C with
16 h photoperiod.

Vector Construction and Transformation
The entire coding region of GhHB8-5D was PCR amplified
and subcloned into pBI121 under the transcriptional control of
the CaMV 35S promoter. Mutations at the miR166a target site
were introduced by fusion PCR amplification to construct the
GhHB8-5Dm overexpression vector. Two overlapping primers
(Supplementary Table 5) that mismatched the miRNA binding
sites without changing the protein coding sequence were used
to generate mutations in the GhHB8-5D cDNA sequence. The
mutated cDNA was then inserted into pBI121 behind the CaMV
35S promoter. The vectors were transferred into Agrobacterium
tumefaciens and introduced in A. thaliana Col-0 by floral dip
method (Zhang et al., 2006). Transgenic Arabidopsis seedlings
were selected by germinating seeds on kanamycin-supplemented
Murashige and Skoog (MS) agar plates. Two independent lines
with a single transgene were bred to homozygosity and used for
further analysis.

Subcellular Localization and
Transcription Activation Analysis
The coding sequence of GhHB8-5D was cloned to a pBI-eGFP
vector that was then introduced into A. tumefaciens for transient
expression in the leaf tissues of Nicotiana benthamiana as
previously described (Sparkes et al., 2006). Green fluorescent
protein (GFP) in agro-infiltrated N. benthamiana leaf cells
was detected under an SP5 Meta confocal laser microscope
(Leica Microsystems, Mannheim, Germany). To investigate the
transcriptional activity of GhHB8-5D, both the full-length and

11http://bioinformatics.psb.ugent.be/webtools/plantcare/html
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truncated coding sequences of GhHB8-5D were inserted into the
pGBKT7 vector, which were then introduced into baker’s yeast
Saccharomyces cerevisiae strain AH109 using the high-efficiency
lithium acetate transformation procedure. Yeast transformants
were streaked on a selective medium lacking tryptophan to
assay transcriptional activity. the β-galactosidase activity was
also assayed by colony-lift filter assay using 5-bromo-4-chloro-
3-indolyl β-D-galactopyranoside (X-gal) as substrate.

Stem Sections and Microscopic Analysis
Freehand slicing and paraffin-embedded section of Arabidopsis
stems and secondary wall staining were performed as previously
described (Huang et al., 2019).

RNA Isolation and qRT-PCR
Cotton RNA was extracted from different cotton tissues, and
Arabidopsis RNA was isolated from 6-week-old stems using
RNAprep Pure Plant Plus Kit (TIANGEN, Beijing, China)
according to the manufacturer’s instructions. Expression profiles
of cotton and Arabidopsis genes were analyzed by qRT-PCR using
GhUBI1 (EU604080) and AtActin2 (AT3G18780.1) as reference
genes according to a previously described method (Xu et al.,
2013). All primers were listed in Supplementary Table 5.

Assay of Green Seedling Rate and
Primary Root Elongation
Thirty surface-sterilized seeds from wild type or each transgenic
Arabidopsis line were placed for germination on the MS
medium supplemented with or without different concentrations
of mannitol and placed at 4◦C for 2 days, prior to being moved
to a growth room at 22◦C and 16 h photoperiod. The number of
seedlings with green cotyledons was counted after 2 days. Each
experiment was repeated three times.

For assaying primary root length, the seeds of wild type or
transgenic Arabidopsis lines were germinated and maintained
on MS medium supplemented with different concentrations of
mannitol for 7 days. The length of primary roots of seedlings
was measured and compared. All experiments were repeated at
least three times.

RESULTS

Identification of HD-ZIP III Subfamily
Members in Upland Cotton
In order to identify HD-ZIP III genes in cotton, five Arabidopsis
HD-ZIP III protein sequences were used as queries to blast search
the cotton genome database. The putative HD-ZIP III protein
sequences were analyzed by Pfam, HMMER, and the Batch Web
CD-Search to find conserved domains. As a result, 18 genes were
identified as the members of HD-ZIP III subfamily in cotton.
Every HD-ZIP III protein encompasses three conserved domains,
including the HOMEOBOX domain, START domain, and
MEKHLA domain (Supplementary Table 1). The 18 cotton HD-
ZIP III genes were designated according to their chromosomal
positions. The protein length and molecular weights are about

840 amino acids and 92 KDa, respectively, in all these HD-ZIP
III proteins except GhHB8-5A, these two features of which are
776 amino acids and 85.675 KDa, respectively. The isoelectric
point (pI) of HD-ZIP IIIs varies from 5.74 to 6.19. Bioinformatics
analysis predicted that all cotton HD-ZIP III proteins may be
located in the nucleus (Supplementary Table 2).

Gene Structure and Conserved Motifs of
Cotton HD-ZIP III Genes
To get a further understanding of the cotton HD-ZIP III
subfamily, gene structure and conserved motifs of each HD-ZIP
III member were investigated. Most of the HD-ZIP III genes
possess 17 introns, while GhHB8-5A, GhHB8-7A, and GhHB8-
7D have 15, 16, and 16 introns, respectively (Figure 1A). Such
a distribution pattern of exon/intron is consistent with that of
HD-ZIP III genes in rice (Agalou et al., 2008). As shown in
Figure 1B, there are ten different motifs in each HD-ZIP III
based on the sequence conservation as predicted by using MEME.
Among them, motifs 1 and 4 are the core sequences of the HD
and LZ domains, respectively. Motif 2, 3, 5, and 9 compose
the START domain. The SAD domain is constitutive of motif
7 and 8. Motif 6 and 10 belong to the MEKHLA domain. The
fact that all cotton HD-ZIP IIIs share the same batch of motifs
is suggestive of functional versatility and potential redundancy
in this subfamily.

Cis-Element Analysis in Promoter
Sequences of Cotton HD-ZIP IIIs
The promoter regions of cotton HD-ZIP III genes were analyzed
to study their biological function in depth. As shown in Figure 2,
in the 2 kb sequences upstream of the start codon, many cis-
elements were identified, including ABRE, TGA-element, GARE-
motif, AuxRE, AuxRR-core, TGA-box, TCA-element, P-box,
TATC-box, CGTCA-motif, and TGACG-motif, which were
reported to respond to the induction of various phytohormones,
while LTR (cis-acting element involved in low-temperature
responsiveness), TC-rich repeats (cis-acting element involved in
defense and stress responsiveness), and MBS (MYB binding site
involved in drought inducibility) were involved in abiotic stresses
responsiveness. From the distribution of these cis-elements in
each HD-ZIP III promoter, it is conceivable that almost all cotton
HD-ZIP IIIs could be involved in phytohormone responsiveness,
such as auxin, gibberellin, and abscisic acid, except GhHB15-5A.
More than half of this subfamily member could be responsive to
drought and low-temperature stresses.

Chromosomal Location, Gene
Duplication, and Phylogenetic Analysis
The physical location of cotton HD-ZIP IIIs on chromosomes
was determined using the chromosomal location information
extracted from the cotton genome database (Supplementary
Figure 1), and it was found that the 18 HD-ZIP IIIs
were unevenly distributed on different chromosomes but
symmetrically in A and D-subgenomes. Chromosome
5 contains most, i.e., six HD-ZIP III genes, while the
remaining 12 genes are evenly distributed on six other
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FIGURE 1 | Gene structure and conserved motifs of HD-ZIP III subfamily in cotton (Gossypium hirsutum). (A) The exon/intron distribution of HD-ZIP III genes. Green
boxes and black lines represent exons and introns, respectively. (B) Conserved motifs of each HD-ZIP III protein. Each conserved motif is indicated by different color
boxes. The length of each gene and protein can be estimated using the scale at the bottom.

FIGURE 2 | Statistics of cis-elements in the promoter region of cotton (Gossypium hirsutum) HD-ZIP III genes. The left part shows statistics on the number of
specific cis-elements contained in each HD-ZIP III gene promoter region. The right part exhibits statistics on the function of cis-elements possessed in each HD-ZIP
III gene promoter region.

chromosomes. A total of 23 pairs of collinearity genes
were detected, all of which were located on different
chromosomes (Figure 3), suggesting that gene segmental
duplication may be the primary route of HD-ZIP III subfamily
expansion and evolution.

To understand the evolutionary relationship of cotton
HD-ZIP III genes and their orthologs in different plant species,
we construct a phylogenetic tree from the alignment of 18 G.
hirsutum, 9 G. arboretum, 9 G. raimondii, 5 A. thaliana, 5
O. sativa, 8 P. trichocarpa, 4 Z. elegans HD-ZIP III protein
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FIGURE 3 | Chromosomal distribution and gene duplication of HD-ZIP III genes in cotton (Gossypium hirsutum). The value on each chromosome represents
chromosome length. Blue lines indicate duplicated HD-ZIP III gene pairs.

sequences (Supplementary Table 3). As shown in Figure 4, the
HD-ZIP III subfamily can be divided into four groups: REV, HB8,
HB14, and HB15. The members of G. hirsutum, G. arboretum,
G. raimondii, A. thaliana, and P. trichocarpa HD-ZIP IIIs were
dispersed in each group, whereas the O. sativa homolog was
not present in the HB8 group and the Z. elegans homolog was
not included in the group HB14, suggestive of lineage-specific
gene loss in these two species. Except for HB14, single REV,
AtHB8, and CNA genes were found in the subclades of REV,
HB8, and HB15 in Arabidopsis, whereas multiple genes were
found in tetraploid G. hirsutum, which may indicate that the
duplication ofHD-ZIP III genes had occurred inG. hirsutum after
the divergence of G. hirsutum and Arabidopsis.

Expression Patterns of HD-ZIP III
Members in Different Cotton Tissues
To get insight into the expression profiles of the cotton HD-
ZIP III subfamily, we performed qRT-PCR using the RNAs

derived from various cotton tissues. Because the sequences of
two homologous genes from the A and D subgenome are very
similar, we designed a pair of consensus primers for the two
genes (Supplementary Table 5). It was shown that GhREV-3,
5, 8, and 13 were highly expressed in both vegetative and
reproductive organs, whereas GhHB8-6, 7 and GhHB14-10 were
mainly expressed in root, stem, and 20 days post anthesis (DPA)
ovule. GhHB8-5 and GhHB15-5 were expressed preferentially in
25 DPA fibers (Figure 5). The diversified expression patterns of
HD-ZIP III genes in cotton may indicate their functional diversity
and versatility relevant to cotton growth and development.

In order to further clarify the expression of GhHB8-5A and
5D, the two homoeologous genes of GhHB8-5, first, we compared
the cis-elements in the promoter regions of GhHB8-5A and 5D,
and their variations were documented in Supplementary Table 4.
Then, we designed primers based on the most variable regions in
order to differentiate the homoeologous genes (Supplementary
Table 5) for qRT-PCR. As shown in Supplementary Figure 2,
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FIGURE 4 | Phylogenetic tree of Arabidopsis, Gossypium arboretum, Gossypium hirsutum, Gossypium raimondii, Oryza Sativa, Populus trichocarpa, and Zinnia
elegans HD-ZIP III proteins. All the protein sequences were aligned by ClustalX and the phylogenetic tree was constructed by MEGA7 using the maximum likelihood
method with 1000 bootstrap replications. The four groups are represented with different colors.

the expression of GhHB8-5A was abundant in root, flower, 20
and 25 DPA fiber. GhHB8-5D was predominantly expressed in
fiber, and its expression level increased along with the progress
of fiber development. Hence, GhHB8-5D might be a key player in
fiber development and was selected for further study. In addition,
we found that GhHB8-5A and 5D displayed similar expression
patterns during fiber development, which suggested that there
may be functional redundancy between them.

Transcription Factor Characteristic
Analysis of GhHB8-5D
To further determine whether GhHB8-5D is a transcriptional
activator, we transiently expressed GhHB8-5D-eGFP fusion
protein in N. benthamiana leaf cells, which demonstrated that
GFP signals were only detectable in the nucleus (Figures 6A–C).
Additionally, various versions of GhHB8-5D, including full-
length (F), both SAD- and MEKHLA-domain-truncated (1SM)
and MEKHLA domain-truncated (1M), were individually

inserted into the pGBKT7 vector and expressed in yeast strain
AH109. Empty pGBKT7 vector was used as a negative control.
The transformed yeast cells all grew well on the selective SD/-
Trp medium, but only positive control and transformed yeast
cells harboring full-length GhHB8-5D turned blue in color in the
presence of X-gal, indicating that GhHB8-5D has transcriptional
activation activity and the activation domain is located in the
MEKHLA domain (Figures 6D,E).

Expression of GhHB8-5D in Arabidopsis
Altered Xylem Differentiation and
Secondary Wall Deposition
To further study the physiological function of GhHB8-5D
and avoid the interference of microRNA to its function, we
first aligned the START domain sequences of GhHB8-5D
and AtHB8, which revealed that their microRNA binding
sites were identical (Supplementary Figure 3). Then, vectors
overexpressing GhHB8-5D or GhHB8-5Dm (synonymous
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FIGURE 5 | Expression profiles of cotton HD-ZIP III genes in different cotton tissues. GhUBI1 was used as the internal control for normalization. Values represent the
mean ± SD of three biological replicates. 0O, ovule in anthesis; 5O, ovules in 5 days post anthesis (DPA); 10O, ovules in 10 DPA; 20O, ovules in 20 DPA; 5F, fibers in
5 DPA; 10F, fibers in 10 DPA; 15F, fibers in 15 DPA; 20F, fibers in 20 DPA; 25F, fibers in 25 DPA.

mutation of the miR binding site, Supplementary Figure 4)
were constructed and used to transform Arabidopsis. Transgenic
A. thaliana plants were verified by using semiquantitative
RT-PCR and two independent homozygous lines overexpressing
GhHB8-5D or GhHB8-5Dm were selected for further analyses
(Supplementary Figure 5). Compared with the wild type,
3-week-old transgenic seedlings were obviously smaller with
curly leaves (Figures 7A–E). Six-week-old transgenic plants
were significantly shorter than wild type (Figures 7F–J) and
their stems were twisted (Figures 7K–O). Subsequently, cross-
sections of the 6-week-old stems from wild type and transgenic
plants were stained by using toluidine blue, or phloroglucinol
or Pontamine Fast Scarlet 4B (S4B). As shown in Figure 8,
Arabidopsis plants overexpressing GhHB8-5D displayed ectopic
deposition of the secondary wall in some parenchymatous cells

(Figures 8B,C) compared with the wild type, in which secondary
wall deposition existed only in the xylem and interfascicular
fibers (Figure 8A). Staining with phloroglucinol or S4B or lignin
autofluorescence revealed that GhHB8-5D overexpression caused
ectopic deposition of secondary wall components, including
lignin and cellulose (Figures 8G,H,L,M,Q,R). It is worthy
of noting that some irregular xylem vessels appeared in the
GhHB8-5D overexpression lines (Figures 8B,C,H,L,M,R). In
wild type, xylems and interfascicular fibers were arranged in a
ring shape. But such a regular organization was disrupted in
the GhHB8-5Dm transgenic lines due to the aberrant placement
of amphivasal vascular bundles. Moreover, there was no
deposition of the secondary wall at the position of interfascicular
fibers (Figures 8D,E,I,J,N,O,S,T). Interestingly, a few ectopic
depositions of the secondary wall appeared in the epidermis
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FIGURE 6 | GhHB8-5D is a typical transcriptional activator. (A–C) The subcellular location of GhHB8-5D in epidermal cells of tobacco leaves. Bars = 50 µm.
(D) Schematic diagram shows domain constructs of GhHB8-5D. (E) Assay of GhHB8-5D transcriptional activation activity in yeast. –, negative control; +, positive
control; F, full-length of GhHB8-5D; 1SM, a truncated version of GhHB8-5D lacking SAD and MEKHLA domains; 1M, a truncated version of GhHB8-5D lacking
MEKHLA domain.

and phloems of the transgenic line #9 expressing GhHB8-5Dm
(Figures 8E,J,O,T).

To better understand the mechanism underlying the
ectopic secondary wall deposition as a result of overexpressing
GhHB8-5D, we investigated whether GhHB8-5D could induce
the expression of secondary wall-related genes in transgenic
Arabidopsis. Consistent with the ectopic deposition of secondary
walls, GhHB8-5D overexpression led to upregulating the
transcription level of most secondary wall biosynthetic
genes significantly, except AtNST1 and AtCESA7 (Figure 9).
However, overexpression of GhHB8-5Dm could repress the
expression of nine secondary wall-related genes, including
three master switches for the biosynthesis of the secondary wall
(AtNST1, AtVND7, and AtMYB46), three cellulose synthase
genes (AtCESA4, AtCESA7, and AtCESA8), and three lignin
biosynthetic genes (At4CL1, AtCCoAOMT1, and AtCCR1). These
results indicated that GhHB8-5D may affect the deposition of
the secondary wall by regulating the expression of secondary
wall-related genes.

As the Arabidopsis HD-ZIP III genes were also involved in the
morphogenesis of the vascular system, would the overexpressing
GhHB8-5D influence the xylem morphology by interfering with
the expressions of HD-ZIP III genes in Arabidopsis? In order to
answer such a question, we examined the expression levels of
Arabidopsis HD-ZIP III genes in wild type and transgenic lines. As
shown in Supplementary Figure 6, GhHB8-5D overexpression
led to downregulating the transcription level of AtHB8 and
AtPHV but upregulating the transcription level of AtREV.

Overexpression of GhHB8-5Dm could induce the expression
of AtPHB and AtPHV but represses the expression of AtHB8,
AtCNA, and AtREV. These results implied that GhHB8-5D
may influence the xylem morphology by interfering with the
expression of Arabidopsis HD-ZIP III genes.

GhHB8-5D Is Involved in Drought
Resistance in the Transgenic Seedlings
It has been reported that the members of the HD-ZIP III
subfamily are associated with water utilization efficiency and
abiotic stresses (Xie et al., 2015; Ramachandran et al., 2018; Zhang
et al., 2018b). In this study, we have identified a drought-induced
cis-element in the promoter region of GhHB8-5D (Figure 2).
To investigate whether GhHB8-5D is related to drought
tolerance, we observed seed germination and counted the rate
of green seedlings on MS medium supplemented with different
concentrations of mannitol to mimic the drought stress. GhHB8-
5D and GhHB8-5Dm overexpression seeds showed normal
germination as did wild type seeds under normal conditions.
The green seedling rate of both wild type and transgenic lines
reached almost 100% after 4 days (Figures 10A,G). When sowing
on MS medium containing 50 mM mannitol, green seedling
rate of GhHB8-5D overexpression lines was slightly higher
compared with that of wild type, but the rate of GhHB8-5Dm
overexpression lines was significantly higher than that of wild
type (Figures 10B,H). In the presence of 100 mM mannitol, the
green seedling rate was 71.1%, but it was significantly raised in
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FIGURE 7 | The phenotype of wild type and GhHB8-5D and GhHB8-5Dm transgenic lines. (A–E) Three-week-old seedlings of wild type and transgenic lines. (F–J)
Six-week-old plants of wild type and transgenic lines. (K–O) Magnified images of the inflorescence stem from 6-week-old wild type and transgenic lines. WT
represent wild type plants. L6 and L7 indicate two independent lines of GhHB8-5D overexpression plants. L3 and L9 denote two independent lines of GhHB8-5Dm
overexpression plants in which the miR166 binding site was executed synonymous mutation. Bars = 1 cm.

the range of 84.4–87.8% in the transgenic lines (Figures 10C,I).
Similarly, four transgenic lines showed an obviously higher
green seedling rate on MS medium with 150 mM and 200 mM
mannitol, compared with that of wild type in the same conditions
(Figures 10D,E,J,K).

In addition, the seeds of wild type and transgenic lines were
sowed on MS medium supplemented with 0, 50, 100, 150, and
200 mM mannitol for 7 days prior to the measurement of
the primary root lengths. As shown in Figures 11A,F, there
was no statistically meaningful difference in the primary root
length between wild type and transgenic lines without mannitol
treatment. In contrast, in the presence of 50 mM mannitol,
the primary root length of transgenic lines overexpressing
GhHB8-5Dm was significantly shorter than that of wild type
(Figures 11B,G). With the increase of mannitol concentration
(100, 150, and 200 mM), root growth of both wild type and
transgenic lines was suppressed dramatically, and the primary
root length of the wild type was remarkably longer than that of

transgenic lines (Figures 11C–E,H–J). These results indicated
that GhHB8-5D may be induced by drought and involved in
drought resistance.

DISCUSSION

HD-ZIP III belongs to a plant-specific and highly conserved
protein subfamily, the members of which play vital roles in
plant differentiation and development. Although HD-ZIP III has
been studied in several plants (Chai et al., 2018; Li et al., 2019;
Sharif et al., 2020), this study represents the first comprehensive
investigation on this subfamily of genes in cotton. In this study,
we identified 18 HD-ZIP III genes in the tetraploid upland cotton
genome, which could be divided into four distinct groups. HD-
ZIP III and HD-ZIP IV subfamilies share a similar domain
arrangement but HD-ZIP IV lacks the MEKHLA domain,
suggesting their common origin and relatively recent divergence
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FIGURE 8 | Cross-sections of the 6-week-old stem from wild type and transgenic lines. (A–E) Toluidine blue staining of 6-week-old stems from wild type and
transgenic lines. The blue regions indicate the deposition of the secondary wall; (F–J) phloroglucin staining of 6-week-old stems from wild type and transgenic lines.
The red regions indicate the deposition of lignin. (K–O) Lignin autofluorescence of 6-week-old stems from wild type and transgenic lines. Regions with blue
fluorescence indicate the deposition of lignin. (P–T) Pontamine Fast Scarlet 4B (S4B) staining of 6-week-old stems from wild type and transgenic lines. Regions with
red fluorescence indicate the deposition of cellulose. Black arrows show ectopic deposition of the secondary wall. Red and blue circles show irregular xylem vessels.
ep, epidermis; co, cortex; ph, phloem; xy, xylem; if, interfascicular fiber. Bars = 100 µm.

from a common lineage (Schrick et al., 2004). However, HD-
ZIP I and HD-ZIP II only have the HD and LZ domains
with spacing different from those of HD-ZIP III and HD-
ZIP IV, indicating that their juxtaposition may have evolved
independently (Sessa et al., 1998).

The result of the cis-element analysis showed that the members
of cotton HD-ZIP III may be involved in phytohormone
response, abiotic stresses tolerance, phenylpropane metabolism,
and plant differentiation and development (Figure 2). It has
been reported that phytohormones can regulate the expression
of NAC and MYB TFs, which enables them to play a role
in secondary wall formation. The application of cytokinin
was shown to inhibit the expression of VND6 and VND7,
whereas auxin inhibited VND6 alone. However, when both

hormones were applied together, they promoted the expression
of both VNDs. Similarly, complex effects were obtained with
the combination of auxin, cytokinin, and brassinolide. The
application of brassinolide alone upregulated VND6, while
brassinolide in combination with auxin had no effect on
the expression of VNDs. The combination of cytokinin and
brassinolide caused the transcriptional repression of VND6
and VND7, whereas a mixture of auxin, cytokinin, and
brassinolide promoted the expression of these VNDs (Kubo et al.,
2005). The auxin treatment was also shown to downregulate
MYB26 expression and suppress precocious lignification, as
demonstrated by the afb1/myb26 double mutant, which failed
to show lignification, manifesting that auxin may act as a
negative regulator of lignification via the downregulation of

Frontiers in Plant Science | www.frontiersin.org 11 January 2022 | Volume 12 | Article 806195

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-806195 January 21, 2022 Time: 14:34 # 12

Zhang et al. GhHB8-5D Relates to Drought Resistance

FIGURE 9 | Expression of secondary wall-related genes in 6-week-old stems of wild type and transgenic lines. The AtActin2 was used as an internal control for
normalization. Values represent the mean ± SD of three biological replicates. Student’s t-tests demonstrated that there were significant differences (∗p < 0.05,
∗∗P < 0.01) between the transgenic lines and the wild type.

MYB26 (Cecchetti et al., 2013). In addition, abiotic stresses
have been found to be responsible for increasing secondary
wall substances, especially lignin (Lee et al., 2007), which not
only provide terrestrial plants with rigidity against compressive
forces but also form a mechanical barrier against drought
stress (Moura et al., 2010). The aromatic properties of lignin
make the secondary wall impermeable to water, which reduces
transpiration and assists with maintaining normal turgor
pressures under drought stress (Yao et al., 2021). Therefore, it
is conceivable that lignification represents an initial form of
protection against drought stress. Several studies have shown
that the process of lignification is important for drought
tolerance. Overexpression of IbLEA14 in sweet potato (Park

et al., 2011), OsTF1L in rice (Bang et al., 2019), VlbZIP30
in grapevine (Tu et al., 2020), and PoCCoAOMT in tobacco
(Zhao et al., 2021) all enhanced lignin biosynthesis and drought
resistance. In maize, drought-tolerant inbred lines showed
higher lignification than drought-sensitive lines, suggesting
that lignification is an important adaptation to drought stress
(Hu et al., 2009).

Gene duplication is a primary source of “raw material” for
evolutionary innovations because redundant paralogs have fewer
selective constrains and are ready to evolve new functions than
non-redundant genes (Prigge and Clark, 2006). Collinearity
analysis of the HD-ZIP III subfamily revealed that all HD-ZIP
III members have undergone segmental duplication (Figure 3).
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FIGURE 10 | Assay of the green seedling rate of wile type and transgenic lines overexpressing GhHB8-5D and GhHB8-5Dm under mannitol treatment. (A–E)
Postgermination green seedling analysis of the wild type and transgenic lines overexpressing GhHB8-5D and GhHB8-5Dm grown on MS medium supplemented
with 0, 50, 100, 150, and 200 mM mannitol for 4 days. (F) Schematic diagram of wild type and transgenic seedlings distribution on the MS medium. (G–K) Statistical
analysis of the green seedling rate of wild type and transgenic seedlings grown on MS medium containing 0, 50, 100, 150, and 200 mM mannitol for 4 days. Mean
values and SD are shown from three biological replicates. Independent t-tests demonstrate that there are significant (p < 0.05) or very significant (p < 0.01)
differences in green seedling rate between wild type and transgenic lines. *means significant differences (p < 0.05); **means very significant differences (p < 0.01).
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FIGURE 11 | Analysis of root length of wild type and transgenic lines overexpressing GhHB8-5D and GhHB8-5Dm under mannitol treatment. (A–E) The phenotype
of wild type and transgenic seedlings under different concentrations of mannitol treatment for 7 days. Bars = 1 cm. (F–J) Statistical analysis of root length of wild
type and transgenic seedlings under different concentrations of mannitol treatment for 7 days. Mean values and SD are shown from three biological replicates.
Independent t-tests demonstrate that there are significant (p < 0.05) or very significant (p < 0.01) differences in root length between wild type and transgenic lines.
*means significant differences (p < 0.05); **means very significant differences (p < 0.01).

This may be the reason for functional redundancy and
diversity among HD-ZIP III proteins. Phylogenetic analysis
using HD-ZIP III homologs from diverse plant species identified
three divergent clades that occurred during plant evolution
and only one monocot HD-ZIP III gene (OsHB3) appeared
in the HB8/HB15 clade (Figure 4). The three clades of
HD-ZIP III members were consistent with the analysis of
monocot- and eudicot-derived genes indicating that the genome
of the ancestral angiosperm plant contained REV, HB14,
and HB8/HB15 paralogs. The relationship of monocot HD-
ZIP III to the eudicot HB8/HB15 clade suggested that the
HB8/HB15 gene duplication event may have taken place
after the monocot-eudicot split (Prigge and Clark, 2006).
Additionally, most homologs of cotton HD-ZIP IIIs were
related to xylem differentiation and secondary wall formation
in their respective species (Ohashi-Ito et al., 2002; Ko et al.,
2006; Zhu et al., 2013; Du et al., 2015; Zhang et al., 2018b;
Chen et al., 2021). Considering the conservation of this
subfamily in different plants, we inferred that the genes of
the same subfamily in cotton (Gossypium hirsutum) may have
similar functions.

GhHB8-5 showed D-subgenome biased expression, possibly
due to the promoter difference, as we compared the promoter
sequences of GhHB8-5A and 5D and identified variations in
their cis-elements (Supplementary Table 4). In addition, the

GhmiR166 binding site can be found in the START domain
of both GhHB8-5A and 5D. The different cleavage efficiency
of GhmiR166 to GhHB8-5A and 5D may also lead to their
differential expression.

Specific to the influence on the vasculature and cell
wall, the HD-ZIP III subfamily can not only change the
vascular patterning and organization but also affect the
xylem differentiation, which leads to abnormal secondary wall
deposition. Overexpression of AtHB8 in Arabidopsis caused
rolled-up leaves, a strong reduction of inflorescence stem
elongation, and shorter plant height. The anatomical structure
of transgenic plant stem showed an increase in the production
of phloem fiber sclereids and the lignified tissues (Baima et al.,
2001), which were similar to the phenotype of ectopic expression
of GhHB8-5D in Arabidopsis, as illustrated in this study
(Figures 7, 8). Furthermore, several genes that are known to play
significant roles during xylem differentiation and secondary wall
formation were upregulated as a result of PtrHB7 (homolog of
AtHB8) overexpression in Populus and Arabidopsis (Zhu et al.,
2013). Similarly, ectopic expression of GhHB8-5D in Arabidopsis
also increased the transcription levels of secondary wall-related
TFs, cellulose synthase genes, and lignin biosynthetic genes
(Figure 9). Taken together, our results indicated that GhHB8-
5D is a positive regulator of xylem differentiation and secondary
wall biosynthesis.
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However, with the emergence of new reports, the idea
that AtHB8 is a negative regulator of xylem differentiation
and secondary wall formation was supported by empirical
observation. In the process of vascular bundles formation,
REV played a role in promoting xylem differentiation and
secondary wall deposition. While xylem vessels were present
in rev mutants, xylary fibers were reduced in weaker alleles
and absent in strong alleles. This loss of fibers resulted in
large reductions of the secondary wall (Zhong et al., 1997;
Zhong and Ye, 1999). Genetic analysis has also supported the
above conclusion. REV can bind to the promoter of VND7,
a master regulator for xylem and secondary wall formation
and promote its activity (Endo et al., 2015). Studies on the
genetic redundancy between REV and the other HD-ZIP III
TFs showed that phb and phv are strong enhancers of the
rev phenotype in the xylem. In contrast, the defects of rev
mutant were restored in anth8 cna rev triple mutants. The
overexpression of AtHB8 and CNA driven by REV promoter in
the rev mutant background was not able to rescue the phenotypic
defects of rev. Taken together, these observations suggested
that PHB and PHV genes performed overlapping functions
with REV, but AtHB8 and CNA played roles antagonistic
to REV in xylem differentiation (Prigge et al., 2005). In
addition, the phenotypes of gain-of-function phb-1d and phv-
1d showed amphivasal vascular bundles with xylem surrounding
phloem (McConnell et al., 2001). In transgenic Arabidopsis
lines overexpressing GhHB8-5Dm, the expression levels of
AtPHB and AtPHV were significantly higher than those in
wild type (Supplementary Figure 6). This may explain why
amphivasal vascular bundles appeared in these transgenic plants
(Figure 8). Under such phenotypic changes, there must be
a sophisticated regulatory network. ACL5 (ACAULIS 5) is a
gene encoding a thermospermine synthase, which has been
shown to regulate xylem differentiation and secondary wall
deposition in a negative manner (Muñiz et al., 2008). AtHB8
acts together with auxin as a direct positive regulator of
ACL5, which slows xylem differentiation and secondary wall
formation, in part by negative regulation of REV (Baima
et al., 2014). This may explain the altered expression patterns
of those genes involved in secondary wall-related genes, as
a result of overexpressing GhHB8-5D and GhHB8-5Dm in
Arabidopsis (Figure 9).

Recent reports have revealed that the HD-ZIP III subfamily
participated in the regulation of response to drought stress.
Rice plants overexpressing OsHB4, a member of the HD-ZIP
III subfamily and a major target of miR166, resembled the
phenotypes of the miR166 knockdown plants showing enhanced
drought resistance (Zhang et al., 2018b). The suppression of
miR166 was found to be coincidental with the upregulation
of HD-ZIP III as a result of drought treatment (Xie et al.,
2015). Further, water-limiting conditions caused major changes
to the root xylem morphology (Ramachandran et al., 2018).
Similar changes have also been observed in poplar and soybean,

where drought stress resulted in an increase in vessel number
and vessel wall thickness, thereby conferring resistance to water
deficiency (Awad et al., 2010; Prince et al., 2017). Using the
combination of mannitol treatment and statistical analysis, we
showed that transgenic Arabidopsis overexpressing GhHB8-
5D and GhHB8-5Dm had a higher green seedling rate but
shorter root length compared with wild type (Figures 10, 11).
GhHB8-5D can affect xylem morphology and secondary wall
biosynthesis and could, therefore, be responsible for the
improvement in drought resistance and alteration in root length
in transgenic plants.

In this study, we comprehensively analyzed the conservative
domains, cis-elements contained in the promoter regions,
location and duplication, evolutionary relationship, and
expression of HD-ZIP III subfamily in cotton. Furthermore,
we established GhHB8-5D as a transcriptional activator and its
C-terminus as the transactivation domain. GhHB8-5D could be
involved in drought resistance by influencing xylem morphology
and secondary wall biosynthesis. Our findings may provide a
novel strategy for improving plant adaptations to environmental
changes via regulating plant cell wall synthesis.
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