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Medicago sativa (also known as alfalfa), a forage legume, is widely cultivated due to its
high yield and high-value hay crop production. Infectious diseases are a major threat
to the crops, owing to huge economic losses to the agriculture industry, worldwide.
The protein-protein interactions (PPIs) between the pathogens and their hosts play
a critical role in understanding the molecular basis of pathogenesis. Pseudomonas
syringae pv. syringae ALF3 suppresses the plant’s innate immune response by
secreting type III effector proteins into the host cell, causing bacterial stem blight in
alfalfa. The alfalfa-P. syringae system has little information available for PPIs. Thus, to
understand the infection mechanism, we elucidated the genome-scale host-pathogen
interactions (HPIs) between alfalfa and P. syringae using two computational approaches:
interolog-based and domain-based method. A total of ∼14 M putative PPIs were
predicted between 50,629 alfalfa proteins and 2,932 P. syringae proteins by combining
these approaches. Additionally, ∼0.7 M consensus PPIs were also predicted. The
functional analysis revealed that P. syringae proteins are highly involved in nucleotide
binding activity (GO:0000166), intracellular organelle (GO:0043229), and translation
(GO:0006412) while alfalfa proteins are involved in cellular response to chemical
stimulus (GO:0070887), oxidoreductase activity (GO:0016614), and Golgi apparatus
(GO:0005794). According to subcellular localization predictions, most of the pathogen
proteins targeted host proteins within the cytoplasm and nucleus. In addition, we
discovered a slew of new virulence effectors in the predicted HPIs. The current research
describes an integrated approach for deciphering genome-scale host-pathogen PPIs
between alfalfa and P. syringae, allowing the researchers to better understand the
pathogen’s infection mechanism and develop pathogen-resistant lines.

Keywords: host-pathogen interactions, domain-domain, alfalfa, Pseudomonas syringae ALF3, type III secretion
system, effectors, bacterial stem blight, ice-nucleation proteins (INP)
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INTRODUCTION

Alfalfa (Medicago sativa L.) or lucerne, a member of the Fabaceae
family, is a common forage legume in the United States and
other countries. Because of its broad adaptation, high biomass
production, and perennial nature, it is known as the “Queen of
forages.” It also aids in soil and water conservation, biological
nitrogen fixation, and insect pest interruption in crop rotations,
making it an important component of sustainable agriculture
(Nemchinov et al., 2017). The crop is widely cultivated in the
regions of hot, dry summers and well-drained soils, and thus
is successfully grown in similar environments of Asia Minor,
Iran, Southern Europe, Mexico, and the Middle East (Putnam
and Orloff, 2014). As per the reports of the USDA National
Agricultural Statistics Service (NASS), the estimated value of
alfalfa hay and haylage produced in the United States counts to
$10.8 billion per year, with an area of 11.7 million acres under
production and an average yield of 3.61 tons per acre in 20191.

Many diseases affect alfalfa, but a recent outbreak of bacterial
stem blight in the western and central United States has caused
concern. There have also been cases of the disease recorded
in Europe, Australia, and western Iran (Harighi, 2007). The
disease, caused by Pseudomonas viridiflava, was first reported in
California and Utah in April and May of 2016 and 2017, with
the symptoms highly similar to those caused by Pseudomonas
syringae pv. syringae, which causes a significant loss to crop
quantity and quality (Lipps et al., 2019). P. syringae pv. syringae,
a ubiquitous epiphyte, is a major disease-causing pathogen in a
wide variety of cultivated plant species. It is a rod-shaped gram-
negative bacterium with a well-sequenced genome. P. syringae
species have a broad variety of virulence factors, such as a
type III secretion system (T3SS), ice nucleation activity, toxic
substances, cell wall degrading enzymes, and exopolysaccharides,
which makes it a good model for better understanding the
pathogen-host interactions (Morris et al., 2013). The strains of
P. syringae produce a phytotoxin, syringomycin, which is thought
to play a role in the virulence of the pathogen. Most strains are
known to function as ice nuclei, causing frost damage to plants
when temperatures drop below zero (Agrios, 2005). The disease
infection occurs in two phases- localized foliar necrosis (blight)
and systemic vascular wilt. The bacterium infects the host stem
mainly at frost injury sites, where it penetrates and causes water-
soaked lesions, as well as the emergence of spindly stems that
blacken with age. Depending on the incidence rate, the disease
can result in yield losses of up to 50% or more (Race et al.,
2006; Lamichhane et al., 2015). The outer membrane (Lindow
et al., 1989) of P. syringae is surrounded by a unique protein, ice-
nucleation protein (INP), that mimics the crystalline structure
of ice and thus serves as an initiator for ice formation, linking
bacterial stem blight to frost. This protein is of high interest to
the researchers not only because of its pathogenicity, but also
because of its other potential applications such as frozen food
preparation and snowmaking. Scientists also discovered that the
disease-causing strain of P. syringae is a weak pathogen of crops
such as sugar beet and snap bean, and a few genes that are unique

1https://www.nass.usda.gov/

to the alfalfa pathogen have been identified (Li Q. et al., 2012;
Proud sponsor of Midwest Forage Association, 2017).

Most of the disease-causing mechanisms include protein-
protein interactions (PPIs), which play an important role in
the infection process as well as in initiating the defense
responses against the disease. Therefore, studying the PPI
network between the pathogen and plant proteins is a crucial
step for understanding the underlying mechanism of the
infection (Loaiza et al., 2020). Genomic sequencing reveals
that nearly 3,000 proteins directly interact with the pathogen
proteins or are involved in plant defense (Bishop et al.,
2000). On a genome-wide scale, the computational approaches
reveal the relationships between predicted proteins. Recently,
a wide range of computational methods for predicting host-
pathogen interactions (HPIs) have been developed, based on
diverse data types or properties such as protein sequence
similarity (Matthews et al., 2001; Sun et al., 2017), protein
domain interactions (Ng et al., 2003; Binny Priya et al., 2013),
protein structural information (Keskin et al., 2008), and gene
ontology (GO) annotations (Wu et al., 2006; Zhong and
Rajapakse, 2020). Among the available computational methods,
the interolog and domain-based methods (Shoemaker and
Panchenko, 2007) are most used.

In the present study, we deciphered genome-wide PPIs
between Medicago sativa and Pseudomonas syringae pv. syringae
ALF3 using interolog (homology-based) and domain-based
methods. We discovered that functional characterization of
the HPIs can reveal the molecular mechanisms of pathogen
infection. Furthermore, we identified novel protein hubs,
enriched molecular function, biological processes, and pathways
by conducting extensive functional annotation of the predicted
interactome, which could be crucial in fully understanding
disease infection mechanism. We also predicted the localization
of P. syringae pv. syringae ALF3 protein in alfalfa cells. We
assume that the predicted virulence factors described in this
study will serve as a solid foundation for future experimental
validations and provide a deeper understanding of pathogen
infection in alfalfa.

MATERIALS AND METHODS

A detailed pipeline of the computational prediction and
functional analysis of HPIs is depicted in Figure 1.

Data Collection
The whole proteomes of M. sativa and P. syringae pv. syringae
strain ALF3 were downloaded from different sources. M. sativa
proteome was downloaded from LegumeIP v3 (Dai et al.,
2020), consisting of 87,892 protein sequences, while proteome
of P. syringae was downloaded from JGI IMG/M (Taxon ID:
2609460275) and UniProt database (UP000028706)2 with a count
of 4,983 and 4,842 protein sequences, respectively. The redundant
protein sequences were removed from the proteomes using CD-
HIT (Fu et al., 2012) at 100% identity. In the case of P. syringae,

2https://www.uniprot.org/proteomes/

Frontiers in Plant Science | www.frontiersin.org 2 February 2022 | Volume 12 | Article 807354

https://www.nass.usda.gov/
https://www.uniprot.org/proteomes/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-807354 February 11, 2022 Time: 16:33 # 3

Kataria et al. Unraveling the Alfalfa-Bacterial Blight Interactome

FIGURE 1 | Overall framework for prediction of protein-protein interactions between Alfalfa and Pseudomonas syringae.

the proteomes from both the sources were merged, followed by
the removal of duplicate sequences.

Proteins whose subcellular position was predicted to be a
cytoplasmic membrane or cytoplasm membrane were excluded
from our analysis because they are not thought to be
involved in host-pathogen interactions. Other proteins classified
as periplasmic, extracellular, outer membrane, or unknown
were considered to be positive candidates for interactions.
Following that, the entire P. syringae proteome was analyzed
in the EffectiveDB3 (Jehl et al., 2011) to predict the proteins
that are labeled as secreted for the proteins predicted as
cytoplasmic. These proteins were also thought to be promising
candidates for pathogen-host interactions. After removing the
redundancy and cytoplasmic proteins in the proteomes, HPIs
were identified using 87,156 alfalfa and 4,427 P. syringae
protein sequences.

To infer the interolog predictions, the analysis was
implemented in inter- as well intra-species interaction databases,
namely IntAct v4.2.16 (Kerrien et al., 2012), MINT 2018
(Molecular INTeraction Database) (Licata et al., 2012), HPIDB
v3.0 (Host-Pathogen Interaction Database) (Kumar and Nanduri,
2010), DIP 2020 (Database of Interacting Proteins) (Salwinski
et al., 2004), BioGRID v4.2.191 (Biological General Repository
for Interaction Datasets) (Chatr-Aryamontri et al., 2017), and
interactions for 66 plant species from STRING v11.0 (Search
Tool for the Retrieval of Interacting Genes/Proteins) (Szklarczyk
et al., 2019). Sequences from all the databases were downloaded
and local blast databases were created for each.

To implement the domain-based prediction, three domain-
domain interaction (DDI) databases, namely 3did v2020_01
(three-dimensional interacting domains) (Mosca et al., 2014),

3https://effectors.csb.univie.ac.at/

DOMINE v2.0 (Database of Protein Domain Interactions)
(Raghavachari et al., 2008), and IDDI v2011.05.16 (Integrated
Domain-Domain Interaction) (Kim et al., 2012) were
downloaded and stored in individual files. For analysis, the
Pfam v31.0 (Finn et al., 2014) database was downloaded to
predict the domains for host and pathogen proteins. Further,
using the Pfam database, the identified domains for the host
and pathogen species were queried against the three databases
(3did, DOMINE and IDDI) to search for the domain-domain
interactions. Detailed information about the databases, along
with the number of sequences and interactions is available in
Supplementary Material 1, excel sheet 1.

Computational Prediction of
Protein-Protein Interactions Between
Alfalfa and Pseudomonas
Interolog-Based Prediction
Interolog is the method of determining the conserved
interactions between two proteins based on their sequence
similarity (Yu et al., 2004). When two interacting proteins X and
Y in one species have interacting orthologs X’ and Y’ in another,
the interaction pairs X-Y and X’-Y’ are referred to as interologs.
The proteomes of M. sativa and P. syringae were aligned against
six protein-protein interaction databases, viz. IntAct, MINT, DIP,
HPIDB, BioGRID, STRING, using BLASTp v2.7.1 with default
parameters (e-value, sequence identity, sequence coverage) to
make the prediction. An optimal combination of parameters
to filter the BLAST alignments of M. sativa and P. syringae
was determined using e-value (1e-04, 1e-05, 1e-10, 1e-20,
1e-25, 1e-30, 1e-50), sequence identity (30, 40, 50, and 60%),
and sequence coverage (30, 40, 50, 60, and 80%). However,
no gold standard cutoff criteria for the prediction of HPIs is
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reported. In the past, researchers predicted the cassava protein
interactome using the interolog-based approach with at least
60% identity, 80% sequence overlap, and an e-value lower
than 1e-10 (Thanasomboon et al., 2017). In another study on
Human-Burkholderia pseudomallei (Loaiza et al., 2020), they
used an e-value of 1e-50, 40% sequence identity, and 80%
sequence coverage to decode the host-pathogen relationship.
The investigation on Arabidopsis-Pseudomonas syringae (Sahu
et al., 2014) for the prediction of plant-pathogen interactions
used the e-value of 1e-04, sequence identity of 50%, and sequence
coverage of 80%. In our study, we discovered that a sequence
identity of at least 30%, an e-value of less than 1e-10, and
sequence coverage of at least 80% was the best combination of
alignment parameters for predicting HPIs.

Domain-Based Prediction
The domain-based approach takes into account the protein
domain profiles of known intra-species PPIs, allowing it to
predict host-pathogen protein-protein interactions (Dyer et al.,
2007). The prediction in domain-based methods is based on
protein structural knowledge found in various domain-domain
interaction (DDI) databases. The host and pathogen domains
were inferred from the Pfam database using HMMER v3.3.1
(Eddy, 2011), which were then used to predict PPIs using in-
house SQL queries on the local machine. For M. sativa, the
results of hmmscan were filtered using an e-value and coverage
of 1e-23 and 0.2, respectively, while for P. syringae, an e-value
and coverage of 1e-18 and 0.35 were used. Hmmscan has been
successfully used in a number of studies to infer host-pathogen
interactions (Mondal et al., 2017; Cuesta-Astroz et al., 2019; Lian
et al., 2020).

Integration of Interolog- and Domain-Based
Approaches
After separately implementing interolog and domain methods
as described above, the results from both the approaches
were merged, and duplicate predictions were eliminated. Since
there were a high number of predicted PPIs (more than 10
million), we considered the consensus predictions of both
approaches, which reduces the chances of false-positive HPIs.
A similar approach of consensus interactions has been considered
previously while predicting HPIs from multiple interaction
databases (Loaiza et al., 2020).

Subcellular Localization of Proteins
Involved in Host-Pathogen Interactions
Plant pathogenic bacteria relies on type III secretion systems to
infect host cells, thus affecting a variety of host cell mechanisms
(Aung et al., 2017; Xue et al., 2019). So, to understand the
infection mechanism of the pathogen, subcellular localization
analysis is an essential step in the study. We evaluated various
bioinformatics methods to determine the subcellular position
of the proteins, and an appropriate benchmark was chosen
for the study, based on the maximum positive matches with
the subcellular localization annotation at UniProt4. We used

4https://www.uniprot.org/

PSORTb 3.0.2 (Yu et al., 2010), a commonly used tool for
bacterial protein localization, to determine the subcellular
localization of P. syringae proteins. To determine the subcellular
localization of alfalfa proteins, a homology-based and machine
learning model of the tool Plant-mSubP (Sahu et al., 2020) was
implemented with default parameters.

Dataset Collection for Known Effectors
in P. syringae for Validation
The effectors are deployed by the pathogenic bacteria to
inhibit the plant immune response and disrupt the host cell
mechanisms (Pelgrom et al., 2020). In this regard, we extracted
effector proteins, T3SS-hop proteins, and virulence proteins from
EffectiveDB (see text footnote 3), Pseudomonas syringae Genome
Resources5, and Pseudomonas genome DB6, respectively. The
following criteria was followed to obtain effector proteins from
the above-mentioned sources.

Potential Effector Proteins
EffectiveDB was used to predict the possible effector proteins
of P. syringae, using P. syringae pv. syringae B728 as a
reference. EffectiveDB is a database of bacteria predicted
secreted proteins that includes five methods for effector
prediction (EffectiveT3, EffectiveELD, EffectiveCCBD, Predotar,
and T4SEpre). EffectiveELD, EffectiveCCBD, and EffectiveT3
proteins were chosen because these methods predict “type III
secreted” proteins. A total of 641 effector proteins were predicted.

Type III Secretion System-Hop Proteins
The known T3SS effector proteins belonging to P. syringae were
obtained from Pseudomonas syringae Genome Resources. In
literature (Dillon et al., 2019), it has been reported that there are
66 effector proteins, but we found only 26 effectors which were
further processed.

Virulence Proteins
The virulence factor proteins were downloaded from
Pseudomonas genome DB using Pseudomonas aeruginosa
PAO1 as reference. The orthologs were searched and eight
virulence factors were obtained for P. syringae.

In total, we obtained 655 unique effectors (known, potential,
and virulence factors) combined from the above-mentioned
sources. These effectors were also used in the selection
of an appropriate combination of parameters for filtering
BLAST alignments.

Dataset Collection for Ice-Nucleation
Proteins for Validation
Ice-nucleation proteins are associated with bacterial stem blight
as these are thought to be the initiator of the frost mechanism.
The gene, Psyr1608, located on the outer membrane of the
bacteria, belongs to Pseudomonas syringae pv. syringae B728a
(Feil et al., 2005). This gene is known to contain the octamer
repeat of the bacterial ice-nucleation proteins, and is thus

5http://pseudomonas-syringae.org/
6https://pseudomonas.com/
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involved in the disease. Taking this into consideration, we found
the INPs in the projected HPIs. We obtained 30 orthologs of the
INPs from Pseudomonas genome DB (see text footnote 6), which
were then BLASTed against the P. syringae ALF3 protein dataset.
We filtered the BLAST alignments at 40% identity to achieve high
performance, which reduced the number of INPs to 17. These
were then identified in the predicted HPIs.

Functional Enrichment Analysis
In order to classify the proteins in HPIs that have a common
function/biological pathway, it is necessary to obtain the
functional annotation of the proteins involved in the interactions.
The R package clusterProfiler (Yu et al., 2012) was used to
conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses. Benjamini and Hochberg test
correction method (Benjamini and Hochberg, 1995) was used
to calculate the adjusted p-values, and enriched GO terms
were filtered based on adjusted p-value cutoff of ≤0.05. All
the GO annotation ontologies (cellular component, molecular
function, and biological processes) were used for gene ontology
enrichment analysis. A GO database for alfalfa proteins was
created using the makeOrgPackage function in the R package
“AnnotationForge,” and GO enrichment analysis of alfalfa
proteins was performed, while P. syringae proteins GO terms
were enriched with org.Psyringae.eg.db Bioconductor package.
KEGG pathway enrichment for alfalfa and P. syringae proteins
was performed using enrichKEGG function in ClusterProfiler
package at a p-value cutoff of 0.05.

Visualization of Interaction Networks and
Identification of Protein Hubs
The study of protein-protein interaction network help in a
deeper understanding of various cellular mechanisms involved
in the process. To visualize the PPI networks, Gephi v0.9.2
(Bastian et al., 2009) was used in combination with various
layout algorithms such as Hu (2006), OpenOrd (Martin et al.,
2011), and others to improve the readability of the network
(Pavlopoulos et al., 2017). We also analyzed the network
on different parameters such as betweenness, closeness, and
degree. Functional enrichment analysis of combined interactions
is present in Supplementary Material 6 and Supplementary
Figures 1–5. Effector analysis of combined interactions is present
in Supplementary Material 7.

RESULTS AND DISCUSSION

Alfalfa and P. syringae proteomes were randomly paired
to identify the genome-wide protein-protein interactions.
The interaction probability of each pair was estimated
individually through computational approaches: domain-
based and interolog-based models (Table 1). The interactome,
combined from both the computational approaches, contained
a total of 14,186,848 putative PPIs, involving 50,629 alfalfa and
2,932 P. syringae proteins (details of these HPIs is presented
in Supplementary Material 2, excel sheets 3–17). To reduce
the number of false-positive interactions we selected 690,634

TABLE 1 | Host-pathogen protein-protein interactions predicted using orthology
and domain-based methods for the Alfalfa-P. syringae interaction system.

Method Number of
interactions

Host proteins Pathogen
proteins

Interolog-based

IntAct 216,185 9,645 1,560

MINT 20,934 2,842 519

HPIDB 3,037 1,153 306

BioGRID 415,450 11,543 1,911

DIP 8,147 1,795 581

STRING 11,760,939 49,973 1,348

Total (Interolog) 11,916,848 49,995 2,202

Domain-based

3did 86,622 8,476 1,695

IDDI 2,574,097 13,693 2,430

DOMINE 1,052,624 9,540 1,780

Total (Domain) 2,960,634 14,328 2,515

Interolog + Domain (combined) 14,186,848 50,629 2,932

Interolog + Domain (consensus) 690,634 10,935 1,386

Interolog (unique) 11,226,214 49,993 2,192

Domain (unique) 2,270,000 14,134 2,497

Total (Interolog): The predicted HPIs from all the six interolog databases were
merged and duplicates were removed.
Total (Domain): The predicted HPIs from all the three domain databases were
merged and duplicates were removed.
Interolog + Domain (combined): The predicted HPIs from both the methods were
merged and the duplicates were removed.
Interolog + Domain (consensus): For both the methods, given the large number of
interactions, the consensus of the predicted HPIs was preferred, to minimize the
presence of false positives.
Interolog (unique): The unique HPIs containing the interactions only from interolog-
based method.
Domain (unique): The unique HPIs containing the interactions only from domain-
based method.

non-redundant HPIs predicted by both the approaches, involving
10,935 alfalfa and 1,386 P. syringae proteins, named as common
interactions throughout the manuscript (detail of these HPIs
is presented in Supplementary Material 3, excel sheet 3). The
visualization of the common network is shown in Figure 2. We
present a thorough review of protein hubs and the functional
enrichment of proteins found in the “common” subnetwork in
the following sections.

Protein Hubs
Protein network analysis is widely implied to investigate the
significant nodes in an extensive network (Ashtiani et al., 2018).
Simultaneous interactions between PPI hubs and proteins have
been observed in biological networks. Identifying the role of
such interactions could further bolster the understanding of
the infection mechanism of the pathogen (Yang et al., 2019).
In this study, we discovered a large number of protein hubs.
Protein hubs are an important component of a HPI network,
providing deep insights into various biological pathways,
molecular processes, cellular biochemistry, and physiology
(Kuzmanov and Emili, 2013), which is useful in deciphering
the virulence mechanism of a host-pathogen system. The
detailed analysis information on protein hubs is provided in
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FIGURE 2 | Visualization of the complete consensus interactions for
alfalfa-P. syringae interaction system. Green nodes are host proteins, red
nodes are pathogen proteins, orange nodes are effectors, and blue nodes are
ice nucleation proteins. Edges in light green represent the consensus
interactions from both interolog and domain-based methods.

Supplementary Material 4, excel sheets 1, 2. Despite the fact
that hubs were determined based on node degree, a greater
collection of topological measures were calculated to provide a
more detailed portrait of the information. The following is a brief
description of the values of certain topological measures within
the common network.

Degree
The metric used in this study to evaluate hubs and nodes was the
degree. The P. syringae proteins had an average degree of 498,
while the alfalfa proteins had an average degree of 63. Pathogen
proteins, as predicted, have a higher degree (and a larger
betweenness) than other proteins in the popular subnetwork.
The ratio of the interacting proteins in common network is
coherent with previous reports of computational PPI prediction,
whereby a small number of pathogen proteins interact with the
host interactome (Li Z. G. et al., 2012; Kurubanjerdjit et al., 2013).
Studies in the past have established that during the process of
infection in the host, a pathogen extensively mutates itself. While
on the other side, the plant expands its gene families in response
to the pathogen attack (Stahl and Bishop, 2000). Thus, the reason
for the ratio of interacting proteins being maintained throughout.
We reported a large number of protein hubs in this study; the top
20 hubs from P. syringae as well as the alfalfa are discussed below.
Summary of the 20 hub nodes for P. syringae and alfalfa proteins,
as well as the number of their interacting partners are presented
in Figure 3.

Closeness Centrality
The closeness centrality of a node in a network shows how
close it is to all other nodes in the network. The average of

the shortest path lengths from the node to every other node
in the network is used to measure it. The average closeness
centrality value for alfalfa and P. syringae proteins in the
common network was 0.333 and 0.332, respectively. The highest
closeness centrality value of 1 was found between five alfalfa
proteins (MSAD_214560, MSAD_257396, MSAD_258406,
MSAD_298516, MSAD_310524) and 11 P. syringae proteins
(Psyr_2612254914, Psyr_2612251287, Psyr_2612254775,
Psyr_2612254957, Psyr_2612251834, Psyr_2612252057, Psyr_
2612254066, Psyr_2612251255, Psyr_2612253067, Psyr_26
12254813, Psyr_2612255124).

Betweenness Centrality
The betweenness centrality measures how close a node is to
other nodes. The number of shortest paths that pass through
the target node is used to calculate this metric. The average
betweenness centrality value for alfalfa and P. syringae proteins
in the common network was 8.34e-3 and 1.49e-2, respectively.
The highest betweenness centrality value of 1 was found between
1 alfalfa protein (MSAD_321294) and 1 P. syringae protein
(Psyr_2612250718).

Medicago sativa Hubs
The protein hubs network revealed that the strongly interacting
host protein (MSAD_216261) was discovered to be cyclic
nucleotide-binding domain (CNBD) protein. CNBD proteins
are mostly involved in pathogen effector (avirulence proteins)
recognition, which further leads to downstream signaling
activation, and hence pathogen resistance (DeYoung and Innes,
2006). A study on Arabidopsis experimentally identified 12 cyclic
nucleotide binding proteins, of which eight proteins contain
the cyclic nucleotide binding domain, and these proteins are
involved in hydrogen peroxide signaling and immune response
(Donaldson et al., 2016). The protein, MSAD_321294, was
found to be sensitive to aluminum rhizotoxicity. Aluminum
toxicity has been shown to reduce root growth, and alteration
in abscisic acid levels in root apices indicate its role in the plant
response to aluminum toxicity (Kopittke, 2016). MSAD_220741,
a chaperone protein encoded by the DnaK gene, was present in
the top 20 host hubs. This gene is involved in plant response
to various stresses. In rice seedlings, DnaK was shown to be
upregulated in response to heavy metal stress (Ul Haq et al.,
2019). DnaK regulates hydrogen peroxide production and
ABA-induced antioxidant response during heat and drought
stress (Yu et al., 2015). The majority of the top 20 alfalfa hub
proteins were found to be heat shock proteins, classified into heat
shock cognate 70 kDa proteins (MSAD_230624, MSAD_317196,
MSAD_230523, MSAD_230540, MSAD_245934, MSAD_
256658, MSAD_219293), and heat shock 70 kDa
protein (MSAD_289443, MSAD_310640, MSAD_290843,
MSAD_218590, MSAD_274579, MSAD_308554, MSAD_
315555, MSAD_328469, MSAD_218587). Heat shock cognate 70
(Hsc) proteins are involved in protein folding and intracellular
targeting, while the heat shock 70 (Hsp70) proteins are involved
in signal transduction and protein translocation during abiotic
and biotic stresses (Kominek et al., 2013). Hsp70s play a role
in both infection mechanisms and the host response to stress.
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FIGURE 3 | Top 20 host (blue) and pathogen (red) hubs identified in the Medicago sativa-P. syringae protein-protein interaction system.

Studies show that Hsp70 is the primary target for P. syringae
virulence effector, HopI1. HopI1 hijacks plant Hsp70 and
localizes itself to the chloroplast (Jelenska et al., 2010).

P. syringae Hubs
The superfamily II DNA and RNA helicases, which include
Pseudomonas proteins Psyr_2612251937 and Psyr_2612254566,
form the largest pathogen hub in the common interaction
network. Superfamily II helicases are divided into DEAD and
DExH box families based on the sequence of a conserved
motif (Steimer and Klostermeier, 2012). These helicases play
an essential role in bacterial replication. Studies in E. coli
reveal that absence of DEAD-box helicase leads to growth
defects under laboratory conditions (Jagessar and Jain, 2010).
The pathogen protein “Psyr_2612250718” is a member of
the Major Facilitator Superfamily (MFS) transporter family,
which is ubiquitously found in prokaryotes. A MFS transporter
(mfsG) was discovered in Botrytis cinerea that was involved in
isothiocyanate (ITC) detoxification and showed upregulation on
interaction with wild-type Arabidopsis in planta (Vela-Corcía
et al., 2019). Five proteins (Psyr_2612255229, Psyr_2612253263,
Psyr_2612252226, Psyr_2612252166, Psyr_2612252474) in the
common network were identified as 3-oxoacyl-(acyl-carrier-
protein) reductase (OAR). OAR is responsible for catalyzing
3-oxoacyl-ACP reduction in the fatty acid synthesis pathway.
In Pseudomonas aeruginosa PAO1, 12 OAR-encoding genes
have been identified, which play a key role in the production of
specific quorum-sensing signals in the bacteria (Guo et al., 2019).
The pathogen proteins (Psyr_2612253558, Psyr_2612250706,
Psyr_2612253590, Psyr_2612252788, Psyr_2612252142) be-
longed to the NAD(P)-dependent dehydrogenase family.

A novel NADP+-dependent D-arabitol dehydrogenase enzyme,
identified from rust fungus Uromyces fabae, showed increased
concentration during pathogenesis and quenched reactive
oxygen species in the host immune response (Link et al., 2005).
Another chaperone protein Psyr_2612252608, encoded by
HtpG, was found in the common network. High-temperature
protein G (HtpG), a Hsp90 homolog, is reported to be
involved in the cell protection against environmental stress
(Grudniak et al., 2015).

Functional Enrichment Analysis
Functional enrichment analysis is a critical step in determining
the biological importance of proteins involved in host and
pathogen PPIs. We examined the functional compositions of
the respective proteins by analyzing GO and KEGG pathways
enrichment. The existence of enriched (over-represented)
functional categories were found to be closely linked to host
defense and pathogen infection validates predicted HPIs.

Gene Ontology
To determine the significant functions of the alfalfa and
P. syringae proteins involved in PPIs, the proteins were
investigated using GO enrichment analysis based on three
functional categories of gene ontology viz. cellular part, molecular
function, and biological process. The enrichment was performed
using enrichment score [−log10(P-value)] of the GO terms.

A total of 573 GO terms were found to be enriched
for P. syringae proteins in the interactions. The detailed
enrichment analysis data is present in Supplementary Material
4, excel sheet 4. The most enriched GO terms in the cellular
component category were GO:0043229 (intracellular organelle),
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GO:0043232 (intracellular non-membrane-bounded organelle),
and GO:0005840 (ribosome). In the molecular function category,
GO:0000166 (nucleotide binding), GO:1901265 (nucleoside
phosphate binding), and GO:0016887 (ATPase activity) were
found to be most enriched. While in the biological process
category, GO:0006412 (translation), GO:0055114 (oxidation-
reduction process), and GO:0019538 (protein metabolic process)
were found to be abundant. Top 15 most enriched GO terms from
all three categories are depicted in Figure 4. Aside from these, a
number of GO terms (GO:0071944, GO:0030313, GO:0031975,
GO:0009279) were linked to the pathogen’s external membrane
and the ice-nucleation gene (Psyr1608). This gene has also been
found in Pseudomonas syringae pv. syringae B728a, which aids
in ice crystal formation (Feil et al., 2005). P. syringae protein
enrichment revealed the importance of the host for pathogens to
carry out different molecular and biological processes.

For alfalfa proteins, 2127 GO terms were enriched. The
detailed enrichment analysis data is present in Supplementary
Material 4, excel sheet 3. The most enriched GO terms in
biological process were GO:0070887 (cellular response to
chemical stimulus), GO:0006979 (response to oxidative stress),
and GO:0032870 (cellular response to hormone stimulus).
The highly enriched GO terms for cellular component were
GO:0005794 (Golgi apparatus), GO:0005618 (cell wall), and
GO:0030312 (external encapsulating structure). In molecular
function category, the most enriched terms were GO:0016614
(Oxidoreductase activity), GO:0015291 (secondary active
transmembrane transporter activity), and GO:0015297

(antiporter activity). For each category top 15 enriched GO
terms are depicted in Figure 5.

Chloroplast stroma (GO:0009570) was also found to be
enriched in alfalfa proteins. A total of 3,382 interactions
were discovered whereby 94 alfalfa proteins were found to
be interacting with 754 pathogen proteins (Figure 6). It has
previously been established that homologs of many components
of bacterial signal recognition particle (SRP) pathways are
present in the chloroplast. These SRP systems assist in the
transport of proteins to the thylakoid membrane, which serves
as a bacterial infection site (Ziehe et al., 2017). Chloroplast
also serves as a production house of various defense-related
signals [reactive oxygen species (ROS)] and hormones [abscisic
acid (ABA), jasmonic acid (JA)], which play a crucial role
in the immune response of plants. These are a primary
site for the pathogen effectors to attack and overcome plant
immune signaling (Park et al., 2018). ABA synthesis occurs
in the chloroplast and is an essential plant growth regulator
that induces stomatal closure in response to pathogen attack,
thereby restricting pathogen entry (Lu and Yao, 2018). ROS
contributes to the induction of hypersensitive response (HR)
and cell wall strengthening (Kretschmer et al., 2020). Reduced
ROS production in the chloroplast caused the reduction in
HR in tobacco on the attack with Xanthomonas campestris pv.
vesicatoria (Zurbriggen et al., 2009).

Protein phosphorylation (GO:0006468) was found to be
involved in about 39 alfalfa proteins. These proteins interact with
395 pathogen proteins, owing to 2,701 PPIs. Phosphorylation

FIGURE 4 | Top 15 P. syringae GO terms that were found over-represented based on enrichment score [–log 10(P-value)]: Molecular function (blue), cellular
component (green), and biological process (red).
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FIGURE 5 | Top 15 Alfalfa GO terms that were found over-represented based on enrichment score [–log 10(P-value)]: Molecular function (blue), cellular component
(green), and biological process (red).

is considered as one of the most common post-translational
modifications, and about one-third of all eukaryotic proteins
are believed to be phosphorylated (Olsen et al., 2006), which

FIGURE 6 | Visualization of the GO term GO:0009570 (Chloroplast stroma).
Green nodes are host proteins, red nodes are pathogen proteins, orange
nodes are effectors, and blue nodes are ice nucleation proteins. Edges in light
green represent the consensus interactions from both interolog and
domain-based methods.

usually occurs on threonine (Thr) and serine (Ser) residues (de
la Fuente van Bentem and Hirt, 2009). In past, phosphorylation
has been demonstrated to play a role in the generation of
immune responses in plants (Park et al., 2012). In Arabidopsis,
the treatment of cell cultures with flg22 (flagellin peptide) or
xylanase (fungal elicitor) lead to the identification of 1,170
novel phosphorylation sites from 472 phosphoproteins, which
evoke an early immune response (Benschop et al., 2007),
thus indicating the differential phosphorylation of proteins
and the importance of phosphorylation in plant immunity.
Additionally, the interaction networks generated for top
biological process (GO:0042744; hydrogen peroxide catabolic
process), and molecular function (GO:0015291; secondary
active transmembrane transporter activity) are depicted in
Supplementary Figures 6, 7, respectively.

Kyoto Encyclopedia of Genes and Genomes Pathway
Enrichment
Establishing a connection between the role of important
genes (and/or proteins) and specific pathway provides more
information about the importance of a gene in various
mechanisms. KEGG pathway enrichment analysis was performed
to better understand the biological aspects of the proteins in the
predicted HPI network. We found 116 KEGG pathways enriched
for alfalfa proteins versus 86 pathways enriched for P. syringae
proteins in total. The detailed pathway enrichment analysis data
is present in Supplementary Material 4, excel sheets 5, 6 for
alfalfa and P. syringae, respectively. Top 20 enriched KEGG
pathways for alfalfa and P. syringae proteins are depicted in
Figures 7, 8, respectively.
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FIGURE 7 | Top 20 Alfalfa KEGG pathways that were found over-represented in the HPIs based on enrichment score [–log 10(P-value)].

FIGURE 8 | Top 20 P. syringae KEGG pathways that were found over-represented in the HPIs with the lower P-values (0.05) are shown.

Plant-pathogen interaction (mtr04626) is a substantially
enriched pathway in the host-pathogen interaction system. In
this pathway, 55 alfalfa proteins and 1,838 Pseudomonas proteins

are involved in 27,253 interactions. Unlike animals, plants have
multiple defense layers against the invading pathogens. These
include different levels of responses such as PAMP-triggered
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FIGURE 9 | Visualization of the KEGG pathway mtr04626 (Plant pathogen
interaction). Green nodes are host proteins, red nodes are pathogen proteins,
orange nodes are effectors, and blue nodes are ice nucleation proteins. Edges
in light green represent the consensus interactions from both interolog and
domain-based methods.

immunity (PTI) being the primary response, while effector-
triggered immunity (ETI) is known as the secondary. In Petunia,
the plant-pathogen interaction pathway was found to be enriched
in both pollinated and unpollinated corollas, and the defense-
related genes (mostly interacting with Ca2+) in this pathway
showed upregulation during flower senescence (Broderick et al.,
2014). From the network (Figure 9), it was analyzed that the host
protein, MSAD_331284 (with the highest degree), interacts with
396 proteins. Besides plant-pathogen interaction (mtr04075), this
protein is also involved in a variety of plant defense-related
pathways, including the MAPK signaling pathway (mtr04016)
and plant hormone signal transduction. The protein was also
found to interact with one of the ice-nucleation proteins
(INPs), which serve as the nuclei for ice formation, and hence
initiates the disease.

ABC transporters pathway (mtr02010) was found to be
associated with 54 alfalfa proteins. ABC transporters play a
significant role in plant-pathogen interactions (Kang et al.,
2011). Pleiotropic drug resistance (PDR), a subfamily of ABC
transporters, is associated with plant defense mechanisms.
A study on Arabidopsis discovered a gene (AtPDR12) that
putatively encodes PDR, and the expression of this gene against
the pathogen requires sensitivity to jasmonates and salicylic
accumulation, both of which play an essential role in plant
immunity (Campbell et al., 2003). In another study, sclareolide
(an antifungal diterpene) was used to treat the cell cultures of
Nicotiana plumbaginifolia, which resulted in identification of
NpABC1 gene that encodes ABC transporter and is also related
to the secretion of secondary metabolites associated with plant
defense. NpABC1-encoded protein was discovered to be localized
in the plasma membrane (Jasiński et al., 2001).

In the MAPK signaling pathway (mtr04016), we found
102 alfalfa proteins involved in 5,566 interactions with 597
pathogen proteins (Figure 10). Mitogen-activated protein kinases
(MAPKs) are implicated in signal transduction in response to
plant stress and development (Bigeard and Hirt, 2018). It was
reported that BWMK1, a rice MAPK, showed rapid activation of
protein kinase activity in presence of different pathogen signals
such as salicylic acid, jasmonic acid, ethylene, and hydrogen
peroxide (Cheong et al., 2003). Plant defense signaling was
further demonstrated by the activation of two MAPKs, SIPK and
WIPK, in Nicotiana tabacum in response to pathogen-related
signals and various abiotic stresses, thus indicating the role of
MAPK in plant stress response (Seo et al., 1995). The activation
of the orthologs of SIPK and WIPK in alfalfa and Arabidopsis has
been observed under stress conditions (Zhang and Klessig, 1997;
Nühse et al., 2000).

A total of 305 proteins in alfalfa are linked to protein
processing in endoplasmic reticulum (mtr04141). The
endoplasmic reticulum (ER) is considered as the production
site for secretory proteins (Yamada et al., 2011), and regulates
hormone biosynthesis (Eichmann and Schäfer, 2012). The
interference of plant physiological conditions with protein
folding or accumulation of misfolded proteins in the ER
results in ER stress. ER quality control system regulates such
conditions and generates the unfolded protein response (UPR),
leading to the elimination of misfolded proteins from the
secretory pathway or upregulation of components required
for protein folding. UPR in plants is mediated by specific
membrane-associated transcription factors such as the bZIP
family (bZIP17 and bZIP28) (Srivastava et al., 2012). In
Arabidopsis, a few transmembrane bZIP transcription factors
(AtbZIP17, AtbZIP28, and AtbZIP60), residing in the ER have
been reported (Urade, 2009; Liu and Howell, 2010), which are
engaged in response to ER stress. Beta-Alanine metabolism
(mtr00410) involves 49 alfalfa proteins, which has a key role in
various plant metabolisms, and also acts as a defense compound
against various physiological stresses in plants (Parthasarathy
et al., 2019). Transcriptomic studies in Arabidopsis have
identified a considerable number of genes involved in amino
acid metabolism against avirulent Pseudomonas syringae pv.
tomato (AvrRpt2) (Scheideler et al., 2002). Despite of reduced
glutamine, alanine, and proline levels than wild type plants,
Arabidopsis mutant lysine histidine transporter 1 (lht1) showed
enhanced resistance to various fungal, oomycete, and bacterial
pathogens (Rojas et al., 2014). The majority of alfalfa proteins
are involved in plant hormone signal transduction (mtr04075),
thus controlling the plant growth and development in response
to biotic and abiotic stresses (Schepetilnikov and Ryabova,
2017). Several metabolic pathways were also found to be
linked to the predicted proteins in HPIs, including pyruvate
metabolism (mtr00620), glycolysis/gluconeogenesis (mtr00010),
glycerophospholipid metabolism (mtr00564), and fatty acid
metabolism (mtr00564) (mtr01212).

On the other hand, P. syringae proteins are involved
in secondary metabolite biosynthesis (psb01110). Secondary
metabolites in pathogens have been shown to mimic plant
effector molecules (such as auxins and abscisic acid) and
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FIGURE 10 | Visualization of the KEGG pathway mtr04016 (MAPK signaling pathway). Green nodes are host proteins, red nodes are pathogen proteins, orange
nodes are effectors, and blue nodes are ice nucleation proteins. Edges in light green represent the consensus interactions from both interolog and domain-based
methods.

subvert the plant defense mechanism (Pusztahelyi et al., 2015).
Furthermore, pathogen proteins are found to be enriched in
ABC transporters pathway (psb02010). This class of protein
families is suggested to be important for phytopathogenesis
(Zeng and Charkowski, 2020).

The predicted HPIs using computational methods contain
possible candidates for experimental validation of the HPIs,
which further provide insights into the infection mechanisms of
P. syringae, according to the functional enrichment.

Subcellular Localization
A pathogen directs effector proteins to the cytoplasm of
host cells in order to inhibit host immunity. These effector
proteins are carried to various subcellular locations after crossing
the host plasma membrane and destabilize the host immune
system, allowing pathogen development (Zalguizuri et al., 2018).
Predicting the subcellular localization of P. syringae-targeted
alfalfa proteins may thus provide insight into HPI mechanisms.
The presence of targeted proteins in cellular components, a
possible site for pathogen infection in an organism, supports this
theory. We predicted the subcellular localization of alfalfa and
P. syringae proteins to gain a better understanding of the position
of host-pathogen interactions in the cell. The distribution of
the subcellular localization of the predicted proteins in alfalfa

and P. syringae is depicted in Figure 11, and the detailed list
is available in Supplementary Material 5, excel sheets 1, 2. The
subcellular localization of the proteins involved in the common
interactions revealed that 23.22% of alfalfa proteins are localized
in the cytoplasm, 18.23% are membrane-associated. While in
Pseudomonas, 65.37% of proteins are localized in the cytoplasm
and 19.62% in the plasma membrane. The results indicate that
most of the interactions between host and pathogen proteins
occur in the cytoplasmic region and membranes.

We were also curious to see where the P. syringae proteins
were found after the pathogen had multiplied in the alfalfa cells.
As a result, we determined the distribution of alfalfa protein
localization categories for each interacting pathogen localization
class. For example, 906 cytoplasmic proteins from P. syringae
interacted with 10,004 alfalfa proteins in 491,034 interactions,
out of which 24.23% (2,424 of 10,004 in 71,469 interactions) are
localized in cytoplasm followed by other membrane-associated
18.03% (1,804 of 10,004 in 130,352), nucleus 11.55% (1,156
of 10,004 in 38,728 interactions) multi-target 9.61% (962 of
10,004, in 43,944 interactions), and 8.05% (806 of 10,004 in
74,576 interactions) as cell membrane (Supplementary File 5
excel sheets 1, 2). In the multi-target (66 out 1,386 in 42,395
interactions) category, the majority of alfalfa proteins were
found to be targeted toward other membrane, cytoplasm, cell
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FIGURE 11 | Distribution of subcellular localization of host proteins (blue) and pathogen proteins (red) involved in the predicted interactions (consensus from interolog
and domain-based methods).

membrane and nucleus category. This shows that the cytoplasmic
pathogen proteins can interact inside the cytoplasm or in other
membrane or nucleus of the host cell. Similarly, cytoplasmic
membrane proteins (272) from P. syringae interacted with alfalfa
7,385 proteins in 134,597 interactions, which are localized in
23.39% (1,728/7,385 in 53,528 interactions) other membrane-
associated, followed by cytoplasm 18.06% (1,334/7,385 in 11,900
interactions), cell membrane 11.11% (821/7,385 in 29,529
interactions), nucleus 9.24% (683/7,385 in 12,138 interactions),
and 8.66% (640/7,385 in 9,321 interactions) as multi-target,
etc. The 38 P. syringae periplasmic proteins interacted with
2,807 alfalfa proteins in 6,766 interactions, out of which
25.50% (716/2,807 in 1,482 interactions) were localized in other
membrane-associated followed by cytoplasm 14.03% (394/2,807
in 1,590 interaction), and nucleus 11.72% (329/2,807 in 672
interactions), etc. The seven P. syringae proteins interacted
with 1,965 alfalfa protein in 2,550 interactions, out of which
23.05% (453/1,965 in 592 interactions) were localized in other
membrane-associated followed by cytoplasm 15.01% (295/1,965
in 346 interaction), and chloroplast 11.85% (233/1,965 in 406
interactions), etc. From these results, we can infer that P. syringae
proteins mostly interacted with other membrane-associated
alfalfa proteins followed by cytoplasm, cell membrane, nucleus,
multi-target chloroplast.

Effectors and Ice Nucleation Proteins
In the common predictions, 192 effectors and four INPs
were identified in the interactions. These proteins were

found to be involved in various pathways, including
biosynthesis of secondary metabolites (psb01110), carbon
metabolism (psb01200), pyruvate metabolism (psb00620),
glycolysis/gluconeogenesis (psb00010), citric (TCA) cycle
(psb00020), and microbial metabolism in diverse environments
(psb01120). The identified proteins were also associated
with various GO annotations, viz., protein metabolic process
(GO:0019538), gene expression (GO:0010467), cellular protein
modification process (GO:0006464), cytoplasm (GO:0005737),
transferase activity (GO:0016740), etc.

Identification of Novel Host Targets for
Known and Potential Effectors of
P. syringae
The novel host targets for known effectors were identified by
searching the known 26 effectors in the consensus predictions,
and it was found that four effectors interact with 1,787
host proteins, involved in 1,787 interactions. More than
half of the identified host proteins were found to be the
members of ABC transporter and kinase families, including
LRR-receptor-like kinase, calmodulin-binding receptor-like
cytoplasmic kinase, MAP kinase, calcium-dependent kinase,
calcium-dependent protein kinase (CDPK), serine/threonine
kinase, and others. DEAD-box RNA helicase was annotated
in 56 host proteins. In rice, a gene (OsBIRH1) encoding
a DEAD-box RNA helicase protein was cloned, which
showed activated expression on treatment with defense-related
signals in seedling leaves. Also, the OsBIRH1-overexpressing
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transgenic Arabidopsis plants were tolerant to oxidative stress
(Li et al., 2008).

To identify the novel host targets for potential effectors, 646
potential effectors were searched in the consensus predictions,
which identified 190 effectors with 8,266 host interacting
partners, involved in 94,243 interactions. The host proteins
were classified as disease resistance protein, DEAD-box RNA
helicase, LRR and NB-ARC domain disease resistance, kinases,
glycoside hydrolase family 1, and ubiquitin-conjugating enzyme.
In higher plants, glycoside hydrolase 1 (GH1) is known
to play an important role in plant defense against various
biotic and abiotic stresses, as well as other processes such as
lignification, cell wall hydrolysis (Xu et al., 2004). Ubiquitination
has a great importance in response to plant defense against
pathogens. A study in wheat identified a ubiquitin-conjugating
enzyme (TaU4), which is localized in nucleus and cytoplasm,
and acts as a negative regulator against Zymoseptoria tritici
(Millyard et al., 2016).

Identification of Novel Virulence
Effectors
Additionally, we searched for the novel P. syringae effectors in
the predicted HPIs. For this, we analyzed the P. syringae protein
dataset on EffectiveDB at default parameters. From EffectiveDB,
we identified around 3,927 P. syringae proteins which were
classified as EffectiveT3, EffectiveCCBD, and EffectiveELD. These
proteins were then identified in our predicted HPIs and it was
found that these effectors count for 686,184 interactions. We
obtained 1,371 novel virulence effectors interacting with 10,934
host proteins. Each pathogen protein was found to interact with
multiple host proteins.

Interolog and Domain Combined
Interactions
The interactome, combined from both the computational
approaches, contained a total of 14,186,848 putative PPIs,
involving 50,629 alfalfa and 2,932 P. syringae proteins. The
domain-based approach predicted 2,960,634 interactions,
involving of 14,328 alfalfa and 2,515 P. syringae proteins, while
the interolog-based approach predicted 11,916,848 interactions,
involving of 49,995 alfalfa and 2,202 P. syringae proteins.
Supplementary Material 2, excel sheets 1, 2, contains a catalog
of both host and pathogen proteins, as well as their sequences.
Due to the large number of interactions and computational
limitations, we were unable to generate/visualize the protein-
protein interaction network. Functional enrichment analysis
revealed that enriched GO terms are consistent with enriched
terms from the “common” interactions as discussed above.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

RKau formulated and designed the research and contributed
to supervision, project administration, and funding acquisition.
RKat analyzed the data, developed prediction models, and
performed functional enrichment analysis, validations, literature
mining, and contributed to writing—original draft preparation.
RKau and ND contributed to writing—review and editing. RKat,
ND, and RKau contributed to visualization. All authors have read
and agreed to the published version of the manuscript.

FUNDING

The authors acknowledge the support to this study from Utah
Agricultural Experiment Station (UAES), Utah State University,
seed grant # A48025 to RKau. This research was also partially
supported by UAES office and approved as journal manuscript
number 9553. The funding body did not play any role in the
design of this study; the collection, analysis, or interpretation of
data; or in the writing of this manuscript.

ACKNOWLEDGMENTS

We are thankful to the members of KAABiL bioinformatics team
for their valuable inputs throughout the research analysis. We
sincerely thank the referees for all the suggestions and help in
improving the research article.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
807354/full#supplementary-material

Supplementary Figure 1 | Top 15 P. syringae GO terms that were found
over-represented based on enrichment score [−log 10(P-value)]: Molecular
function (blue), cellular component (green), and biological process (red).

Supplementary Figure 2 | Top 15 Alfalfa GO terms that were found
over-represented based on enrichment score [−log 10(P-value)]: Molecular
function (blue), cellular component (green), and biological process (red).

Supplementary Figure 3 | Top 20 Alfalfa KEGG pathways that were found
over-represented in the HPIs based on enrichment score [−log 10(P-value)].

Supplementary Figure 4 | Top 20 P. syringae KEGG pathways that were found
over-represented in the HPIs with the lower P-values (0.05) are shown.

Supplementary Figure 5 | Distribution of subcellular localization of host proteins
(blue) and pathogen proteins (red) involved in the predicted interactions
(consensus from interolog and domain-based methods).

Supplementary Figure 6 | Visualization of the GO term GO:0042744 (hydrogen
peroxide catabolic process). Green nodes are host proteins, red nodes are
pathogen proteins, and orange nodes are effectors. Edges in light green represent
the consensus interactions from both interolog and domain-based methods.

Supplementary Figure 7 | Visualization of the GO term GO:0015291 (secondary
active transmembrane transporter activity). Green nodes are host proteins, red
nodes are pathogen proteins, orange nodes are effectors, and blue nodes are ice
nucleation proteins. Edges in light green represent the consensus interactions
from both interolog and domain-based methods.

Frontiers in Plant Science | www.frontiersin.org 14 February 2022 | Volume 12 | Article 807354

https://www.frontiersin.org/articles/10.3389/fpls.2021.807354/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.807354/full#supplementary-material
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-807354 February 11, 2022 Time: 16:33 # 15

Kataria et al. Unraveling the Alfalfa-Bacterial Blight Interactome

REFERENCES
Agrios, G. N. (2005). “Chapter twelve–plant diseases caused by prokaryotes:

bacteria and mollicutes,” in Plant Pathology (5th Edn), ed. G. N. Agrios
(San Diego, CA: Academic Press), 615–703. doi: 10.1016/b978-0-08-047378-
9.50018-x

Ashtiani, M., Salehzadeh-Yazdi, A., Razaghi-Moghadam, Z., Hennig, H.,
Wolkenhauer, O., Mirzaie, M., et al. (2018). A systematic survey of centrality
measures for protein-protein interaction networks. BMC Syst. Biol. 12:80. doi:
10.1186/s12918-018-0598-2

Aung, K., Xin, X., Mecey, C., and He, S. Y. (2017). Subcellular localization of
pseudomonas syringae pv. Tomato effector proteins in plants. Methods Mol.
Biol. 1531, 141–153. doi: 10.1007/978-1-4939-6649-3_12

Bastian, M., Heymann, S., and Jacomy, M. (2009). “Gephi: an open source software
for exploring and manipulating networks,” in Proceedings of the International
AAAI Conference on Weblogs and Social Media, San Jose, CA, 361–362.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57,
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Benschop, J. J., Mohammed, S., O’Flaherty, M., Heck, A. J. R., Slijper, M., and
Menke, F. L. H. (2007). Quantitative phosphoproteomics of early elicitor
signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1198–1214. doi: 10.1074/mcp.
M600429-MCP200

Bigeard, J., and Hirt, H. (2018). Nuclear signaling of plant MAPKs. Front. Plant Sci.
9:469. doi: 10.3389/fpls.2018.00469

Binny Priya, S., Saha, S., Anishetty, R., and Anishetty, S. (2013). A matrix based
algorithm for protein-protein interaction prediction using domain-domain
associations. J. Theor. Biol. 326, 36–42. doi: 10.1016/j.jtbi.2013.02.016

Bishop, J. G., Dean, A. M., and Mitchell-Olds, T. (2000). Rapid evolution in plant
chitinases: molecular targets of selection in plant-pathogen coevolution. Proc.
Natl. Acad. Sci. U.S.A. 97, 5322–5327. doi: 10.1073/pnas.97.10.5322

Broderick, S. R., Wijeratne, S., Wijeratn, A. J., Chapin, L. J., Meulia, T., and Jones,
M. L. (2014). RNA-sequencing reveals early, dynamic transcriptome changes
in the corollas of pollinated petunias. BMC Plant Biol. 14:307. doi: 10.1186/
s12870-014-0307-2

Campbell, E. J., Schenk, P. M., Kazan, K., Penninckx, I. A. M. A., Anderson,
J. P., Maclean, D. J., et al. (2003). Pathogen-responsive expression of a putative
atp-binding cassette transporter gene conferring resistance to the diterpenoid
sclareol is regulated by multiple defense signaling pathways in Arabidopsis.
Plant Physiol. 133, 1272–1284. doi: 10.1104/pp.103.024182

Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K.,
et al. (2017). The BioGRID interaction database: 2017 update. Nucleic Acids Res.
45, D369–D379. doi: 10.1093/nar/gkw1102

Cheong, Y. H., Moon, B. C., Kim, J. K., Kim, C. Y., Kim, M. C., Kim, I. H.,
et al. (2003). BWMK1, a rice mitogen-activated protein kinase, locates in the
nucleus and mediates pathogenesis-related gene expression by activation of a
transcription factor. Plant Physiol. 132, 1961–1972. doi: 10.1104/pp.103.023176

Cuesta-Astroz, Y., Santos, A., Oliveira, G., and Jensen, L. J. (2019). Analysis of
predicted host–parasite interactomes reveals commonalities and specificities
related to parasitic lifestyle and tissues tropism. Front. Immunol. 10:212. doi:
10.3389/fimmu.2019.00212

Dai, X., Zhuang, Z., Boschiero, C., Dong, Y., and Zhao, P. X. (2020). LegumeIP V3:
from models to crops—an integrative gene discovery platform for translational
genomics in legumes. Nucleic Acids Res. 49, D1472–D1479. doi: 10.1093/nar/
gkaa976

de la Fuente van Bentem, S., and Hirt, H. (2009). Protein tyrosine phosphorylation
in plants: more abundant than expected? Trends Plant Sci. 14, 71–76. doi:
10.1016/j.tplants.2008.11.003

DeYoung, B. J., and Innes, R. W. (2006). Plant NBS-LRR proteins in pathogen
sensing and host defense. Nat. Immunol. 7, 1243–1249. doi: 10.1038/ni1410

Dillon, M. M., Almeida, R. N. D., Laflamme, B., Martel, A., Weir, B. S., Desveaux,
D., et al. (2019). Molecular evolution of Pseudomonas syringae type iii secreted
effector proteins. Front. Plant Sci. 10:418. doi: 10.3389/fpls.2019.00418

Donaldson, L., Meier, S., and Gehring, C. (2016). The arabidopsis cyclic nucleotide
interactome. Cell Commun. Signal. 14:10. doi: 10.1186/s12964-016-0133-2

Dyer, M. D., Murali, T. M., and Sobral, B. W. (2007). Computational prediction
of host-pathogen protein-protein interactions. Bioinformatics 23, i159–i166.
doi: 10.1093/bioinformatics/btm208

Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS Comput. Biol.
7:e1002195. doi: 10.1371/journal.pcbi.1002195

Eichmann, R., and Schäfer, P. (2012). The endoplasmic reticulum in plant
immunity and cell death. Front. Plant Sci. 3:200. doi: 10.3389/fpls.2012.00200

Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., et al. (2005).
Comparison of the complete genome sequences of Pseudomonas syringae pv.
syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. U.S.A. 102,
11064–11069. doi: 10.1073/pnas.0504930102

Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R.,
et al. (2014). Pfam: the protein families database. Nucleic Acids Res. 42, 222–230.
doi: 10.1093/nar/gkt1223

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for
clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152.
doi: 10.1093/bioinformatics/bts565

Grudniak, A. M., Markowska, K., and Wolska, K. I. (2015). Interactions of
Escherichia coli molecular chaperone HtpG with DnaA replication initiator
DNA. Cell Stress Chaperones 20, 951–957. doi: 10.1007/s12192-015-0623-y

Guo, Q. Q., Zhang, W. B., Zhang, C., Song, Y. L., Liao, Y. L., Ma, J. C., et al. (2019).
Characterization of 3-oxacyl-acyl carrier protein reductase homolog genes in
Pseudomonas aeruginosa PAO1. Front. Microbiol. 10:1028. doi: 10.3389/fmicb.
2019.01028

Harighi, B. (2007). Occurrence of alfalfa bacterial stem blight disease in Kurdistan
province, Iran. J. Phytopathol. 155, 593–595. doi: 10.1111/j.1439-0434.2007.
01284.x

Hu, Y. (2006). Efficient, high-quality force-directed graph drawing. Math. J. 10,
37–71.

Jagessar, K. L., and Jain, C. (2010). Functional and molecular analysis of Escherichia
coli strains lacking multiple DEAD-box helicases. RNA 16, 1386–1392. doi:
10.1261/rna.2015610
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