
fpls-12-808711 February 2, 2022 Time: 12:8 # 1

ORIGINAL RESEARCH
published: 03 February 2022

doi: 10.3389/fpls.2021.808711

Edited by:
Marco Landi,

University of Pisa, Italy

Reviewed by:
Antonio Ferrante,

University of Milan, Italy
Anket Sharma,

University of Maryland, United States

*Correspondence:
Luigi Lucini

luigi.lucini@unicatt.it
Nuria De Diego

nuria.de@upol.cz

Specialty section:
This article was submitted to

Crop and Product Physiology,
a section of the journal

Frontiers in Plant Science

Received: 03 November 2021
Accepted: 21 December 2021
Published: 03 February 2022

Citation:
Sorrentino M, Panzarová K,

Spyroglou I, Spíchal L, Buffagni V,
Ganugi P, Rouphael Y, Colla G,

Lucini L and De Diego N (2022)
Integration of Phenomics

and Metabolomics Datasets Reveals
Different Mode of Action

of Biostimulants Based on Protein
Hydrolysates in Lactuca sativa L.

and Solanum lycopersicum L. Under
Salinity. Front. Plant Sci. 12:808711.

doi: 10.3389/fpls.2021.808711

Integration of Phenomics and
Metabolomics Datasets Reveals
Different Mode of Action of
Biostimulants Based on Protein
Hydrolysates in Lactuca sativa L. and
Solanum lycopersicum L. Under
Salinity
Mirella Sorrentino1,2, Klára Panzarová1, Ioannis Spyroglou3, Lukáš Spíchal4,
Valentina Buffagni5, Paola Ganugi5, Youssef Rouphael2, Giuseppe Colla6, Luigi Lucini5*
and Nuria De Diego4*

1 Photon Systems Instruments (PSI), spol. S.r.o., Drásov, Czechia, 2 Department of Agricultural Sciences, University
of Naples Federico II, Portici, Italy, 3 Plant Sciences Core Facility, Central European Institute of Technology, Masaryk
University, Brno, Czechia, 4 Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced
Technology and Research Institute, Palacký University, Olomouc, Czechia, 5 Department for Sustainable Food Process,
DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy, 6 Department of Agriculture and Forest Sciences, University
of Tuscia, Viterbo, Italy

Plant phenomics is becoming a common tool employed to characterize the mode of
action of biostimulants. A combination of this technique with other omics such as
metabolomics can offer a deeper understanding of a biostimulant effect in planta.
However, the most challenging part then is the data analysis and the interpretation
of the omics datasets. In this work, we present an example of how different tools,
based on multivariate statistical analysis, can help to simplify the omics data and
extract the relevant information. We demonstrate this by studying the effect of protein
hydrolysate (PH)-based biostimulants derived from different natural sources in lettuce
and tomato plants grown in controlled conditions and under salinity. The biostimulants
induced different phenotypic and metabolomic responses in both crops. In general,
they improved growth and photosynthesis performance under control and salt stress
conditions, with better performance in lettuce. To identify the most significant traits for
each treatment, a random forest classifier was used. Using this approach, we found out
that, in lettuce, biomass-related parameters were the most relevant traits to evaluate
the biostimulant mode of action, with a better response mainly connected to plant
hormone regulation. However, in tomatoes, the relevant traits were related to chlorophyll
fluorescence parameters in combination with certain antistress metabolites that benefit
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the electron transport chain, such as 4-hydroxycoumarin and vitamin K1 (phylloquinone).
Altogether, we show that to go further in the understanding of the use of biostimulants
as plant growth promotors and/or stress alleviators, it is highly beneficial to integrate
more advanced statistical tools to deal with the huge datasets obtained from the -omics
to extract the relevant information.

Keywords: vegetal-based protein hydrolysates, multivariate statistical analysis, metabolomics, secondary
metabolism, salt stress, Lactuca sativa L., Solanum lycopersicum L., high-throughput phenotyping

INTRODUCTION

Changes in climate patterns are dramatically influencing some
agricultural areas with special impact in arid, semi-arid, and
coastal agricultural areas (Corwin, 2020). Soil salinity already
covers 20% of total cultivated and 33% of the irrigated agricultural
lands worldwide, and is expected to increase at a faster rate than
now by the year 2050 (Mukhopadhyay et al., 2021). The high
salt concentration in the soil reduces plant growth and, hence,
yield in two ways: increasing the osmotic potential of the soil
solution, making it harder for the plant to extract water, and
accumulating into the root and shoot tissue at a concentration
that can be toxic for the plant (Munns and Tester, 2008). The
extent of salinity damage to the fitness and final yield of the
crop can change according to the species. For example, lettuce
(Lactuca sativa L.) reduces plant growth and yield under salt
stress conditions (Moncada et al., 2020). However, tomatoes
(Solanum lycopersicum L.) can maintain the fruit yield and
increase their quality under moderate stress (Meza et al., 2020),
whereas severe salt stress reduced tomato growth and provoked
severe damages, especially in young seedlings (Ali et al., 2021).

To reduce the yield loss connected to salinity, scientists are
moving toward the selection of more tolerant genotypes through
breeding, genetic engineering, and marker-assisted selection
(MAS) (Munns and James, 2000; Yamaguchi and Blumwald,
2005). However, these methods are expensive, time-consuming,
and, in the case of genetic engineering, received with suspicion
by the general public (Yamaguchi and Blumwald, 2005; Halford
and Shewry, 2000). A more sustainable alternative is represented
by the use of protein hydrolysates (PHs), a class of non-microbial
plant biostimulants obtained from the partial hydrolysis of
protein sources of plant or animal origin (Colla and Rouphael,
2015). Many works from the last years have enlightened the
effects of PHs as stress alleviators on different crops growing in
saline conditions (Van Oosten et al., 2017; Dell’Aversana et al.,
2020; Di Mola et al., 2021). Nonetheless, it is important to
remember that the effects of the PHs on crops can vary with the
plant species or varieties, the time of the application, and the dose
(Lisiecka et al., 2011).

Before a new potential PH-based biostimulant is put on the
market, it is essential to test its effects in multiple conditions
and on different crops. High-throughput automated platforms
for plant phenotyping have proven to improve and speed up the
biostimulant testing process (Rouphael et al., 2018). Different
sensors can be implemented in high-throughput phenotyping
platforms, allowing the user to monitor the effects of the PH
applications on many morpho-physiological traits throughout

the entire crop life cycle (Paul et al., 2019a,b). As a result,
we can define in which crop, developmental stage, and dosage
the application is recommended. Besides, a deeper physiological
study allows the characterisation of their mode of action. This
information can be used for further possible applications.

The use of other -omic approaches, such as metabolomics,
allows studying the biostimulant effect in a more complex
manner, supporting, and integrating the phenomics data to better
understand the biochemical processes activated in the plants by
the biostimulants application. However, the data analysis and
interpretation of the complex omics datasets can become another
challenging bottleneck. Here, we investigated the mechanism of
action of a set of 7 PHs in lettuce and tomato subjected to
early and late salinity stress. We hypothesise that salinity will
reduce plant growth and change the physiology of the plant in
tomato and lettuce. However, the PH application will ameliorate
the salt negative effect in both plant species. Besides, a deep
data analysis using advanced statistical tools will allow us (i)
to understand better the effect of the PHs on two species,
lettuce and tomato, selected for their economic importance, their
distinct architecture, and purpose, and their different sensitivity
to salinity stress, (ii) to evaluate the biological translation from
the results obtained in PH-primed Arabidopsis grown under
salt stress (Sorrentino et al., 2021) to other crops under similar
growing conditions, and (iii) to demonstrate the necessity of the
use of statistical approaches to simplify complex omic datasets
allowing identification of the traits relevant for the understanding
of a biostimulant mechanism of action.

MATERIALS AND METHODS

Plant Material and Growing Conditions
Seeds of Lactuca sativa L. var. capitata (Salanova cv Aquino)
and Solanum lycopersicum L. cv MicroTom were sown in 250 ml
pots filled with 235 g of a mixture of sieved peat (Substrate 2,
Klasmann-Deilmann GmbH, Geeste, Germany) and river sand
in 1:1 proportion. All the pots were watered up to 55% of the
soil relative water content (SRWC). The water holding capacity
of the substrate was calculated as described by Junker et al.
(2015). The covered pots were stratified at 4◦C in the dark for
two days. After that, the pots were moved to a climate-controlled
growth chamber (FS-WI, Photon Systems Instruments, Czechia)
under long-day conditions (16 h light/8 h dark). The climate
conditions in the growth chamber were set at 21/19◦C for
day/night temperature with 60% relative humidity (RH) and
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120 µmol m−2 s−1 cool-white LED (6,500 K) and 5.5 µmol m−2

s−1 far-red LED (735 nm) lighting. These conditions were kept
constant throughout the entire experiment. The pots were kept
covered with a plastic lid for the first 24 h to maintain the soil
moisture before it was removed.

Selection of the Plants
Eight days after lettuce stratification and ten days after tomato
stratification, when most of the germinated seedlings had reached
the 2-true-leaf stage, a top view RGB picture of all plantlets was
taken using the top view RGB2 camera in the PlantScreenTM

Compact system (Photon Systems Instruments, Brno, Czechia).
The plants with areas between the 1st and the 4th quartile of
the normal distribution of the population were used for the
experiment. In the tomato experiment, each variant counted 6
plantlets as biological replicates, with a total of 96 plants. For the
lettuce experiment, each variant counted 8 plantlets as biological
replicates, with a total of 128 plants.

High-Throughput Phenotyping
To investigate the effects of PHs application on the morpho-
physiological parameters of lettuce and tomato grown under salt
stress conditions, trays containing two pots with one plantlet each
were automatically transported within PlantScreenTM Compact
System on conveyor belts between the light-isolated imaging
cabinets, weighing and watering station, and the dark/light
acclimation chamber. The trays were measured thrice a week,
ending with 10 phenotyping rounds distributed in 21 days for
lettuce and 24 days for tomato (Figure 1), with the starting point
before the first salt application (Day of Phenotyping 1, henceforth
defined as DoP 1). The phenotyping protocol used was the
same for both crops. Physiological measurements [Chlorophyll
Fluorescence (ChlF) and Thermal Imaging (IR)], being sensitive
to circadian rhythm regulation mechanisms (Cano-Ramirez and
Dodd, 2018), were always performed in the morning. A single
round measuring protocol consisted of an initial 15 min light-
adaptation period inside the acclimation chamber, followed by
IR, and red-green-blue (RGB) top view imaging (RGB2). Next,
15 min dark-adaptation was applied, followed by chlorophyll
fluorescence kinetic imaging, RGB side view imaging (RGB1),
and weighing and watering (Figure 1A). Due to the limited
capacity of the phenotyping system for the lettuce experiment,
the trays were divided into 3 blocks with 16 trays each. The
measuring round for one block lasted for 2 h and 45 min. The
PlantScreenTM Analyser software (PSI, Czechia) was used to
automatically process, re-analyse, and export the data.

Biostimulants Selection and Application
Seven PHs obtained by enzymatic hydrolysis of vegetal-derived
proteins were selected from a batch of eleven PHs that were
previously screened for their mode of action (Sorrentino et al.,
2021) and used for the experiment. They included PHs from
different plant sources belonging to the botanical families of
Fabaceae (O), Malvaceae (C), Brassicaceae (F), Solanaceae (B),
and Graminaceae (P), and two commercial products [Trainer R©

(D) and Vegamin R© (H)], commercialised by Hello Nature Inc.
(former Italpollina) (Anderson, IN, United States) and used

as positive controls. The PH was obtained through enzymatic
hydrolysis of the dry biomass and was then analysed for their
total nitrogen and carbon content. For a detailed description of
the procedure, see Sorrentino et al. (2021) and Ceccarelli et al.
(2021).

Biostimulants were applied to leaves through spraying once a
week, using only distilled water for the controls or the given PH
in a concentration of 3 mL/L for the treated plants. A total of 4
foliar applications of PHs were done throughout the experiment
(Figure 1B). The first spraying (priming) was performed one
day before the first salt application. Two hours before and after
the spraying of the plants, the relative humidity in the growing
chamber (FS-WI) was increased up to 80% to promote the
stomata opening.

Due to the limited capacity of the phenotyping platform, the
lettuce experiment was divided into two rounds, each consisting
of 64 plants. The substances B, C, and F were tested in the first
round, while D, H, O, and P in the second round.

Watering and Salt Treatment
All the pots were watered after each phenotyping round at up
to 55% SRWC with a modified Hoagland solution [0.36 g/L Ca
(NO3)2, 0.1 g/L KH2PO4, 0.80 g/L KNO3, 0.04 g/L NH4NO3,
0.13 g/L MgSO4, and 0.01 mg/L of MIKROM fertilizer (Cifo Srl,
S.Giorgio di Piano (BO), Italy)] using the Weighing and Watering
station in the PlantScreenTM Compact. The solution was freshly
prepared before each watering round and the pH was adjusted
to a value of 5.7.

Starting from 2 weeks after stratification, the plants belonging
to the stress group were subjected twice a week to salt application,
ending with 6 applications for both crops (Figure 1B). In the
lettuce assay, our objective was to reach a concentration of
40 mM NaCl in the soil, corresponding to moderate stress
(Freitas et al., 2019). To avoid osmotic shock to the plants and
NaCl accumulation in the soil, all the pots were first watered
up to 55% of SRWC with plain nutrient solution. The plants
belonging to the stress group were then given 40 ml each of
an 80 mM NaCl solution (8.7 mS/cm). In the end, after a
couple of hours from the salt application, all the plants were
watered again of up to 100% of their SRWC to create drainage
of the solution from the pot. The same setup was used with
tomato, but in this case, the salt solution increased to 120 mM
NaCl (14 mS/cm) to reach a concentration of around 60 mM
NaCl in the pot, corresponding to moderate salt stress (Meza
et al., 2020; Figure 1B). The two NaCl concentrations used
in the experiments were the result of several preliminary tests
conducted on both crops (data not shown).

Imaging Protocol and Data Analysis
Red-Green-Blue Imaging
Red green blue imaging using high-resolution top-view and
side-view RGB cameras and an optimised image segmentation
algorithm for automated analysis were used to calculate
the number of plant-specific pixels throughout the whole
experiment. The RGB images were processed as described by
Awlia et al. (2016) and Paul et al. (2019a,b).
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FIGURE 1 | Scheme of plant cultivation and phenotyping protocol. Plants were manually transferred from the cultivation chamber to PlantScreenTM Compact
System for imaging using four different sensors (thermal camera, chlorophyll fluorescence, and top and side RGB). The resulting false-color, segmented images, and
list of extracted parameters obtained from the sensors are shown (A). Timeline of plant cultivation (yellow bar) and phenotyping protocol (blue bar). Green dots show
four-time points of the foliar application for the selected biostimulants and the orange dots show six timepoints for the salt treatment (B).

Projected shoot area (PSA) from the top (PSAtop) and the side
view (PSAside) was used to calculate the Digital Biomass (DM) of
each plant (Rahaman et al., 2017):√

PSA2
side × PSAtop

Digital Biomass, corresponding to the approximate volume,
was then used to calculate the Relative Growth Rate (RGR),

whereT1 and T2 indicate the time interval (days), while DM1 and
DM2 indicate the corresponding digital biomass:

(ln DM2 − ln DM1)/(T2 − T1)

Relative growth rate (RGR) was calculated twice during the
experiment: from DoP 0 to DoP 12 (Early Phase) for both crops,
and from DoP 12 to DoP 21 for lettuce plants, or to DoP 24 for
tomato plants (Late Phase).
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Chlorophyll Fluorescence Imaging
To assess the effects of salt stress and biostimulants application
on the photosynthetic performance of the plants, ChlF
measurements were acquired using an enhanced version of
the FluorCam FC-800MF pulse amplitude modulated (PAM)
chlorophyll fluorometer incorporated into the PlantScreenTM

Compact System (for more details, see Henley, 1993). After
15 min of dark adaptation, the light curve protocol, as
described in Awlia et al. (2016), was used to quantify the
rate of photosynthesis at different photon irradiances (Rascher
et al., 2000). Four actinic light irradiances [Lss (Light steady-
state) 1: 180 µmol m−2 s−1; Lss2: 480 µmol m−2 s−1; Lss3; 780
µmol m−2 s−1 and Lss4: 1,080 µmol m−2 s−1] with a duration
of 60 s were used to quantify the rate of photosynthesis. The
raw data were automatically processed using the PlantScreenTM

Analyser software (PSI, Brno, Czechia). From the measured
fluorescence transient states, the basic ChlF parameters were
derived (i.e., F0, Fm, Ft, and Fv), which were used to calculate
a range of parameters characterizing the plant photosynthetic
performance (i.e., Fv/Fm, Fv′/Fm′, NPQ, and 8PSII). We chose
to evaluate the parameters obtained after the exposure of the
plants to the light of intensity 480 µmol m−2 s−1 (Lss2) since
they provide the highest discriminative power between control
and stress plants.

Thermal Imaging
To determine the leaf temperature of the plants, we used
the thermal imaging unit implemented into the PlantScreenTM

Compact system, which allows assessing the canopy temperature
from the top view. The thermal imaging unit incorporated in
the PlantScreenTM Compact System consists of a light-isolated
box with one top view camera mounted on a static frame
and a temperature sensor to increase contrast for the image-
processing step. The imaged area is 440 mm × 340 mm
(height × width). To assess the Spatio-temporal variations in
temperature over plant surface, we used an FLIR A615 thermal
camera with 45◦ lenses and a resolution of 640 × 480 pixels
and high-speed infrared windowing option and<50 mK thermal
sensitivity (FLIR Systems Inc., Boston, MA, United States). The
canopy temperature of each plant was automatically extracted
with PlantScreenTM Analyser software (PSI, Brno, Czechia) by
mask application, background subtraction, and pixel-by-pixel
integration of values across the entire plant surface area.

To minimize the influence of the differences in environmental
conditions and image acquisition timing among individual
plants, the average canopy temperature of each plant (Tavg)
was normalised with the actual temperature inside the Thermal
Imaging box and expressed as canopy temperature depression or
δT (◦C) (Hou et al., 2019).

Untargeted Metabolomic Analysis
At the end of the experiment, at DoP 21 and 24 in lettuce
and tomato, respectively, the third true leaf of each plant was
harvested and freeze-dried. The material from control plants and
plants treated with the 7 PHs was used for the metabolomic
analysis. Lyophilised plant material (50 mg for lettuce and
250 mg for tomato) was extracted in twenty volumes (w/v)

of methanol/water solution (70:30, v/v), acidified with 0.1%
formic acid by Ultra-Turrax (Polytron PT, City, Switzerland),
centrifuged, and then filtered through a 0.22 µm membrane
as previously reported (Paul et al., 2019a,b). Untargeted
metabolomics was performed using a 6,550 iFunnel quadrupole-
time-of-flight mass spectrometer and a 1,200 series ultra-high-
pressure liquid chromatographic system (UHPLC-ESI/QTOF-
MS) from Agilent Technologies (Santa Clara, CA, United States)
as previously described (Miras-Moreno et al., 2021). Briefly,
6 µL were injected and a reverse-phase chromatography was
applied under a water-acetonitrile gradient elution (6 to 94%
acetonitrile in 33 min). The mass spectrometer worked in positive
ionisation (ESI+) and in SCAN mode for the acquisition of
accurate masses ranging from 100 to 1,200 m/z. Four replicates
were analysed for each treatment and samples were randomly
sequenced. Quality Controls (QCs) were prepared by pooling all
the extracts and were analysed throughout the chromatographic
sequence using the same chromatographic conditions as samples
but were acquired in data-dependent MS/MS mode (1Hz, 50–
1,200m/z, 12 precursors per cycle) at different collision energies
(10, 20, and 40eV).

Agilent Profinder B.07 (Agilent Technologies) software was
used for mass (5-ppm tolerance), retention time (0.05min
maximum shift) alignment, and for processing all the
mass features from UHPLC-ESI/QTOF-MS raw data. The
combination of monoisotopic mass, isotopes accurate spacing,
and isotope ratio was used for annotation using the PlantCyc
12.6 database (Plant Metabolic Network)1, as previously reported
(Pretali et al., 2016; Schläpfer et al., 2017). Only those compounds
identified in 75% of the replications within at least one treatment
were retained. Thereafter, MS/MS confirmations from QCs were
carried out using the software MS-DIAL 4.24 (Tsugawa et al.,
2015), formerly using MS/MS experimental spectra available
in the software (Mass Bank of North America), and then using
MS-Finder in silico fragmentation (Tsugawa et al., 2016). The
annotation process corresponded to level 2 of confidence as
set out in the COSMOS Metabolomics Standards Initiative
(Salek et al., 2015).

Statistical Analysis
For the phenotyping data, statistical differences between
treatments and time points were determined by Mixed model
analysis (McCulloch and Searle, 2000; Boisgontier and Cheval,
2016) and multiple pairwise comparisons using post hoc Tukey’s
test (P-value <0.05). The statistical analysis was implemented
in R studio (R GUI 4.0.3) using the “lmer” and “emmeans”
packages (R Core Team, 2014; Bates et al., 2015; Russell, 2020).
Then, to define the specificities of each crop and their response
to the foliar application with PHs, and to go further in the
mode of action, hierarchical clustering was applied with the
use of “Ward’s” linkage method to find similarities between
crops, growth conditions, and the best and worse performed
biostimulant and to identify clusters (Saxena et al., 2017). Finally,
random forest classification was also applied to identify the
significant variables for the treatment classification (Qi, 2012).

1http://www.plantcyc.org

Frontiers in Plant Science | www.frontiersin.org 5 February 2022 | Volume 12 | Article 808711

http://www.plantcyc.org
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-808711 February 2, 2022 Time: 12:8 # 6

Sorrentino et al. Mode of Action of PHs

Concerning metabolomics, the software Agilent Mass Profiler
Professional B.12.06 (from Agilent Technologies, Santa Clara,
CA, United States) was used for data normalisation and
baselining (Mimmo et al., 2017). Then, unsupervised hierarchical
cluster analysis (HCA) based on fold-change heatmaps (Squared
Euclidean distance) was used to naively describe patterns across
treatments. Thereafter, supervised multivariate statistics were
performed in SIMCA 13 (Umetrics, Malmo, Sweden), where
orthogonal projection to latent structures discriminant analysis
(OPLS-DA) was carried out. Each supervised model (separate
models for tomato and lettuce, and then a comprehensive
model for salt-stressed versus control plants), was validated
by CV-ANOVA, checked for overfitting by permutation testing
(N = 200), and then inspected for goodness-of-fit (R2Y)
and prediction ability (Q2Y). After that, variable importance
in projection (VIP) ranking was used to identify the most
discriminant compounds in each OPLS-DA model. Finally,
ANOVA (P-value <0.01, Bonferroni multiple testing correction)
and fold-change (FC) analysis (FC ≥ 1.3) were combined into
Volcano Plots, and differential compounds were imported into
the Omic Viewer Pathway Tool of PlantCyc (Stanford, CA,
United States) software (Caspi et al., 2013) for biochemical
interpretations.

RESULTS

Development of the Experimental
Protocol for Salt and Biostimulants
Applications
To effectively characterise the outcome of biostimulants
applications on lettuce and tomato performance in the early
vegetative growth phase, we first optimised the experimental

protocol for plant cultivation, mild-salt stress application, and
the stress response quantification. The crops were analysed
in independent experiments as they are very diverse in their
tolerance to salinity, and two different concentrations of NaCl in
the nutrient solution were used to water the plants as described
in Materials and Methods (Figure 1). Lettuce and tomato plants
were grown for 35 and 39 days, respectively, and this period
corresponded to the complete head maturation in lettuce and the
beginning of the flowering stage in tomatoes.

The PHs were applied via foliar spraying with solutions of
3 mL/L each (Figure 1; Di Mola et al., 2019a,b). The morpho-
physiological traits of the plants were quantified dynamically
throughout the trial to monitor their growth performance and
physiological status. As a result, we could clearly distinguish two
periods in the experiment, an early and late phase, in which the
response of the plants to the salt stress and to the interaction with
the biostimulants applications were diverse. It is well-known that
plants respond to salt stress in two phases (Ugena et al., 2018):
a rapid and osmotic phase, described here as the early phase
(DoP 0-12), and a slower ionic phase due to the ion toxicity,
referred to as the late phase (DoP 12-21 in lettuce or DoP 12-24
in tomato) (Figure 2).

Lettuce and Tomato Plants Have
Different Physiological Responses to
Mild Salinity
In lettuce, salt stress reduced plant growth in the later phase
of the experiment after 4 salt applications (after DoP 14)
(Figures 2A1,A2), and the reduction was similar in the lettuce
plants from the first and second trials with 35 and 29%
lower digital biomass (DB) than their correspondent controls,
respectively (Supplementary Figures 1A1,B1). We further
assessed other morphological parameters, such as roundness,

FIGURE 2 | Salinity response in tomato and lettuce plants. The RGB top view colour-segmented images of lettuce (A1) and tomato (B1) control and
salinity-stressed plants over the time-course of the experiment. Digital biomass (DB) of the lettuce (A2) and tomato (B2) plants. The maximum quantum efficiency of
photosystem II in the light-adapted state (Fl′/Fm′) for lettuce [full line, (A3)] and tomato [dashed line, (B3)] plants. Values represent the average of 8 (lettuce) and 6
(tomato) biological replicates per treatment, error bars represent standard deviation. The significant differences between control and salt treatment are indicated with
∗, ∗∗, and ∗∗∗ for p-values below 0.05, 0.01, and 0.001, respectively. Data and images shown are from the 1st round of the lettuce experiment.
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compactness, and slenderness of the leaves (SOL), showing that
they did not differ between the rounds, but differed between
the controls and salt-stressed plants in the late phase, with
the less compact, round, and more SOL in the stressed lettuce
(Figure 2A1 and Supplementary Figures 1A,B).

The photosynthetic performance of the plants during the
development and with the progression of the salt stress was also
affected (Figure 2A3 and Supplementary Figures 1C,D). In the
two rounds that were analysed, the most significant differences
were observed in the late phase between the controls and the
NaCl-treated lettuce plants. We showed that the maximum
quantum yield of PSII photochemistry for the light-adapted
(Fv′/Fm′) state and PSII operating efficiency (8PSII) were
significantly reduced in the stressed plants, whereas the non-
photochemical quenching (NPQ) was increased compared to
the controls (Figure 2A3 and Supplementary Figures 1C,D).
Altogether, our data demonstrate that in lettuce, only the late
phase of salt stress imposition (after DoP12) was important
to detect the differences in growth and in fluorescence-related
parameters between treatments.

In tomato plants, the growth of the plant was not affected
by the mild salt stress (Figures 2B1,B2). The remaining
morphological parameters did not show differences between
control and salt stress, except for the higher slenderness of the
leaves (SOL) in salt-stressed plants during the transition from the
early to late phase (Supplementary Figures 2A1–A4). Regarding
the physiology, however, there were significant differences
in several fluorescence-related parameters at the end of the
early phase and late phase of the salt stress (Figure 2B3
and Supplementary Figure 2B). In salt-stressed tomatoes, we
observed a significant reduction in Fv′/Fm′ and 8PSII, and
increased NPQ values compared to the controls.

Protein Hydrolysates Specifically
Improve Growth Performance of Lettuce
Plants
In the following step, we analysed how the foliar application
of selected PHs could modify the responses observed in
salt-stressed and non-stressed plants. In lettuce plants, the
substance P increased the DB at the late phase of stress
after 3 foliar applications under both growth conditions
(DoP13) (Figures 3A1,A2, Supplementary Figure 3B1,
and Supplementary Tables 1A,B). The substances D and
H also improved the DB, but only when plants were grown
under salt stress conditions. Other morphological traits,
such as roundness, compactness, or SOL, did not change
(Supplementary Figures 3A2–A4,B1–B4 and Supplementary
Tables 1A,B). Similarly, the foliar application with substance
P increased the RGR of the plants in the early phase under
control conditions (Figures 3A1,A2 and Supplementary
Figures 6A1,A2). Other PHs did not modify the RGR of the
plants compared to their respective controls (salt or control) in
both the early and late phases. Interestingly, application of the
PHs increased the final biomass (Supplementary Figures 6B,C),
especially the dry weight of the aerial part of the plants when the
substances B, C, F, and P were applied to plants grown under

control and salt stress conditions, or when the substance O was
applied under control conditions.

The application of biostimulants had a mild impact on the
photosynthetic performance of the lettuce plants both under
control and salt stress conditions. We showed that the plants
treated with the substances P and H increased Fv′/Fm′ and
8PSII values both under control and stress conditions, while
we observed reduced NPQ levels along with the experiment
(Figures 3A1,A2, Supplementary Figures 3C,D, 4C,D, and
Supplementary Table 2A).

In tomato plants, the application of PHs did not have any
effect on the morphological traits; the differences in DB, RGR,
and fresh and dry weight were only due to the growth conditions.
Digital biomass (DB), along with the fresh weights of the plants,
were similar in PH-treated plants and control plants during
both phases of the experiment (Figures 3B1,B2, Supplementary
Figures 5A,B, 7, and Supplementary Table 1C). Similarly,
no significant improvement of the photosynthetic efficiency of
the plants was observed in tomato plants sprayed with PHs
in any growth conditions (Figures 3B1,B2, Supplementary
Figures 5C,D, and Supplementary Table 2C).

We have further analysed the impact of PHs applications
on the leaf surface temperature profile of both crops using
thermal image analysis. The salt stress significantly increased
the temperature of the leaf surface in lettuce but not in tomato
plants (Supplementary Figure 8). Similarly, the changes of
the temperature by the application with biostimulants were
more visible in lettuce than in tomato plants. We showed
that the lettuce plants treated with the substances C and F
had a significantly reduced surface temperature when grown
both under control and stress conditions (Figures 3A1,A2,
Supplementary Figures 8A,B, and Supplementary Table 3A).
In tomatoes, the biostimulants reduced the temperature of
the leaf surface after the first application in plants that were
under control and salt stress conditions. However, in the
late phase, they increased the temperature over the respective
control in almost all the cases (Supplementary Figure 8C and
Supplementary Table 3A).

Investigating the Mode of Action of the
Protein Hydrolysates Through the Plant
Biostimulant Characterisation Index
To simplify the results and to identify the specific mode of action
of the 7 PHs, we used the Plant Biostimulant Characterisation
(PBC) index as described previously (Ugena et al., 2018;
Sorrentino et al., 2021). For the calculation of the PBC indexes, we
selected the five traits (DB, RGR, Fv′/Fm′, 8PSII, and 1T) that
provided the highest discriminative power between the different
treatments (Supplementary Tables 1–3). The PBC indexes for
the Early Phase (from DoP 0 to 12) and the Late Phase (from
DoP 12 to 21 in lettuce or from DoP 12 to 24 in tomato)
were calculated independently since we could observe different
responses of the plants treated with the 7 PHs in the two phases.
To determine the index value, the log2 of the ratio between the
biostimulant treated plants and untreated ones was determined
for each crop and growth conditions, and then represented
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FIGURE 3 | Characterisation of the effect of biostimulants on the performance of tomato and lettuce plants grown under control and salinity conditions. Parallel
coordinate plots of the 5 main morpho-physiological parameters (Digital Biomass, RGR, Fv′/Fm′, 8PSII and 4T) are shown for lettuce plants grown in control [full
lines, (A1)] and salt stress conditions [dotted lines, (A2)], for tomato plants grown in control [dashed lines, (B1)], and salt stress conditions [dotted and dashed lines,
(B2)]. The values represent the log2 of the ratio between the plants treated with the 7 protein hydrolysates (PHs) and their respective controls, the sum of the
resulting 5 values corresponds to the Plant Biostimulant Characterisation (PBC) index, used for the characterisation of the PHs. Data are shown for the early (0–12
Days of Phenotyping) and the late phase (12–21 Days of Phenotyping) of the plant growth.

in parallel plots (Figure 3). Then, the five obtained values
represented in each parallel plot were summed to end with a
unique number that represents the PBC index (for further detail
see Sorrentino et al., 2021) which was included in Table 1. The
calculated PBC index for each compound, growing condition,
and phase of the trial could be negative (red) or positive (blue),
providing information about the mode of action of that specific
combination (Table 1). More in detail, the substances with
positive PBC indexes (darker blue) in control conditions are
characterised as plant growth promoters, whereas the negative
(darker red) are plant growth inhibitors. Overall, our data clearly
showed that in lettuce plants, the substance P was both the
best growth promotor and stress alleviator, improving the fitness
of the plants in all growing conditions and both stages of the
trial. The second best was H, while the absolute worst was B
(Table 1A). Some of the other PHs proved to be beneficial to
the crop only in a specific growing condition and/or phase of
the trial. For example, F showed an effect as a growth promotor,
but only in the late phase of the experiment, while O acted as
a stress alleviator in the early phase, but its effect fainted in the
Later Phase (Table 1A).

For tomato, the absolute best performer was the substance
O, followed by D, F, and H, all acting as growth promotors
and stress alleviators. Contrarily, the plants treated with the
substance B showed the worst performances, especially in salt
stress conditions (Table 1B).

The results obtained from the PBC index were also
corroborated by a cluster analysis performed with the complete
phenotyping data set (Figure 4). In lettuce, the plants treated with
H and P were located in an independent cluster that was divided
into two subclusters due to the growth conditions (control or
salt) but independent of the stress and unstressed control plants

(Figure 4A). Contrarily, the rest of the substances were located
with their respective controls that were only separated by the
stress effect (Figures 4A,B). In tomato plants, except for the
substances B and C, all PHs were beneficial for the plant fitness,
especially when they were grown under salt stress conditions
(Figure 4C). Altogether, we could conclude that H and P were
the best growth promotors and stress alleviators, whereas B was a
plant growth inhibitor.

The Applications of Protein Hydrolysates
Activate Different Metabolic Pathways in
Lettuce and Tomato Plants
An untargeted metabolomic analysis (UHPLC/QTOF-MS) was
performed to understand the molecular mechanisms triggered
by PH treatments in tomato and lettuce plants grown under
either control or salinity conditions. The untargeted profiling
allowed to putatively annotate more than 2,000 compounds;
the whole list of metabolites, together with the composite
mass spectra and individual abundances are provided as
Supplementary Material (Supplementary Table 5A for lettuce,
Supplementary Table 5B for tomato). The metabolomics dataset
included a broad biochemical diversity, including metabolites
from a large range of metabolic processes of primary and
secondary metabolism. Multivariate statistics were applied
to the metabolomic dataset highlighting the similarities or
dissimilarities among the metabolomic profiles across treatments.
At first, the unsupervised and supervised statistics were carried
out separately, while considering the metabolomics datasets from
lettuce and tomato. These statistics served as the first step
of interpretation to point out the similarities or dissimilarities
among all treatments.
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TABLE 1 | Classification of 7 protein hydrolysates (PHs) using Plant Biostimulant Characterisation (PBC) index.

(A) Lettuce (B) Tomato

Control NaCl Control NaCl

Early phase Late phase Early phase Late phase Early phase Late phase Early phase Late phase

B −0.38 −0.21 −1.04 −0.78 0.35 0.18 0.09 0.10

C −0.54 −0.07 −1.73 1.01 0.17 −0.32 0.84 1.00

D 0.12 −0.10 −1.18 −0.42 1.27 1.14 1.14 1.33

F −0.73 1.23 −1.77 0.15 1.21 1.24 0.92 1.00

H 0.63 0.30 0.53 1.00 0.73 0.63 1.36 0.77

O 0.15 −0.02 0.38 0.19 1.96 1.45 1.49 1.23

P 1.37 1.32 0.84 1.29 0.60 0.64 0.34 0.36

The PBC index values for each substance, in Early (0-12 Days of Phenotyping for both crops) and in Late Phase of the experiment (21-21 or 12-24 Days of Phenotyping
for lettuce or tomato, respectively). The PBC index of the 7 studied PHs in lettuce (A) and tomato (B) plants under control and salinity conditions. White corresponds to
0, positive values are highlighted in blue and negative values are highlighted in red, the farther the value from 0, the darker is the corresponding hue.

FIGURE 4 | Cluster Dendrograms for all phenotypical data. Cluster analysis of the lettuce [(A) 1st round and (B) 2nd round] or tomato (C) plants treated with 7
different PHs and grown under control and salt stress conditions.

When the lettuce plants were analysed, the unsupervised
fold-change-based hierarchical clustering output (Figure 5A)
naively evidenced that within each trial (first for PHs B, C,
F, and second for D, H, O, P), the salinity application was
the main clustering factor. Nevertheless, the score plot from
the supervised OPLS-DA multivariate modelling (Figure 5B)

allowed to efficiently discriminate among the different groups
of treatments, whereas control samples from the two different
trials merged into the score-plot. The model was validated
(P-value < 0.001), parameters of the OPLS-DA were excellent
(R2Y = 0.983, Q2Y = 0.935), and overfitting was avoided through
permutation testing. Therefore, discriminant compounds (VIP
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score > 1.2 − Supplementary Table 6A) were exported and
were considered. Overall, primary and secondary metabolites
were equally represented among the VIP discriminants.
In more detail, the most represented primary metabolites
included carbohydrates, membrane lipids, hormones (mainly
brassinosteroids, a cytokinin, and two gibberellins), and electron-
carriers (quinol and quinones). Among secondary metabolites,
the most represented compounds were phenylpropanoids,
alkaloids, and isoprenoids. Exploring the OPLS-DA score
plot (Figure 5B), the variants showed a clear distribution
through all score spaces with a clear separation between stressed
and non-stressed plants treated with the same PHs. Under
non-saline conditions, the plants treated with B, C, and F
presented metabolomic signatures similar to the untreated
control, depicting a separated group of responses. However, a
second group formed by the plants treated with H, O, and P,
corresponding to the best performing biostimulants according
to the phenotyping data, formed an independent group under
control and salt stress conditions (Figure 5B).

Different results were obtained in tomato plants. As a
preliminary approach, unsupervised HCA (Figure 6A) suggests
that salinity did not have a primary effect on metabolic signatures.
Tomato samples clustered in two main groups, distinguishing
PH treatments, with a cluster including O, P, F, and H, and a
second group containing those plants treated with the substance
B and C, more similar to untreated controls. These results were
further confirmed by the OPLS-DA supervised statistics which
allowed separating better the samples in the score space according
to the combined treatments (Figure 6B). The model parameters
of the OPLS-DA were excellent (R2Y = 0.981, Q2Y = 0.941),
validation was adequate (P-value <0.001), and overfitting could
be excluded by permutation testing. Discriminant compounds
(VIP score > 1.1 – Supplementary Table 6B) are mainly related
to secondary metabolism (phenylpropanoids and to a lesser
extent terpenoids and alkaloids), cofactors/electron carriers, and
phytohormones (gibberellins, brassinosteroids, jasmonate, and
IAA-conjugates). Primary metabolites range from carbohydrates,
lipids, organic acids, and nucleic acid components. OPLS-DA
evidenced that some PHs (O, P, H, D) were better able to
minimize the differences between stressed and non-stressed
plants, so the plants were grouped independently of the plant
growth conditions. This feature might imply a hierarchically
stronger effect of the biostimulant above salt stress, and thus,
the ability of these PHs to well-play as stress alleviator on plant
metabolism (Figure 6B).

Biochemical Insights on the
Metabolomic Reprogramming Triggered
by the Best and the Worst Performers
Protein Hydrolysates
To further understand the differences between the mode of
action of good and bad performing biostimulants, we analysed
the plants treated with the best substance, H, as plant growth
promotor and stress alleviator and with the worst, B, as
growth inhibitor [according to the PBC indexes and the cluster
analysis (Figures 3, 4 and Table 1)]. The two corresponding

sub-datasets were then considered, including 669 compounds
for lettuce and 1,090 for tomato. The HCA confirmed the
strongest effect of salinity above the PH-treatments in lettuce,
whereas PHs had a hierarchically stronger effect on tomatoes
(Supplementary Figures 9A,B). Indeed, for lettuce, the two
main clusters divided stressed from non-stressed plants, even
though the metabolic profiles of control plants were more
similar to B-treated plants. On the other hand, the metabolic
signatures of tomato samples merged in two main clusters,
one including H-treated plants and a second cluster grouped
controls and B-treated. Consistent results were obtained by
OPLS-DA where the separation of treatments could be observed
in the score plot hyperspace (Supplementary Figures 9A,B).
The OPLS-DA model was robust, being R2Y = 0.996 and
Q2Y = 0.987 in lettuce (P-value < 0.001) and R2Y = 0.996
and Q2Y = 0.977 in tomato (P-value < 0.001). Thereafter, the
Volcano plot analysis (P-value < 0.01, FC ≥ 1.3) was applied to
identify differential compounds. Overall, we evidenced that 414
(in lettuce, Supplementary Table 7A) and 261 compounds (in
tomato, Supplementary Table 7B) were significantly modulated
by treatments compared to control. The Pathway Tool analysis
from PlantCyc was applied to simplify the interpretation
in terms of plant metabolism. Figures 7A, 8A show the
biosynthetic processes modulated by treatments, along with
cumulate FC values. Overall, biosynthesis processes related
to secondary metabolism were generally decreased in both
crops (Figures 7B, 8B), except for tomato plants treated
with PH B under non-stress conditions. In both species,
N-containing compounds (mostly alkaloids), phenylpropanoids,
and terpenes underwent the most evident modulation. In
lettuce, several membrane lipids were impaired, such as
long-chain fatty acid (also in the epoxy form) and sterols.
Phytohormones were broadly affected by the treatments in
lettuce, whereas in tomato, we evidenced a weaker impact
(Figures 7C, 8C). The main modulations concerned gibberellins,
which decreased in both crops. In treated lettuce, a reduction
of brassinosteroids, auxin-conjugates (IAA-Ile, IAA-Leu, IAA-
Asp), and N-glycosylated cytokinins were observed. The ethylene
precursor (1-aminocyclopropane-1-carboxylate, ACC) down-
accumulated only in control plants of lettuce treated with
H-substance. In tomatoes, changes in cytokinin content with the
main accumulation of trans-zeatin-O-glucoside-7-N-glucoside
in response to PH B (either under control conditions or salt stress
and to H in control conditions).

Similar results were obtained when the effect of the two
PHs (B and H) was investigated with respect of their ability
as growth improvers and stress alleviators by independently
exploring non-stressed and salt-stressed plants. Two different
OPLS-DA models were validated regardless of the plant species,
one considering metabolomics data from salt-stressed plants
and the other including non-stressed plants (Supplementary
Figures 10A,B). Validation parameters were excellent in both
models, showing a R2Y = 0.992 and Q2Y = 0.964 (P-
value = 1.57 e-17) for non-stressed samples and R2Y = 0.996
and Q2Y = 0.949 (P-value = 6.41 e-15) for samples grown
under salt stress. The strongest discriminant compounds
were selected from each model through the VIP method
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FIGURE 5 | Metabolomic analysis of lettuce plants. Unsupervised hierarchical cluster analysis carried out from ultra-high-pressure liquid chromatographic system
(UHPLC-ESI/QTOF-MS) metabolomics analysis of lettuce plants treated with 7 PHs under control and salt stress (NaCl) conditions. The fold-change-based heat
map was used to build hierarchical clusters (linkage rule: Ward, distance: Euclidean) (A). Score plot of orthogonal projection to latent structures discriminant analysis
(OPLS-DA) supervised modelling carried out on untargeted metabolomics profiles of lettuce plants after 7 PHs application, under control and salt stress (NaCl)
conditions (R2Y = 0.98, Q2Y = 0.93) (B).

FIGURE 6 | Metabolomic analysis of tomato plants. Unsupervised hierarchical cluster analysis carried out from UHPLC-ESI/QTOF-MS metabolomics analysis of
tomatoes treated with 7 PHs under control and salt stress (NaCl) conditions. The fold-change-based heat map was used to build hierarchical clusters (linkage rule:
Ward, distance: Euclidean) (A). Score plot of orthogonal projection to latent structures discriminant analysis (OPLS-DA) supervised modelling carried out on
untargeted metabolomics profiles of lettuce plants after 7 PHs application, under control and salt stress (NaCl) conditions (R2Y = 0.98, Q2Y = 0.94) (B).

(VIP score > 1.20). A total of 310 (salinity, Supplementary
Table 8A) and 333 (control, Supplementary Table 8B)
metabolites were considered and exported along with their FC
values into the Omic Viewer Pathway Tool of PlantCyc for
interpretations (Supplementary Figures 11A–C, 12A–C). Half of
the total discriminant compounds were classified as secondary
metabolites. However, whereas B substance downregulated
the accumulation of secondary metabolites (phenylpropanoids,
terpenes, and N-containing compounds), H increased them along
with the levels of others such as fatty acid/lipids, cofactors, and
electron carriers.

Regarding phytohormones, several discriminant compounds
were differentially modulated by the two PHs. Under non-
stress conditions, brassinosteroids [3-dehydroteasterone and
(22S,24R)-22-hydroxy-5α-ergostan-3-one] strongly down-
accumulated in response to PH B but not to PH H, which, on the
other hand, remarkably induced a strong accumulation of methyl
(indol-3-yl) acetate (MeIAA), a storage form of IAA. Among
cytokinins, two glycosylated forms of trans-zeatin accumulated
by H applications, whereas only one (trans-zeatin-7-N-glucoside)
in response to B. The PH-treated plants caused a depletion in the
ethylene precursor [1-aminocyclipropane-1-carboxylate (ACC)],
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FIGURE 7 | Metabolic changes in lettuce plants. Metabolic processes (A), secondary metabolism (B), and (C) hormone biosynthesis were impaired by treatments in
lettuce plants compared to control samples. Differential metabolites from the Volcano analysis (P-value <0.01, FC ≥ 1.3) were elaborated using the Omics Viewer
Dashboard of the Plant Cyc pathway Tool software (www.pmn.plantcyc.com). The large dots represent the average (mean) of all log Fold-change (FC) for
metabolites, and the small dots represent the individual log FC for each metabolite. The x-axis represents each set of subcategories, while the y-axis corresponds to
the cumulative log FC. FA/Lipid: fatty acids and lipids, Amine: amines and polyamines, Cofactor: cofactors, prosthetic groups, electron carriers, and vitamins, FA
Derives: fatty acid derivatives, N-containing: Nitrogen-containing secondary metabolites, S-containing: Sulfur-containing secondary metabolites, Sugar Derives:
sugar derivatives.

but PH H had the strongest effect. Under salinity conditions,
MeIAA showed the same modulations recorded in control
plants. The only cytokinin found as discriminant (cis-zeatin)
accumulated in response to the substance H.

Integrative Analysis of Phenomic and
Metabolomics Datasets
The multivariate generalisation of the squared Pearson
correlation coefficient was investigated through co-inertia (CIA)
in terms of global similarity between the integrated phenotyping
and metabolomic datasets (Supplementary Figure 13). The
overall correlation between the two datasets was expressed as the
RV coefficient. This is a measure of global similarity between the
datasets and assumes values between 0 and 1. The closer to 1, the
higher the similarity between the datasets (Robert and Escoufier,
1976). The overall similarity in structure between phenotyping
and metabolomics data was higher in lettuce than in tomato with
an RV coefficient equal to 0.37 and 0.29, respectively. However,
the obtained RV for both crops reflected the lack of joint
structure in these two datasets (phenomics and metabolomics).
Altogether, we could say that according to the low synchrony
obtained between the phenotypical and metabolomics data after
CIA analysis, the changes in the metabolic content do not define
the phenotype of the plants.

To deal with this low concordance between the two datasets,
we decided to work with the phenotypical and metabolomic

data obtained from the plants treated with the substance H
as plant growth promotor and stress alleviator, and with the
substance B that worked as a growth inhibitor in both lettuce
and tomato plants. As the first step, we used the random forest
classification method to identify the most important phenotyping
traits for each species. As a result, in lettuce, the importance
was mainly focused on morphological traits, whereas in tomato
the physiology was most relevant (Supplementary Tables 4A,B).
Concretely, the volume represented as DB was the parameter with
the highest discriminative power between treatments, followed by
the physiological parameter, water use efficiency (WUE), related
to water balance. However, in tomatoes, the most important
parameters were related to the photosynthetic performance of
the plant, with QY_max and QY_Lss4 as the main ones. The
two crops respond in a different way to the changes in the
growth conditions, where not only the growth conditions but
also whatever treatment applied is included. Once defined, the
main phenotypical traits, the correlated metabolites (p < 0.05)
were identified performing a correlation matrix (Supplementary
Tables 9A,B). For lettuce, many secondary metabolites, including
alkaloids, terpenoids, and phenols or certain metabolites involved
in amino acid metabolism (mainly degradation compounds)
were negatively correlated with the volume of lettuce plants.
However, this phenotyping trait was positively correlated with
IAA, IAA-Asp, and L-arginine-succinate, among others. In
tomato, however, QY_max was positively correlated to certain
secondary metabolites, such as the phenol 4-hydroxycoumarin,
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FIGURE 8 | Metabolic changes in tomato plants. Metabolic processes (A), secondary metabolism (B), and (C) hormone biosynthesis were impaired by treatments in
tomato plants compared to control samples. Differential metabolites from the Volcano analysis (P-value <0.01, FC ≥ 1.3) were elaborated using the Omics Viewer
Dashboard of the Plant Cyc pathway Tool software (www.pmn.plantcyc.com). The large dots represent the average (mean) of all log Fold-change (FC) for
metabolites, and the small dots represent the individual log FC for each metabolite. The x-axis represents each set of subcategories, while the y-axis corresponds to
the cumulative log FC. FA/Lipid: fatty acids and lipids, Amine: amines and polyamines, Cofactor: cofactors, prosthetic groups, electron carriers, and vitamins, FA
Derives: fatty acid derivatives, N-containing: Nitrogen-containing secondary metabolites, S-containing: Sulfur-containing secondary metabolites, and Sugar Derives:
sugar derivatives.

and the vitamin K1 (phylloquinone), among others, and the
carbohydrate D-erythrose 4-phosphate.

DISCUSSION

In the last years, the use of plant phenotyping approaches is
becoming an efficient tool for characterizing the mode of action
of biostimulants obtained from many different sources and in
many plant species (Briglia et al., 2019; Danzi et al., 2019; Akhtar
et al., 2020; Mutale-joan et al., 2020). Non-invasive approaches
allow the simultaneous study of the crops grown under different
growth conditions treated with biostimulant substances for a
better understanding of their mode of action. To this end, our
study could be another example of this type of study. We show
that two distance crops, such as lettuce and tomato, differ in
the response to salt stress alone or the interaction between the
stress and the application of PHs based biostimulants. The PH
application modified the kinetics of the curves for the different
phenotyping traits, including plant growth, fluorescence-related
parameters, and thermal imaging. This separated the plant
response in the early and late phases, with it being more evident
for lettuce than for tomato plants (Supplementary Figures 1–8).
However, the effect was different for both crops and from

the one obtained in previous studies performed in Arabidopsis
(Sorrentino et al., 2021). Whereas in lettuce, the biostimulant
application induced changes during the early phase and after a
low number of applications, in the case of tomato the changes
were mainly visible at the late phase.

To go further in the understanding of the biostimulant
mode of action, we probed the combination of phenotyping
experiments with other omics, especially metabolomics, which
can give additional information. In this context, the most difficult
part is the data management, as both –omics approaches are
ending with a huge amount of data to process and interpret.
Thanks to the fast evolution of the data analysis based on
multivariate statistical analysis, this is possible, and this aims to
be a good example of such approaches. For that, the first step
done was the clustering of the variants analysed independently
for both lettuce and tomato using phenomic data (Figure 4).
The high dimensionality of the data is a characteristic that
creates many challenges in clustering and data analysis in general.
The clustering tree is defined by the analysis of the LK norm
distances that depend on the value of K (Euclidean, Manhattan,
Minkowski, etc.). The most often Lk norm used is Euclidean
distance. In this regard, Aggarwal et al. (2001) showed some
interesting results comparing different LK norm distances. More
specifically, they stress that the meaningfulness of LK norm
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(K = 1 for Manhattan, K = 2 for Euclidean, etc.) is worse on
high dimensions. This means that the Manhattan distance is
preferred in situations where the number of traits (metabolomics
or phenomics) is considerably large. That is the reason why
Euclidean and Manhattan distances were both examined in this
study. However, in this case, the results were not significantly
different for both lettuce and tomato. One of the reasons for this
result could be that there was a clear different response of the
plant when the H or B substance was applied.

As the second step, after the performance of the metabolic
analysis and data processing, the concordance between both
datasets (phenomics+metabolomics) was performed using CIA
analysis. This tool is becoming a particularly attractive method
for the identification of relationships between large datasets, but it
is mainly used in ecology or genetics (Bady et al., 2004; Genitsaris
et al., 2016; Devarajan et al., 2021). However, there are not any
case studies using this tool for integrating phenotyping data with
other omics. In our study, we observed low values of the RV
coefficient between both datasets (phenomics + metabolomics)
(Supplementary Figure 13). This would mean that the metabolic
profiling cannot explain the phenotypes of the plants, making
the integration of both data more difficult. One of the reasons
for this could be that the most of modulated metabolites were
secondary metabolites, including alkaloids, phenylpropanoids,
and terpenes (Figures 7, 8 and Supplementary Table 7). On the
contrary, relevant molecules, such as plant growth regulators, are
not so abundant and mainly appeared in lettuce. For example,
in lettuce plants, there was a clear reduction of the conjugated
forms of IAA, most probably to maintain the pool of IAA and
thus allow the plant growth (reviewed by Ludwig-Müller, 2011).
Besides, the precursor of ethylene, ACC, was also reduced in
lettuce plants treated with the H substance when plants were
grown under control conditions. It could mean that the H
application can reduce the ethylene synthesis and with that, its
negative effects (i.e., growth inhibition). However, recent studies
also showed that ACC itself is enough to reduce the plant growth
(Vanderstraeten et al., 2019).

To solve the low concordance between the phenotyping and
metabolomic data, we decided to identify the most significant
traits for each treatment (or treatment + biostimulant) among
the phenotyping traits identified. For that, we used a random
forest classifier. Such a tool is mainly used in plant science
for machine learning approaches applied in image analysis
(Barradas et al., 2021; Singh et al., 2016), but it has never
been used for characterizing the biostimulant mode of action.
Apart from a powerful classification method, the random forest
has the advantage of revealing the significance of the traits
used for identifying (classifying) treatments. This is done using
the decrease in classification accuracy if a specific variable –
trait is removed. The random forest classifiers applied for
lettuce and tomato have high accuracy percentages (>95%),
which makes them valid for the interpretation of the significant
traits. The significant traits found for lettuce were the volume
(based on the DB) and WUE. The most relevant result was
the volume that positively correlated with the IAA levels
(Supplementary Table 9). Higher IAA levels in leaves can
improve cell extensibility and consequently induce leaf growth

(Veselov et al., 2002). Additionally, under stress conditions,
the IAA accumulation can be a stress tolerance mechanism
that permits the plant to keep growing (De Diego et al.,
2012). Besides, this result could also explain the aforementioned
reduction of the conjugation of IAA with certain amino acids
observed in the plants treated with the H substance, and hence,
their better growth under both control and stress conditions.
The amide-linked IAA-amino acid conjugates are considered
reversible storage forms with no or low biological activity (Mellor
et al., 2016), with the Gretchen Hagen3 (GH3) family of auxin-
inducible acyl amido synthetases as the enzymes converting IAA
to IAA-amino acids. Thus, we could think that the application of
the substance H in lettuce has downregulated the activity of GH3
to reduce auxin-conjugates and maintain the IAA levels as a stress
response strategy.

In tomato, the most important trait was the QY_max,
which was positively correlated to D-erythrose 4-phosphate
(Supplementary Table 9), an intermediate in the pentose
phosphate pathway, and the Calvin cycle that serves as a
precursor in the shikimate pathway (Billakurthi and Schreier,
2020). This result could also explain the positive correlation
with other metabolites product of this pathway, such as
4-hydroxycoumarin and vitamin K1 (phylloquinone). The
hydroxycoumarins have been described as efficient antibacterial
compounds that can improve plant stress resistance (Yang et al.,
2018). Vitamin K1 has been detected inside thylakoid membranes
as an electron carrier and is a key element within the photosystem
I redox chain (reviewed by Lüthje et al., 2013). Thus, it serves
as a mobile carrier transferring the electrons across the plasma
membrane and contributes to the maintenance of a suitable
redox state of some important proteins embedded in the plasma
membrane with protective functions against stress. The better
performance in tomato plants can, thus, be related to the use
of D-erythrose 4-phosphate as a precursor for the synthesis of
antistress compounds from the shikimate pathway.

CONCLUSION

We assume that PH-based biostimulants improve the plant
growth and salt stress response in crops, such as lettuce
and tomato, through different mechanisms. For a better
understanding of the mechanism of action, it was necessary
to use powerful statistical tools which helped to simplify the
results and, hence, their interpretation. Thus, we observed that
for lettuce, the most interesting traits to study the PHs based
biostimulants are those representing the aerial biomass (i.e.,
volume). These were correlated with altered levels of certain
phytohormones, such as auxin and ethylene, and consequently
with plant growth. However, in tomatoes, the chlorophyll
fluorescence-related parameters were the most relevant defining
the plant growth capacity and salt stress tolerance affecting
also the stress-related metabolites from the shikimate pathway.
We believe that these results corroborated the relevant role of
the multivariate statistical analysis as a further step to uncover
key traits and metabolites for a deeper understanding of the
biostimulant mode of action.
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Supplementary Figure 1 | Morphological and physiological parameters of lettuce
plants under control and stress conditions. Digital biomass [DM, (A1–B1)],
roundness (A2–B2), compactness (A3–B3), and slenderness of leaves [SOL,
(A4–B4)] in lettuce plants grown under control or salt stress conditions for 21 days
of phenotyping (DoP). Variations of maximum quantum yield of PSII
photochemistry for the light-adapted state [Fv′/Fm′, (C1–D1)], PSII operating
efficiency [8PSII, (C2–C3)] and non-photochemical quenching [NPQ, (C3–D3)].
The values were obtained after the exposure of the plants to a light intensity of

480 µmol m−2 s−1 (Lss2). Morphological and physiological values shown
represent the average of 8 biological replicates per variant. Error bars represent
standard deviation. The significant differences between control and salt treatment
are indicated with ∗, ∗∗, and ∗∗∗ for p-values below 0.05, 0.01, and
0.001, respectively.

Supplementary Figure 2 | Morphological and physiological parameters of
tomato plants under control and stress conditions. Digital biomass [DB, (A1)],
roundness (A2), compactness (A3), and slenderness of leaves [SOL, (A4)] in
tomato plants grown under control or salt stress conditions for 24 days of
phenotyping (DoP). The maximum quantum yield of PSII photochemistry for the
light-adapted state [Fv′/Fm′, (C1)], PSII operating efficiency [8PSII, (C2)], and
non-photochemical quenching [NPQ, (C3)]. The values were obtained after the
exposure of the plants to a light intensity of 480 µmol m−2 s−1 (Lss2).
Morphological and physiological values shown represent the average of 6
biological replicates per variant. Error bars represent standard deviation. The
significant differences between control and salt treatment are indicated with ∗, ∗∗,
and ∗∗∗ for p-values below 0.05, 0.01, and 0.001, respectively.

Supplementary Figure 3 | Morphological and physiological parameters of lettuce
plants treated with 7 different under control conditions. Digital biomass [DB,
(A1–B1)], roundness (A2–B2), compactness (A3–B3), and slenderness of leaves
[SOL, (A4–B4)] of lettuce plants treated with 7 PHs and grown under control
conditions for 21 days of phenotyping (DoP). The maximum quantum yield of PSII
photochemistry for the light-adapted state [Fv′/Fm′, (C1–D1)], PSII operating
efficiency [8PSII, (C2–C3)] and non-photochemical quenching [NPQ, (C3–D3)].
The values were obtained after the exposure of the plants to a light intensity of 480
µmol m−2 s−1 (Lss2). Morphological and physiological values shown represent
the average of 8 biological replicates per variant. Error bars represent
standard deviation.

Supplementary Figure 4 | Morphological and physiological parameters of lettuce
plants treated with 7 different under salt stress conditions. Digital biomass [DM,
(A1–B1)], roundness (A2–B2), compactness (A3–B3), and slenderness of leaves
[SOL, (A4–B4)] of lettuce plants treated with 7 PHs and grown under salt stress
conditions for 21 days of phenotyping (DoP). The maximum quantum yield of PSII
photochemistry for the light-adapted state [Fv′/Fm′, (C1–D1)], PSII operating
efficiency [8PSII, (C2–C3)] and non-photochemical quenching [NPQ, (C3–D3)].
The values were obtained after the exposure of the plants to a light intensity of 480
µmol m−2 s−1 (Lss2). Morphological and physiological values shown represent
the average of 8 biological replicates per variant. Error bars represent
standard deviation.

Supplementary Figure 5 | Morphological and physiological parameters of tomato
plants grown in control and salt stress conditions: PHs treated and untreated
lettuce plants. Digital biomass [DM, (A1–B1)], roundness (A2–B2), compactness
(A3–B3), and slenderness of leaves [SOL, (A4–B4)] of tomato plants treated with
7 PHs and grown under control and salt stress conditions for 24 days of
phenotyping (DoP). The maximum quantum yield of PSII photochemistry for the
light-adapted state [Fv′/Fm′, (C1–D1)], PSII operating efficiency [8PSII, (C2–C3)]
and non-photochemical quenching [NPQ, (C3–D3)]. Values were obtained after
the exposure of the plants to the light of intensity 480 µmol m−2 s−1 (Lss2).
Morphological and physiological values shown represent the average of 6
biological replicates per variant. Error bars represent standard deviation. The
significant differences between control and salt treatment are indicated with ∗, ∗∗,
and ∗∗∗ for p-values below 0.05, 0.01, and 0.001, respectively.

Supplementary Figure 6 | Relative Growth Rate and final biomass of lettuce
plants treated with PHs. Relative Growth Rate [RGR, (A1–A2)] of the different
treatments over time, calculated for the early phase (from DoP 0 to DoP 12) and
for the late Phase (from DoP 12 to DoP 21) in lettuce plants treated with 7 PHs
grown under control or salt stress conditions. Total fresh (B1–B2) and dry
(C1–C2) weight of the final aboveground biomass per variant. Values represent
the average of the 8 biological replicates per variant. Error bars represent standard
deviation. Different letters indicate significant differences according to the one-way
ANOVA post hoc Tukey’s test (p < 0.05).

Supplementary Figure 7 | Relative Growth Rate and final biomass of tomato
plants treated with PHs. Relative Growth Rate [RGR, (A1–A2)] of the different
treatments over time, calculated for the early phase (from DoP 0 to DoP 12) and
for the late Phase (from DoP 12 to DoP 24) in tomato plants sprayed with 7 PHs,
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grown under control conditions or salt stress. Total fresh (B1–B2) and dry
(C1–C2) weight of the final aboveground biomass per variant. Values represent
the average of the 6 biological replicates per variant. Error bars represent standard
deviation. Different letters indicate significant differences according to the one-way
ANOVA post hoc Tukey’s test (p < 0.05).

Supplementary Figure 8 | Temperature of the leaves for lettuce and tomato
plants under control and salt stress conditions. Canopy temperature depression
measured on lettuce [(A1–A3, B1–B3), full and dotted lines] and tomato [(C1–C3),
dashed and dotted + dashed lines] plants, untreated or treated with the
biostimulant substances, grown under control or salt stress conditions. Values
represent the average of the 8 biological replicates per treatment in lettuce and 6
biological replicates in tomato, error bars represent standard deviation. The
significant differences between control and salt treatment are indicated with ∗, ∗∗,
and ∗∗∗ for p-values below 0.05, 0.01, and 0.001, respectively.

Supplementary Figure 9 | Metabolomic analysis for the best (H) and worst (B)
performing biostimulants. Unsupervised hierarchical cluster analysis carried out
from UHPLC-ESI/QTOF-MS metabolomics analysis of lettuce (A) and tomato (B)
plants treated with PH B or H, grown under control or salt stress conditions. The
fold-change-based heat map was used to build hierarchical clusters (linkage rule:
Ward, distance: Euclidean). Score plot of orthogonal projection to latent structures
discriminant analysis (OPLS-DA) supervised modelling carried out on untargeted
metabolomics profiles of lettuce (C) and tomato (D) plants after B and H
application grown under control and salt stress (NaCl) condition.

Supplementary Figure 10 | Score plot of metabolomics profiles. Score plot
orthogonal projection to latent structures discriminant analysis (OPLS-DA)
supervised modelling carried out on untargeted metabolomics profiles of tomato
and lettuce plants after B and H application grown under control (A) or salt stress
(B) conditions.

Supplementary Figure 11 | Identified metabolites in control conditions.
Metabolic processes (A), secondary metabolism (B), and hormone biosynthesis
(C) were impaired by treatments in lettuce and tomato plants grown under control
conditions. Differential metabolites (VIP score > 1.20) along with their fold-change
(FC) values were elaborated using the Omic Viewer Dashboard of the PlantCyc
pathway Tool software (www.pmn.plantcyc.com). The large dots represent the
average (mean) of all log FC for metabolites, and the small dots represent the
individual log FC for each metabolite. The x-axis represents each set of
subcategories, while the y-axis corresponds to the cumulative log FC. FA/Lipid:
fatty acids and lipids, Amine: amines and polyamines, Cofactor: cofactors,
prosthetic groups, electron carriers, and vitamins, N-containing:
Nitrogen-containing secondary metabolites, S-containing: Sulphur-containing
secondary metabolites, Sugar Derives: sugar derivatives.

Supplementary Figure 12 | Identified metabolites in plant under salt stress
conditions. Metabolic processes (A), secondary metabolism (B), and hormone
biosynthesis (C) were impaired by treatments in lettuce and tomato plants grown
under salt stress conditions. Differential metabolites (VIP score > 1.20) along
with their fold-change (FC) values were elaborated using the Omic Viewer
Dashboard of the PlantCyc pathway Tool software (https://plantcyc.org/). The
large dots represent the average (mean) of all log FC for metabolites, and the
small dots represent the individual log FC for each metabolite. The x-axis
represents each set of subcategories, while the y-axis corresponds to the
cumulative log FC. FA/Lipid: fatty acids and lipids, Amine: amines and polyamines,
Cofactor: cofactors, prosthetic groups, electron carriers, and vitamins,
N-containing: Nitrogen-containing secondary metabolites, S-containing:
Sulphur-containing secondary metabolites, and Sugar Derivs: sugar derivatives.

Supplementary Figure 13 | Graphical output of co-Inertia analysis (CIA). Scatter
plot of tomato (A) and lettuce (B) samples. Each sample is represented by an
arrow whose length is proportional to the divergence between the phenomic and
the metabolomic datasets. Eigenvalues of the co-inertia analysis for tomato (C)
and lettuce (D). Correlation circles (E,F) showing the projections of the PCA axes
(from the phenomic datasets) onto the axes of the co-inertia analysis (x axes) and
projections of the PCA axes (from the metabolomic datasets) onto the axes of the
co-inertia analysis (y axes). These four circles represent a view of the rotations
needed to associate the two datasets for tomato (E) and the two datasets for
lettuce (F).

Supplementary Table 1 | Pairwise comparisons test using mixed models for
determining the significant differences between the means of the
morphological parameters in lettuce (1st round, A, 2nd round, B) and tomato (C)
plants treated with 7 PHs grown under control or salt stress conditions at
different time points. The p-values below 0.05 are highlighted
in green.

Supplementary Table 2 | Pairwise comparisons test using mixed models for
determining the significant differences between the means of the photosynthetic
parameters in lettuce (1st round, A, 2nd round, B) and tomato (C) plants treated
with 7 PHs grown under control or salt stress conditions at different time points.
The p-values below 0.05 are highlighted in green.

Supplementary Table 3 | Pairwise comparisons test using mixed models for
determining the significant differences between the means of the difference
between the canopy and air temperature in lettuce (1st round, A, 2nd round, B)
and tomato (C) plants treated with 7 PHs grown under control or salt stress
conditions at different time points. The p-values below 0.05 are
highlighted in green.

Supplementary Table 4 | Importance of variables for lettuce (A) and tomato (B)
plants based on the random forest classifier used for treatment classification
based on a mean decrease in classification accuracy measure.

Supplementary Table 5 | Whole dataset produced from untargeted
metabolomics carried out in lettuce (A) and tomato (B) plants treated with 7 PHs
grown under control or salt stress conditions. Compounds are presented with
individual intensities and composite mass spectra.

Supplementary Table 6 | Discriminant metabolites identified by the variable
importance in projection (VIP) analysis following OPLS-DA modelling of the
metabolome in lettuce (A) and tomato (B) plants treated with 7 PHs grown under
control or salt stress condition. Compounds were selected as discriminant by
possessing a VIP score > 1.20.

Supplementary Table 7 | Differential metabolites derived from Volcano analysis
(p < 0.01, FC ≥ 1.3) in lettuce (A) and tomato (B) plants treated with PH B, and
PH H grown under control or salt stress conditions.

Supplementary Table 8 | Discriminant metabolites identified by the variable
importance in projection (VIP) analysis following OPLS-DA modelling of the
metabolome of lettuce and tomato plants treated with PH H and PH B grown
under control (A) or salt stress (B) conditions along with their LogFC values in
comparison to control samples. Compounds were selected as discriminant by
possessing a VIP score > 1.20.

Supplementary Table 9 | Correlation matrix between the most important
phenotyping traits (according to the random forest analysis) and the metabolites
for lettuce (A) and tomato plants (B).
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