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Drought is a climatic event that considerably impacts plant growth, reproduction
and productivity. Toona sinensis is a tree species with high economic, edible and
medicinal value, and has drought resistance. Thus, the objective of this study was to
dynamically monitor the physiological indicators of T. sinensis in real time to ensure the
selection of drought-resistant varieties of T. sinensis. In this study, we used near-infrared
spectroscopy as a high-throughput method along with five preprocessing methods
combined with four variable selection approaches to establish a cross-validated
partial least squares regression model to establish the relationship between the near
infrared reflectance spectroscopy (NIRS) spectrum and physiological characteristics
(i.e., chlorophyll content and nitrogen content) of T. sinensis leaves. We also tested
optimal model prediction for the dynamic changes in T. sinensis chlorophyll and
nitrogen content under five separate watering regimes to mimic non-destructive and
dynamic detection of plant leaf physiological changes. Among them, the accuracy
of the chlorophyll content prediction model was as high as 72%, with root mean
square error (RMSE) of 0.25, and the RPD index above 2.26. Ideal nitrogen content
prediction model should have R2 of 0.63, with RMSE of 0.87, and the RPD index of
1.12. The results showed that the PLSR model has a good prediction effect. Overall,
under diverse drought stress treatments, the chlorophyll content of T. sinensis leaves
showed a decreasing trend over time. Furthermore, the chlorophyll content was the
most stable under the 75% field capacity treatment. However, the nitrogen content of
the plant leaves was found to have a different and variable trend, with the greatest drop
in content under the 10% field capacity treatment. This study showed that NIRS has
great potential for analyzing chlorophyll nitrogen and other elements in plant leaf tissues
in non-destructive dynamic monitoring.

Keywords: NIR spectroscopy, drought stress, chlorophyll and nitrogen contents, variable selection, dynamic
monitoring, partial least square regression (PLSR)
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INTRODUCTION

Due to global climate change, droughts around the world have
become more frequent and have increased in severity, which will
have a serious impact on the growth of plants and crops (Stocker,
2014; Mazis et al., 2020). In addition, extreme drought and a
lack of precipitation are thought to exacerbate climate change
(Jia et al., 2020). Drought impacts vegetation differentially across
fields, seasons and species (Douma et al., 2012), and available
water ground and rain are the most important factors that
significantly influence plant growth and productivity (Hoover
et al., 2014; Gao et al., 2019; Khaleghi et al., 2019). The reduction
in groundwater leads to potential plant mortality (Estiarte et al.,
2016). Recently, more attention has been given to how plants
respond to water availability (Khaleghi et al., 2019). Drought
resistance (DR) is defined as the mechanism causing minimum
water loss in a water deficit environment while maintaining its
production. DR is determined by how quickly and efficiently a
plant senses changing environmental conditions, and how the
plant adopts and combines the aforementioned strategies in
response to diminished water availability (Baresel et al., 2017).
DR is linked to a combination of morphological, anatomical and
physiological traits (Lozano et al., 2020). In fact, plant species
in dry environments have deeper roots, slightly denser stems,
thicker and denser leaves and relatively high N content per
leaf space to optimize water usage (Markesteijn et al., 2011).
Conversely, drought stress typically reduces photosynthetic
capacity and carbon storage in the form of non-structural
carbohydrate (NSC) concentrations and plant respiration rates
(Centritto et al., 2009; Bongers et al., 2017).

Toona sinensis, also called Chinese toon or Chinese mahogany,
is a deciduous woody plant, with straight trunk, hard wood and
beautiful texture, has high economic value in the wood industry
(Peng et al., 2019). In addition, T. sinensis is also a precious
medicinal plant as the leaves rich in protein, fat, minerals,
flavonoids, terpenoids, and vitamins (Chen et al., 2009; Shi et al.,
2021). However, the nutrient element in the leaves varies rapidly
under the influence of water, with DR (Peng et al., 2019).

The leaf is a vital organ for measuring plant ecological
traits (Petit Bon et al., 2020). Plants under drought conditions
will reduce leaf area and increase leaf thickness (Rowland
et al., 2020). Drought stress also alters plant physiological
processes, among which amendments to pigment composition
and subsequent photosynthesis are the most critical (Males
and Griffiths, 2017). A reduction in chlorophyll affected by
moisture content has been reported (He and Dijkstra, 2014). The
chlorophyll content incorporates a sensible correlation with the
photosynthetic capacity and the development stage of vegetation,
which are indicators of photosynthetic capacity (Zhang et al.,
2014). Nitrogen (N) is one of the main macroelements needed
for plant growth. Nitrogen in plants constitutes amino acids and
proteins, but it is also an elementary component of chlorophyll
nucleic acids, multiple coenzymes, vitamins, and plant hormones
(Hammad and Ali, 2014). N plays a crucial role in evaluating the
intensity of vegetation photosynthesis and vegetation nutritional
status. Therefore, the chlorophyll and nitrogen content of plant
leaves can be used to analyze DR.

Traditionally, chemical methods in the laboratory are used
to detect physiological signals. Although highly accurate,
these methods are destructive, time-consuming, expensive, and
use highly contaminating reagents. Near infrared reflectance
spectroscopy (NIRS) has recently been found to provide cost-
effective and accurate measures of chemical traits in plant
leaves regardless of species, ecological environment or region.
NIRS is rapid, chemical-free, simple to use and non-destructive
(Manley, 2014). Previous work with Medicago sativa (Naya
et al., 2007) demonstrated that NIRS were able to measure
macronutrients and micronutrients. Relative reflectance is the
near infrared range (between 800 and 1,200 nm) and was also
used to show drought-related stress impacts (Mazis et al., 2020).
Numerous research investigations have used NIRS to predict
the ecophysiological variables related to plant drought stress,
which constrains relative water and leaf water in disease-resistant
trees (Warburton, 2014; Conrad and Bonello, 2016). Partial
least squares regression (PLSR) is one of the most frequently
used chemometric methods in spectral calibration analysis (Li
et al., 2021). It has advantages when large amounts of data with
redundancy and high collinearity exist and when the number
of variables is greater than the number of samples (Liang et al.,
2020). Pre-processing approaches like standard normal variate
(SNV), smoothing and derivatives are often required in the
process of spectral analysis (Li et al., 2021). In addition, we can
also choose a variety of variable selection methods to reduce the
impact of irrelevant variables on the accuracy of the model (Shao
et al., 2017). However, due to strict spectral models, plant species
and their spectral measurement required various assumptions for
the proposed model.

In our study, three varieties of T. sinensis seeds with large
differences in DR were selected as experimental materials. For the
first time, we used NIRS to predict nutrient content in T. sinensis
leaves in a drought stress environment and dynamically monitor
the drought response of T. sinensis seedlings in real time to
ensure the selection of high-quality drought-resistant varieties of
T. sinensis. Here, three hypotheses were proposed: (1) the PLSR
model combined with preprocessing methods and four variable
selection methods could predict the chlorophyll and nitrogen
content of T. sinensis leaves; (2) NIRS bands could characterize
wavelengths related to chlorophyll and nitrogen in T. sinensis
leaves; and (3) NIRS models could detect chlorophyll and
nitrogen content in T. sinensis under various drought stresses.

MATERIALS AND METHODS

Plant Material and Treatments
The experiment was conducted in a greenhouse on a mountain
in Fuyang, Zhejiang, China (E 119.57′, N 30.03′). The annual
average temperature in the greenhouse is 28◦C, with relative
humidity > 75% and daily sunshine up to 13 h, making growth
conditions very suitable for T. sinensis seedlings. To study the
differences in DR between different T. sinensis varieties, three
varieties of T. sinensis seeds with large variations in DR from
northern (N), central (C) and southern (S) China were selected
as experimental materials.

Frontiers in Plant Science | www.frontiersin.org 2 January 2022 | Volume 12 | Article 809828

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-809828 January 17, 2022 Time: 18:39 # 3

Liu et al. Non-destructive Measurements of Toona sinensis

In the initial stage, seedlings of relatively consistent size were
selected from the nutrient cup [16 cm (d) × 14 cm (h)] and
transplanted into the experimental pot [30 cm (h) × base 27 cm
(d)]. An appropriate amount of compound fertilizer was applied
uniformly, leaving the seedlings to grow for approximately
14 days. When the seedlings grew five to seven functional leaves,
the water control treatment started (August 10, 2020).

Experimental Design
A completely randomized experimental design was conducted in
a greenhouse to model various physiological traits of T. sinensis
leaves under various water stresses. Five water gradients were
created: (I) in the control treatment, where the pots were watered
to 100% field capacity (FC) replacing the amount of water
transpired daily (100% FC); (II) light stress (75% FC) with relative
soil water content (RWC) accounting for field holding capacity
with 75% of water content; (III) moderate severe stress (50% FC)
with RWC accounting for 50% of field water holding capacity;
(IV) severe stress (30% FC) with RWC accounting for field
holding capacity of 30% of water content; (V) extreme stress (10%
FC) with RWC accounting for 10% of field water holding capacity
(Khaleghi et al., 2019).

As shown in Table 1, there were two blocks in this experiment.
Block 1 was used for model construction. There were 20
T. sinensis seedlings of three varieties in each treatment, for
a total of 300 seedlings. The basin weighing method for soil
was adopted for moisture control of the soil within the set
range, weighing it once every 3 days, and replenishing water
occasionally. To ensure the accuracy and stability of the model,
the spectrum was collected at 3 pm every Saturday, followed
by destructive sampling to measure chlorophyll and nitrogen
indicators. For each treatment, up to three T. sinensis seedling
varieties were selected, and then six leaves were selected from
the upper, middle and lower parts of each plant for spectral
measurements. After collecting the spectrum, the corresponding
T. sinensis leaves were picked, numbered and placed in a
paper bag and then sent back to the laboratory in a 4◦C
freezer for refrigeration to measure the chlorophyll and nitrogen
content (Li et al., 2019). The first data collection and trait
measurement began after the first week of water control. Repeat
the above operation 6 times. Block 2 was used for model
verification, dynamically monitoring the changes in chlorophyll
and nitrogen content of T. sinensis seedlings under different
periods and various drought treatments. In this experiment,
T. sinensis seedlings of each variety and in each treatment
(n samples = 10) were selected (total of 150 samples). Every
Saturday at 5 pm, the upper, middle, and lower parts of the plant
were selected to collect corresponding near-infrared spectroscopy

information using the same method. The experiment lasted
for 2 months.

Near Infrared Reflectance Spectroscopy
Collection
The NIRS data were taken from the upside surface of the leaves
three times with a handheld fiber optic contact probe from a field-
based spectrometer (LF-2500, Spectral Evolution, United States)
(Li et al., 2021). Each spectrum took on average 20 scans with
8 m/s integration time and a range between 1,100 and 2,500 nm
with a 6 nm spectral resolution. In total, 760 samples were
collected for the construction of chlorophyll (n = 360) and
nitrogen (n = 400) content prediction models.

Leaf Chlorophyll Content Measurement
A mixed solution of 5 ml 1:1 (5 ml acetone: 5 ml absolute ethanol)
was added to a test tube. We took 0.5 g of T. sinensis leaves, cut
them into one mm wide filaments and put the sample into a test
tube. We then sealed the test tube and placed it in the dark to
soak for 24 h. For the chlorophyll measurement, we took one ml
of extract sample and two ml of a mixture of acetone and pure
ethanol. We then used a UV–visible spectrophotometer (UV-
1280, Shimadzu, Japan) to measure chlorophyll absorbance at 645
and 663 nm (Gu et al., 2016).

The following formula were applied:

Chlorophyll a = (12.72D663 − 2.59D645) V × N/M × 1000

Chlorophyll b = (22.88D645 − 4.67D663) V × N/M × 1000

Chlorophyll = Chlorophyll a + Chlorophyll b

where V is the volume of photosynthetic pigment extract (ml), W
is the sample (g), and N is the dilution factor.

Leaf Nitrogen Content Measurement
Toona sinensis leaves were dried in a drying oven at 80◦C for
48 h to constant weight and then ground with a ball mill. To
determine the total nitrogen content, an appropriate amount of
sample was taken with concentrated H2SO4-H2O for digestion,
and a Kjeldahl nitrogen analyzer was used for automatic analysis
(Horneck and Miller, 1997).

Near Infrared Reflectance Spectroscopy
Data Analysis
All modeling analyses were conducted in Rstudio (PBC, v4.0.4)
(Team, 2020). The pipeline has two independent phases: (1)
transformations and outlier detection and (2) model training and
model selection (Yu et al., 2021). To correct the effects of light

TABLE 1 | The number and layout of T. sinensis seedlings from northern (N), central (C), and southern (S) China under different treatment conditions.

100%FC 75%FC 50%FC 30%FC 10%FC

N C S N C S N C S N C S N C S

Block 1 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Block 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
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scattering or highlight the differences in absorption of light at
different wavelengths, different spectral pretreatments, including
standard normal variate (SNV), the first-order and the second-
order differential with Savitzky–Golay smoothing along with
their combinations were systematically applied to the averaged
spectrum per sample (Alchanatis et al., 2005; Li et al., 2019).

The PLSR model (Hansen and Schjoerring, 2003) is a statistical
linear method for fitting a curve by minimizing the sum of
squared deviations, which combines the advantages of multiple
linear regression, correlation analysis, and principal components.
It is broadly applied in the near-infrared spectroscopy context (Li
et al., 2021). Here, the samples were randomly split 100 times
into calibration (80%) for model building and validation (20%)
for testing. Four variable selection methods, the genetic algorithm
PLS (GA), backward variable elimination PLS (Bve), significance
multivariate correlation (sMC), and regularized elimination
procedure in PLS (Rep), were used to extract important spectral
feature variables from the preprocessed near-infrared spectral
data (Shao et al., 2017; Liang et al., 2020). Each selection method
was repeated 100 times. The selected model was then combined
with the PLSR for prediction modeling of chlorophyll and
nitrogen content.

To avoid the model overfitting, the number of latent variables
of each PLS model have been set as less than 10 and the best
latent variables number for each model has been selected use
the one-sigma heuristic (Franklin, 2005) method. The evaluation
of model performance was based on the calibrated correlation
coefficient (R2

cal), the root mean square error of the calibration
set (RMSECal), the correlation coefficient of the validation set
(R2

val), the validation root mean square error set (RMSEval),
residuals (R), and residual predictive deviation (RPD) (Hassan
et al., 2015). Generally, a preferred model should have high values
of R2

Cal, R2
val, and RPD, and lower RMSECal, RMSEval values.

The closer the R2 is to 1 with a RMSE and residuals close to 0,
the better the prediction performance and stability of the model
(Nicolai et al., 2007).

Model Inversion
To obtain non-destructive dynamic monitoring of chlorophyll
and N content in T. sinensis seedling leaves under various
water conditions, one-way ANOVA was applied to examine the
variations in chlorophyll and nitrogen of T. sinensis leaves under
different drought stress treatments (Khaleghi et al., 2019). The
variations between treatments were identified by using post hoc
tests of Tukey’s honest significance difference (HSD).

RESULTS

Statistics for Sampling Information and
Data Preprocessing for Near-Infrared
Spectroscopy
To establish a spectral prediction model with high prediction
accuracy, three different varieties of T. sinensis seedlings under
separate drought stress treatments were selected as sample
sets. The chlorophyll and nitrogen content information of

the collected T. sinensis seedlings is shown in Table 2. The
large range of data ensures the robustness of the models
derived from the data.

The original spectra of T. sinensis seedlings collected before
different water treatments are shown in Figure 1A, which
clearly illustrates that the original spectra of all samples show
similar changes. The wavelengths have significant peaks between
1,400 ∼ 1,500 and 1,900 ∼ 2,000 nm (Figure 1A). Before
modeling, five preprocessing methods were utilized to preprocess
the spectrum, as shown in Figures 1B,F.

Establishment and Optimization of a
Near Infrared Spectroscopy Estimation
Model of Chlorophyll and Nitrogen in
T. sinensis Seedling Leaves
In the PLSR prediction models, the first derivative combined
with SG smoothed spectrum (FSG) preprocessing predicted the
best result for the chlorophyll and nitrogen content. Combining
five spectral preprocessing methods with four variable selection
methods for PLSR modeling significantly improved the accuracy
of the model (mean chlorophyll and nitrogen R2

Cal were 0.71
and 0.62, respectively, with mean R2

val = 0.51 and 0.56, mean
RMSECal = 0.26 and 0.88, mean RMSEval = 0.30 and 0.76;
Figure 1). As a result, chlorophyll prediction showed R2

Cal = 0.73,
with R2

val = 0.67, RMSECal = 0.25, and RMSEval = 0.26
(Supplementary Figure 3A).

Our modeling comparison showed that the prediction model
established by using the SNV combined with the second
derivative and SG smoothing spectra (SNV_SSG) preprocessing,
as well as the Ga variable selection method, performed the
best (Supplementary Figures 1, 3A). The mean R2

Cal = 0.72,
R2

val = 0.51, RMSECal = 0.25 and RMSEval = 0.28, RPD = 2.26.
Nitrogen content prediction showed R2

Cal l and R2
val = 0.73

and 0.66, respectively, RMSECal and RMSEval = 0.85
and 0.71 (Supplementary Figure 3B). The prediction
model established by using the first derivative combined
with SG smoothing spectra (FSG) preprocessing and the
sMC variable selection method again performed the best
(Supplementary Figures 2, 3B) with R2

Cal = 0.63 (range

TABLE 2 | Statistics of chlorophyll and nitrogen content of T. sinensis seedling
leaves with different water gradients.

Treatment Content Max(mg/g) Min(mg/g) Mean(mg/g) SD

100% FC Chlorophyll 4.23 2.93 3.57 0.48

Nitrogen 13.90 6.00 10.71 1.59

75% FC Chlorophyll 4.05 3.16 3.19 0.52

Nitrogen 14.5 6.50 10.73 1.59

50% FC Chlorophyll 4.54 2.42 3.32 0.39

Nitrogen 13.7 6.8 11.34 1.10

30% FC Chlorophyll 4.55 2.53 3.39 0.51

Nitrogen 14.80 8.10 11.54 1.11

10% FC Chlorophyll 4.23 2.47 3.23 0.55

Nitrogen 14.50 7.80 12.02 1.63
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FIGURE 1 | Original and various pretreatment spectra of T. sinensis seedling leaves collected under distinct water gradients. (A) Original spectra, (B) SNV: SNV
spectra, (C) FSG: the first derivative combined with S-G smoothing spectra, (D) SSG: the second derivative combined with S-G smoothing spectra, (E) SNV_FSG:
SNV combined with the first derivative and S-G smoothing spectra, (F) SNV_SSG: SNV combined with the second derivative and S-G smoothing spectra.

between 0.60 and 0.66), R2
val = 0.52 (ranging from 0.46 to 0.57),

RMSECal = 0.87 and RMSEval = 0.79, RPD = 1.12.

Extraction of Characteristic Wavelength
The GA variable selection method found that the characteristic
wavelengths of chlorophyll content were 1,420, 1,694 and
2,160 nm (Figure 2A). Among them, 1,420 nm was found to have
the greatest influence on the prediction model, followed by 2,160
and 1,694 nm. Conversely, the N content prediction model only
included two significant and important regions, 2,210 nm and
1,265 nm (Figure 2B).

Comparisons of Optimal Model Results
The residual value of the chlorophyll prediction model was
between −0.5 and 0.5, indicating that the model had a good
fitting outcome (Figures 3A,B). Conversely, the residual value
of the N content prediction model was between −2 and 2,
indicating a weaker performance (cv. chlorophyll content model;
Figures 3C,D).

Optimal Model to Predict the Chlorophyll
and Nitrogen Contents of T. sinensis
Leaves
In general, under drought treatments, the chlorophyll content of
T. sinensis leaves showed a decreasing trend over time. Among
them, the chlorophyll content was the most stable under the 75%
FC treatment, with the highest chlorophyll content on the 56th
day (3.75 mg/g; Figure 4). The chlorophyll content of plant leaves
under extreme water stress treatment (10% FC) treatment was
significantly higher than other treatments in the first 35 days but
dropped rapidly resulting in a significant lower value compared
to the rest of other treatments (Figure 4). In the first week
of the experiment, there was no divergence between different
drought treatments.

Under different drought treatments, the leaf nitrogen content
of T. sinensis seedlings changed over time, with a maximum
increase in nitrogen content in the 10% FC treatment. The N
content dropped at 35 and 56 days after the drought treatment
(Figure 4). Overall, the chlorophyll and nitrogen content of
plant leaves in the early period of drought were less affected by
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FIGURE 2 | Characteristic wavelength extraction map of T. sinensis seedling leaves based on optimal spectral preprocessing and variable selection methods.
(A) Chlorophyll content characteristic wavelength selection with the Ga variable selection method. (B) Nitrogen content characteristic wavelength selection with the
sMC variable selection method.

water. After 35 days, the extreme drought treatment (10% FC;
Figures 5A,B) was significantly lower than other treatments, and
the leaves began to yellow.

Under the three treatments with sufficient water (100%
FC), severe stress (30% FC), and extremely severe stress (10%
FC), the chlorophyll and nitrogen content of T. sinensis leaves
showed a significant positive correlation. Under mild drought
stress (75% FC), both chlorophyll and nitrogen were not
significantly correlated.

DISCUSSION

Chlorophyll and nitrogen (N) content in T. sinensis were
detected using five spectral preprocessing and four variable
selection methods with a PLSR predictive modeling approach.
The results showed that (1) chlorophyll content prediction
was best determined by using SNV combined with the second
derivative and SG smoothing spectra (SNV_SSG) preprocessing
method as well as GA variable selection method; (2) N
content prediction was determined by the first derivative
combined with SG smoothing spectra (FSG) preprocessing
method and sMC variable selection method. Overall, under
various drought stress treatments, the T. sinensis leaf chlorophyll
content showed a decreasing trend, with the most stable
chlorophyll content under the 75% FC treatment. Conversely,
the nitrogen content of the plant leaves showed a variable
trend, and the nitrogen content decreased the most under the
10% FC treatment.

Due to the influence of environmental factors such as light
conditions, the collected spectrum can contain more noise,
which affects the construction of the spectrum model (Bobelyn
et al., 2010). Spectral preprocessing effectively eliminates the
influence of instrument noise (Martens et al., 1991). It has been
reported that the choice of preprocessing method depends on
the nature of the spectrum and the component characteristics
that need to be predicted (Balabin et al., 2007). In our case,
the original spectra of all samples showed similar content
trends, but there were clear variations between the spectra for
100% FC and the other four treatments. This change may
be related to the difference in the cell structure and optical
propagation characteristics of T. sinensis leaves under various
water treatments. At present, there are many kinds of spectral
preprocessing methods, which can be divided into baseline
correction, scatter correction, smoothing, etc. according to the
effect of preprocessing (Li et al., 2019, 2021). Baseline correction
includes first-order and second-order derivative, etc.; scattering
correction includes multiplicative scatter correction (MSC), SNV,
etc.; smoothing includes S-G smoothing, etc. (Nicolai et al., 2007;
Liang et al., 2020). Among them, the derivative processing is
mainly to deduct the influence of instrument background or drift
on the signal; MSC and SNV are used to eliminate the influence
of scattering on the spectrum due to uneven particle distribution
and different particle sizes; S-G smoothing can very effectively
improve the spectral information, reduce the influence of random
noise (Hassan et al., 2015). Therefore, combining different
preprocessing methods was beneficial to improve the accuracy
of the model. The results showed that different preprocessing
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FIGURE 3 | Optimal PLS model of the chlorophyll content based on SNV_SSG combined with the Ga variable selection method (A) and the nitrogen content based
on FSG combined with the sMC variable selection method (C). Residuals plotted of chlorophyll content (B) and nitrogen content (D).

methods reduced the spectral signal-to-noise ratio (SNR) to
various degrees and improved the accuracy. Compared with the
other four processing methods, the standard normal variable
(SNV) focuses on baseline removal, and the spectral smoothing
result is weak (Figure 1B). This confirms that equipment,
range, environment, and other spectrometer factors affect the
preprocessing spectral results. The combination of multiple
preprocessing methods determined a high accuracy, which is
conducive to constructing the best model performance. Variable
selection instead reduces the number of irrelevant variables,
which may contain noise and outliers, therefore significantly
improving the sensor performance (Prananto et al., 2020).

Previous studies such as Cozzolino (2015) showed that plant
pigments and phytonutrients in the form of organic matter
are directly measured with near-infrared spectroscopy because
these compounds contain chemical bonds that are identified
in signal peaks in the NIRS, and the compound abundance is

correlated with the intensity of those specific peaks. Furthermore,
Lee et al. (2000) found that chlorophyll has a strong absorption
value in the visible and NIRS produced by the conjugated C–
C and C = C bonds of the porphyrin ring and magnesium
(Mg) ions. Moreover, Kokaly (2001) also reported, with high
accuracy, NIRS regions related to the chlorophyll contents
[1768, 1818, 1850, 2076, 2304, and 2350 nm; cv. (Leon-Saval
et al., 2004)]. Min and Lee (2005) studied citrus leaves and
found that significant wavelengths for chlorophyll detection were
448, 669, 719, 1,377, 1,773, and 2,231 nm. In our case, the
most significant chlorophyll bands were at 1,420, 1,694, and
2,160 nm, indicating strong light absorbance by chlorophyll
content at these bands.

N is an important component of chlorophyll and protein
(Min et al., 2006). The C–H and N–H bonds contained in the
cells are detected in the NIRS (Shao and He, 2013). The protein
has a significant influence on the NIRS in the 2,172–2,054 nm
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FIGURE 4 | The effect of drought stress treatments on chlorophyll and nitrogen contents in leaves of T. sinensis leaves. The data represent the average of the
spectrum inversion results under each treatment, and data are reported as the mean ± SE.

FIGURE 5 | One-way ANOVA was used to examine the discrepancies between separate drought stress treatments over time. (A) Chlorophyll, (B) nitrogen. Vertical
bars indicate ± SE. Comparison between treatments at the same time different letter indicates statistically significant differences according to Tukey’s HSD test.
Values sharing a common letter are not significantly different at p < 0.01. Red numbers indicate the duration of drought stress.

wavelength range (Min and Lee, 2005). Similarly, our study found
that the N content was most significant at 2,210 nm, confirming
the accuracy of our variable selection method.

Water absorbs light in the near-infrared range. Experiments
conducted by Curcio and Petty (1951) showed that water has
prominent absorption bands at wavelengths of 760, 970, 1,190,
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FIGURE 6 | Chlorophyll (A) and nitrogen (B) content under separate drought treatments. Correlation analysis of chlorophyll and nitrogen content of T . sinensis
leaves under separate drought treatments (D). Chlorophyll (C) and nitrogen (F) content were normally distributed. Distribution map of chloroplast content of all
samples (E). Statistical significance was determined by two-tailed t-test with equal variance comparing the unique drought treatments of chlorophyll and nitrogen
content; ***p < 0.001. Different colors indicate separate treatments, and the corresponding colors are the same as the above figure.

1,450, and 1,940 nm. When the water content in plants is
distinguishable, the reflectance of the visible light and near-
infrared spectral regions are also different. Experimental studies
have found that when the water content of plants is reduced to
50%, the spectral reflection speed increases significantly (Carter
and Knapp, 2001). Therefore, the moisture in the leaves may
affect the spectral absorption to a certain extent, affecting the
prediction model fitting. In our study, T. sinensis seedling
leaves selected during spectrum collection were fresh samples
containing water. In this context, the prediction models for
chlorophyll and nitrogen content had R2 = 0.72 and 0.62,
respectively, indicating good predictive accuracy but still to be
improved. Future research should further consider the influence
of factors such as moisture to improve model performance.

Chlorophyll content is an important evaluation index of plant
responses to drought stress (Hassan et al., 2015). Generally,
drought stress not only affects chlorophyll content production
but also reduces chlorophyll storage capacity (Kuroda et al.,

1990). Majumdar et al. (1991) reported that chlorophyll was
reduced under drought stress, similar to our results.

Several studies have reported a negative impact on plant
nutrient absorption by the intensification of drought stress (He
and Dijkstra, 2014). For example, the ecological and physiological
responses of Abies fabri seedlings to drought stress and nitrogen
supply have been reported (Guo et al., 2010). Similar to our
study, the nitrogen content of T. sinensis leaves showed a variable
trend. Due to the limited water supply, the reduction of plant
leaf stomatal conductance and carbon (C) assimilation hinds the
migration of nitrogen and other nutrients in the leaf (Bänziger
et al., 1999; He and Dijkstra, 2014). This is in line with our
findings at 21 days (Figure 6). It has also been supported that
drought stress increases the content of malondialdehyde (MDA),
proline, soluble sugar and other substances, and the nitrogen
supply in leaves alleviates the effects of drought stress on plants
(He and Dijkstra, 2014). Because the chlorophyll and nitrogen
contents in leaves are affected by many factors, real-time and
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dynamic detection of their contents can help to take early
proactive measures.

Nitrogen supply has a strong influence on leaf growth (He and
Dijkstra, 2014). Plant leaf area growth promotes photosynthesis
at the same time (Baresel et al., 2017). Chlorophyll is the main
product of photosynthesis. Thus, chlorophyll content is also
approximately proportional to leaf nitrogen content (Bojović
and Marković, 2009). Similarly, our study found that the
optimal prediction model based on NIRS technology can predict
chlorophyll and nitrogen content in leaves in a non-destructive
dynamic monitoring way.

CONCLUSION

Our study has shown that NIRS have great potential in field
applications for the analysis of chlorophyll, nitrogen and other
elements in plant leaf tissues and can achieve a non-destructive
dynamic monitoring effect.
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