
fpls-12-813036 December 21, 2021 Time: 14:59 # 1

TECHNOLOGY AND CODE
published: 03 January 2022

doi: 10.3389/fpls.2021.813036

Edited by:
Ergude Bao,

Beijing Jiaotong University, China

Reviewed by:
Bin Liu,

Beijing Institute of Technology, China
Dong-Jun Yu,

Nanjing University of Science
and Technology, China

Hongmin Cai,
South China University of Technology,

China

*Correspondence:
GuoHua Wang

ghwang@nefu.edu.cn

Specialty section:
This article was submitted to

Plant Bioinformatics,
a section of the journal

Frontiers in Plant Science

Received: 11 November 2021
Accepted: 29 November 2021

Published: 03 January 2022

Citation:
Chen Y, You D, Zhang T and

Wang G (2022) SLDMS: A Tool
for Calculating the Overlapping

Regions of Sequences.
Front. Plant Sci. 12:813036.

doi: 10.3389/fpls.2021.813036

SLDMS: A Tool for Calculating the
Overlapping Regions of Sequences
Yu Chen1, DongLiang You1, TianJiao Zhang1 and GuoHua Wang1,2*

1 College of Information and Computer Engineering, Northeast Forestry University, Harbin, China, 2 State Key Laboratory
of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China

In the field of genome assembly, contig assembly is one of the most important parts.
Contig assembly requires the processing of overlapping regions of a large number of
DNA sequences and this calculation usually takes a lot of time. The time consumption of
contig assembly algorithms is an important indicator to evaluate the degree of algorithm
superiority. Existing methods for processing overlapping regions of sequences consume
too much in terms of running time. Therefore, we propose a method SLDMS for
processing sequence overlapping regions based on suffix array and monotonic stack,
which can effectively improve the efficiency of sequence overlapping regions processing.
The running time of the SLDMS is much less than that of Canu and Flye in dealing with
the sequence overlap interval and in some data with most sequencing errors occur at
both the ends of the sequencing data, the running time of the SLDMS is only about
one-tenth of the other two methods.

Keywords: algorithm, sequence analysis, genome assembly, contig assembly, overlapping regions, application

INTRODUCTION

Due to the limitations of existing gene sequencing technology, we cannot directly obtain the entire
gene sequence, but can only use existing sequencing methods to sequence the genes of the species to
be tested to generate sequence fragments and then further genome assembly to restore the original
genes. The genome assembly problem is also one of the most important and difficult problems in
bioinformatics today.

The two algorithms commonly used in genome assembly are the overlap-layout-consensus
(OLC) (Li, 2012) algorithm and the de-bruijn-graph (DBG) (Li, 2012) algorithm, which use
different methods to convert the assembly problem into a graph-theoretic related problem. By
creating an edge-weighted graph of the sequencing data, the resulting edge-weighted graph is
processed to find relevant pathway information in the graph for use in downstream genome
assembly work. All the algorithms derive the optimal path from the edge-weighted graph to obtain
the initial contig (Huang, 1992).

Most applications for genome assembly are based on one of the algorithms such as the Canu
(Koren et al., 2017), which chooses to use the MHAP (Koren et al., 2017) algorithm to detect the
overlap in noisy sequences to obtain the overlapping regions between sequences. Additionally,
the Flye (Lin et al., 2016) software uses the ABruijn (Lin et al., 2016) algorithm to combine the
OLC and DBG algorithms, generates its own unique A-bruijn-graph (ABG) graph, and obtains the
overlapping regions of the nodes in the graph and some other assembly software can also complete
the same work. These software are usually more time-consuming in the sequence alignment
process. For example, Flye takes longer to find overlapping regions of sequences and Canu is slower
to correct sequencing data, etc.

Frontiers in Plant Science | www.frontiersin.org 1 January 2022 | Volume 12 | Article 813036

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.813036
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.813036
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.813036&domain=pdf&date_stamp=2022-01-03
https://www.frontiersin.org/articles/10.3389/fpls.2021.813036/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 2

Chen et al. SLDMS

This article presents a new software for overlapping regions
calculation called the SLDMS, a tool that uses gene sequencing
data as input and supports the fastq and fasta formats. It can
calculate an output overlapping regions information between
sequencing data and write it to a file, so that other applications
can use it. Compared to other genome assembly software that
calculates overlapping regions, our monotonic stack and suffix
array-based design approach is more efficient and provides richer
pathway information for downstream genome assembly software
to use as a reference. At the same time, the SLDMS can be easily
integrated into the genomic analysis process.

METHODS

The overall workflow of the SLDMS (Figure 1) includes four
steps: (i) data preprocessing; (ii) building a suffix array; (iii)
selecting the software version and establishing the relevant data
structure; and (iv) traversing the suffix array and output the
results of overlapping regions.

Data Structure
The SLDMS needs three arrays when obtaining overlapping
regions information, These three arrays are the suffix array
(SA) array (Manber and Myers, 1993) longest common prefix
(LCP) array (Fischer, 2010), and Document array (DA) array
(Muthukrishnan, 2002). First, we briefly introduce these three
arrays. The SA array is the suffix array and SA(i) represents
the starting position of the suffix whose string rank is i in the
original string. The LCP array is the longest common prefix array
and LCP(i) represents the longest common prefix of the suffixes
represented by SA(i) and SA(i-1). The DA array is a document
array. DA(i) represents the number of strings in the input data to
which the suffix ranked i belongs to. This array can be obtained
in the process of obtaining SA and LCP.

The meaning of the elements stored in the three arrays is given
in Figure 2. The SA array: The string above the array is the suffix
represented by each item in the array and the value stored in
the array is the starting position of the suffix it represents in the
original string. LCP array: The string above the array is the suffix
represented by each item in the array and the value stored in
the array is the length of the longest common prefix between the
suffix it represents and the suffix ranked one place ahead of it; to
calculate this length, we ignore the ending symbols of the suffix.
The DA array: The string above the array is the suffix represented
by each item in the array and the value stored in the array is the
source of the suffix. For example, DA(i)= 20, “babbc” belongs to
the 20th input sequence.

Algorithm Principle
We define read as a piece of data in the sequencing data and
its representation in the computer is a string. Before finding
the overlapping regions information of the sequencing data, first
consider the case of finding the overlapping regions information
for two reads. Suppose the two reads are str1 and str2; if the
tail of str1 and the head of str2 overlap and the overlap starts
at position i, then the suffix suf [suf = str1(i:)] of str1 must be

the same as some prefix of str2. In other words, the overlap part
is the prefix of str2 (otherwise, str2 is the substring of str1 and
the splicing is equivalent to discarding str2, so there is no need to
splice str1 with str2 in this case), so the longest overlap part of str1
and str2 must be a suffix belonging to str1 that is ranked before
str2 in the dictionary order. The overlapping regions information
can be obtained by sorting all the suffixes of str1 with str2 and
processing the suffixes ranked before str2 (Figure 3). As shown
in Figure 3, the set of suffixes in Figure 3 does not show suffixes
belonging to str2 because read cannot be connected to itself, so
it will make a judgment on the belonging of suffixes and ignore
these suffixes belonging to itself when calculating the candidate
answers of str2.

Extend the case of two reads overlapping to a set of reads.
All the suffixes of the reads are sorted, the best overlapping
regions information of each read must exist in some suffix
ranked before it, and the read to which this suffix belongs is
the maximum possible adjacent node of the current read after
building the graph.

Since reading itself is also a suffix of reads, when traversing
the set of suffixes, if we encounter a certain read itself, we are
able to guarantee that the suffix with its optimal overlapping
regions information must have been traversed. Then, the problem
is transformed into that the longest common prefix, which is
calculated for all the suffixes ranked before it and the current
string and when the length of the common prefix is equal to the
length of this suffix, we consider this suffix as a candidate answer
and select the best or top-K optimal as the final answer among all
the candidate answers.

In the design of the algorithm, we choose two advanced
data structures, suffix array, and monotone stack, because the
information stored in the suffix array is the suffix of the string
sorted in dictionary order, which corresponds to the suffix set in
Figure 3. The reason for choosing the monotonic stack is that
the monotonic stack can work with the LCP array to filter the
set of suffixes and remove those suffixes that are not likely to
be the answer and improve the computation speed in this way.
When we get a certain candidate answer with length x, the rest
of the candidates with length greater than x must not match
exactly with the subsequent reads; this is because their common
prefixes have a maximum length of x, so these candidates should
be removed. The monotonic stack exists to remove this part
of information.

IMPLEMENTATION

Constructing the SA Array, LCP Array,
and DA Array
Since the method of constructing the SA and LCP arrays in a
single string is quite mature, the SLDMS stitches all the reads
in the data into a single string, splitting the sequence with
American Standard Code for Information Interchange (ASCII)
code 1, and ending the stitching with ASCII code 0. This
allows the read set to be treated as a string and we call this
stitched together extra-long string the “original string.” For
this part, we use gsufsort (Louza et al., 2020) software based

Frontiers in Plant Science | www.frontiersin.org 2 January 2022 | Volume 12 | Article 813036

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 3

Chen et al. SLDMS

FIGURE 1 | The overall workflow of the SLDMS.

on the gSACA-K (Louza et al., 2017) algorithm to obtain the
three arrays.

Maintaining the Monotonic Stack
Assuming that the number of reads is n, after obtaining the
information of the SA array and LCP array, the first n + 1 items
of the SA array are traversed. These n+ 1 items are the positions
of the interval $ between strings and the string terminator # in
the original string. Therefore, we can obtain the start and end
positions of each read in the original string and record them
in the Fi array and Se array. For example, the start position of
the xth read is Fi(x) = SA(X − 1) + 1 and the end position is
Se(x) = SA(x). According to the start position and end position
of each read, its length was also calculated as LEN(x) = [SE(x)
− Fi(x)+ 1].

After obtaining the above information, the matching process
of suffixes and reads can be optimized by maintaining a
monotonic stack. For different input data, different strategies
are adopted and the SLDMS was designed in two versions.
The first version considers the data to be completely correct
and can directly perform the overlapping regions calculation.
The accuracy of the result depends on the input dataset and if
the dataset is completely correct, the result is also completely
correct. Therefore, the input data required to use this version
should be either corrected high-accuracy data or raw high-
accuracy data such as the PacBio-HiFi (Hon et al., 2020)
dataset and the Sanger dataset. The second version allows some
differences between reads when performing overlapping regions
calculations. Overlapping regions information can be obtained
for data with some errors, the accuracy of the information
fluctuates depending on the characteristics of the errors in the

Frontiers in Plant Science | www.frontiersin.org 3 January 2022 | Volume 12 | Article 813036

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 4

Chen et al. SLDMS

FIGURE 2 | The elements stored in three arrays.

FIGURE 3 | The position of str2 in the suffix set of str1.

data, and the accuracy of the results of the runs varies from one
dataset to another. After experiments, it is found that the accuracy
of the run results is greatly improved when the error part in
the reads is gathered at both the ends. Therefore, for the second
version, if the errors in the dataset are completely random, it is
recommended to correct the complete data first before using the
first version or correct the data center part first before using the
second version of the software.

For the part of data error correction, we suggest that the
third-generation sequencing data PacBio can be used for self-
error correction (Hon et al., 2020) or the second-generation
sequencing Illumina data can be used for error correction of the
third-generation sequencing data PacBio (Mahmoud et al., 2017)
such as PBCR (Koren et al., 2012) in the famous Celera Assembler
(Schatz, 2006; Denisov et al., 2008) software and LoRDEC (Leena
and Eric, 2014) error correction tool. For the datasets with some
regularity of data errors (the errors of the sequencing appear on
both the sides of the reads), the second version of this software
can be chosen directly.

Deal With Reads Without Mismatch
In this version, since the data can maintain a high accuracy rate, it
is enough to directly obtain the overlapping regions information
of the reads and the problem of error correction of the reads is
not involved. The algorithm idea is as follows.

Build a monotonic stack. The stack is implemented by array
simulation to facilitate the acquisition of data in the stack. The
element type stored in the stack is a structure similar to a pair
designed by us. Its first element is of the int type, which is used to

represent the length of the suffix stored in the current element. Its
second element is a rolling array, which is used to store the DA
information of the suffix that meets the first condition. The length
of the array can be set artificially; for example, the length of the
array is set to n, i.e., to store the top n best answers for each read.
In this way, we can obtain more overlapping information between
reads. The struct design of the monotone stack and stack elements
is found in Supplementary Figure 1, where vector is the structure
of the stack, pair is the element stored in stack, and queue is the
main part of storing information in the pair, which is realized by
a rolling array (Supplementary Figure 2).

Maintain a monotonous stack (Figure 4A). Let one suffix
ranked Y be str and for all the suffixes ranked before Y, assuming
their rank is X, their longest common prefix with str, i.e., the
length of LCP, must be equal to min[LCP(X+ 1:Y)]. According to
this property, when traversing the SA and LCP arrays, each time a
new LCP(i) is traversed and the elements of the stack whose first
item is larger than LCP(i) can be taken off the stack because for
these elements and the following suffix the LCP cannot be greater
than LCP(i), so these suffixes become useless information and can
be cleaned up. Start to operate the elements in the monotonic
stack from the top of the stack; if the first element at the top of
the stack is larger than LCP(x), just get this top element out of
the stack directly and loop this operation until it is impossible
to get out of the stack. After clearing, check the pair at the top
of the stack, whether its first element is equal to the length of
the string corresponding to the current SA(i) [len = se(DA(i) –
SA(i))], if it is equal, put DA(i) into the second scrolling array
of the pair and update the array. If it is not equal, create a new
pair element whose first is equal to len and whose initial values
in the second element are set as follows: head = 0, tail = 1,
have = 1, size = k, and data(0) = DA(i). After the element is
created, this element is put on the stack. Since all the elements
in the stack whose first is greater than len have been removed
before entering the stack, each element entering the stack must
be the largest element in the stack, so the monotonicity of the
stack can be guaranteed, which is exactly the reason for using a
monotonic stack.

Get overlapping regions information (Figure 4B). In the
process of maintaining the monotonic stack, if the current
suffix is an ordinary suffix, just follow the normal process of
maintaining the monotonic stack and if the current suffix is a
complete read [the value of SA(i) is equal to fi(DA(i))], then
we should add the process of information acquisition to the
normal maintenance process; at this time, you can maintain the
monotonic stack information to obtain the required overlapping
regions information. The way to obtain the required overlapping
regions information is very simple; first of all, we must first check
the top of the stack elements to ensure that the top of the stack
elements are not expired (if the elements are expired, they can
be taken out of the stack). Then, read the data from the top of
the stack and read the second item of each element; these are
the reads that are most likely to overlap with the current read
and output the overlapping regions information to the result file
for use in building the edge weight graph. By default, the first
ten possible results are provided, the longest overlapping regions
read is usually selected, and the specific read chosen as the path

Frontiers in Plant Science | www.frontiersin.org 4 January 2022 | Volume 12 | Article 813036

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 5

Chen et al. SLDMS

FIGURE 4 | (A) Schematic diagram of the monotonic stack maintenance process. (B) Diagram of the process of obtaining overlapping regions information.

FIGURE 5 | (A) Maintenance process diagram of monotone stack and (B) Overlap regions information acquisition flow diagram.

in the edge weight graph can be freely chosen according to the
subsequent software requirements.

Deal With Reads With Mismatch
The first-generation sequencing data are high-accuracy data, but
they are no longer in mainstream use because of their expensive
sequencing price. The second-generation sequencing data are
short-read data with high accuracy and are more suitable for use
with DBG assembly software based on K-mer counting (Wang
et al., 2020) such as the SOAPdenovo (Xie et al., 2014) software.
The third-generation sequencing data are long-read data with
a high error rate and there would be a high error rate if the
sequencing data was matched exactly, so this version allows for
slight differences in sequence during the matching process. This
version is an alternative solution to cope with the situation in
which the data cannot be completely corrected because of the
long correction time or high correction cost of the dataset.

In this version, the error part of the input data should appear
at both the ends of the data as far as possible or the data center
part has been corrected to ensure that there will be no error in the

middle part of each read. The closer the error location is to both
the ends, the better the overlapping regions information will be.
In this version, a parameter K will be entered, which determines
the maximum allowable cutting size of the sequence head and tail
when the algorithm is matching. If K is set speculatively without
knowing much about the dataset, there may be some error in
the result obtained from a single run due to the parameters. But,
the speed of fault-tolerant matching is very fast, we can get the
final result by inputting different fault-tolerant parameters and
running this version many times. We can also get the result at
one time by accurately setting K on the basis of knowing the error
distribution of dataset. The optimal value of K is set to ensure that
the error data at both the ends can be excised on the basis of as
small as possible. The algorithm idea is as follows.

Build a monotone stack. The monotone stack in this version
chooses to use another structure similar to a pair. Its first element
stores X characters in all the previous reads within the fault
tolerance range that match the current suffix. This first element
represents X. The second element is no longer a rolling array, but
represents the sequence number of the suffix with length X in the

Frontiers in Plant Science | www.frontiersin.org 5 January 2022 | Volume 12 | Article 813036

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 6

Chen et al. SLDMS

FIGURE 6 | Update process diagram of the min-heap: (A) from bottom to top and (B) from top to bottom.

suffix array within the fault tolerance range. The final result is
obtained by maintaining and optimizing all the second elements
in the monotone stack whose first elements are greater than
LCP(i). The concept diagram of the monotone stack is shown in
Supplementary Figure 3.

Maintain the monotonous stack (Figure 5A). Different from
the previous version, if the first element at the top of the stack
is greater than LCP(x), it does not directly take the element at
the top of the stack out of the stack, but takes out all the stack
elements whose first element is greater than or equal to LCP(x)
and selects the best element after comparison to access back
to the top of the stack. The element that meets the condition
[len(STR) – LCP(x)] is the best and its first item is assigned to
LCP(x) and its second item to the second of the optimal element.
This process is equivalent to allowing an excision operation at the
end of the read, where the wrong part is excised and matched
again and the length of the allowed excision is set by the user
of the software. After updating the stack, use the current suffix
information to create a new pair element. If the length is larger
than the top of the stack, put it on the stack. If the length is
the same, replace the top of the stack. Of course, to prevent self-
loops in the graph constructed from the last obtained overlapping
regions information, the stack update is performed by ignoring
the suffix of the read itself.

Get overlapping regions information (Figure 5B). When
traversing the suffix array under the previous version, the result
is obtained only when the current suffix is a complete read. In
this version, the result is obtained when the first character of
the current suffix is the first K characters of the original string,
but of course K is determinable and this operation is equivalent
to allowing the head of the sequencing data to be cut and the
allowed cut length is K. Each cut method is tried, so that each
read is compared several times and stores the maximum possible
result. Therefore, two auxiliary arrays are needed for multiple
result comparisons, the ANS array and the LEN array, where
the ANS array stores the ordinal number of its result in the
SA array and the LEN array stores the matched lengths. In

the process of maintaining the monotonic stack, if the current
suffix is the first K suffixes of the string to which it belongs, it
is compared with the top element of the stack and the better
result is stored. The final ANS array is obtained after several
maintenance sessions. After traversing the SA array under this
version, the resulting DA[ANS(i)] is the optimal overlapping
regions information to be obtained.

Maintain overlapping regions information. To facilitate
subsequent assembly software, the SLDMS provide more
overlapping regions information for subsequent software. In this
version, a top-k overlap suffix set is also provided for each
sequence to facilitate subsequent work on genome assembly and
parameters are required to set k before running the software. The
data structure used to maintain this set of suffixes is the min heap
and the top of the heap stores the Kth good overlapping regions
(Supplementary Figure 4). The reason for choosing this data
structure is that the heap can efficiently maintain the largest or
smallest value in the heap, so a min-heap of capacity K is created
and the top of the heap is the worst quality of the candidate
answer and when a new candidate answer is encountered, it only
needs to be compared with the top of the heap, which facilitates
the update of the answer.

Overlapping regions information maintenance method: create
a min-heap for each read to maintain the top-k suffix set, the
data in the heap store the position of the corresponding suffix
in the SA array, and Len stores the matching length between the
suffix and the current reads. Node(1) corresponds to the top of
the heap. The larger the size of the heap, the more information
is obtained and the longer the corresponding program takes to
run. To obtain the required information, the top element of the
stack is compared with the data in the min-heap, in addition to
maintaining the optimal value of the ans array, when traversing
the suffix array and encountering a suffix that can obtain the
answer [i-fi(da(i)) ≤ k]. If the amount of data in the min-heap
is less than k, put the top element of the stack directly into the
min-heap and update the heap from the bottom up (Figure 6A).
This is because the capacity of the heap is K. There is still space in

Frontiers in Plant Science | www.frontiersin.org 6 January 2022 | Volume 12 | Article 813036

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 7

Chen et al. SLDMS

the heap to store the candidate answers, so the candidate answers
can be put directly into the heap and the heap can be updated.
Otherwise, compare the top element of the stack with the top
element of the heap. If the top element of the heap is better, do not
update the elements in the heap; otherwise, use the top element
of the stack to replace the top element of the heap and update
the heap from top to bottom (Figure 6B). This is because there
is no space in the heap to store extra candidate answers, so we
must choose between the K answers in the heap and the current
candidate answers and delete the worst quality answer. Using
this method, software users can obtain more overlapping regions
information, which makes the edge weight graph based on this
overlap information more high-quality information to facilitate
subsequent software processing.

Output the Final Overlapping Regions
Result
The SLDMS software builds an edge-weight graph with read
as the point and overlapping regions information as the
edge based on the overlap information after obtaining the
overlapping regions information, which contains the overlap
position information of the two reads in addition to the length of
the overlap for use in obtaining the initial contig. Each path in the
graph is stitched into a longer read according to the overlapping
regions information, which is the initial contig and the SLDMS
software stores all the information in this edge weight graph into
a file for the next step of obtaining the contig.

When processing reads without mismatch, the SLDMS only
counts the overlapping regions information when a complete
read is encountered, a complete read is only encountered
once, and the result is not updated again in the subsequent
maintenance process, so the output to the file is in the order of the
encountered reads, which is a way to update the data processing
and the result output synchronously. When processing reads with
mismatch, the SLDMS collects data for a read several times in
the process of maintaining the monotonic stack, so the stored
result information may be updated by subsequent maintenance
and the program design idea of separating data processing and
result output is adopted. To ensure the accuracy of the results,
the maintained results are output in the order of the input data
after the program has processed all the data.

Although the output of the two strategies is different, logically
they both fill in an array of final results and the i-th element of
this array stores the answer of the i-th read. The two strategies
differ only in the order of filling in the array, one is filling in the
array in order and the other is filling in the array in disorder, but
the final goal is to fill in the array completely.

Accuracy Analysis
To prove the universality of the SLDMS software, we write a
program to generate the simulated gene sequence randomly,
traverse the generated gene sequence many times, and randomly
take a substring for simulated gene sequencing. In the first
version, the substring is completely correct and in the second
version, random errors are generated at both the ends of the
substring and used for the SLDMS software input. At the same

time, we record the start and end positions of each read and store
them in the check file for the final accuracy test.

We consider that the result of each read is correct when it
refers to its adjacent read in the gene sequence. After using the
SLDMS software to run these input data, the output file and
check file are combined to prove the accuracy. According to the
results in the output file, we determined whether there was a
common part in the interval of the two reads in the check file.
If there is a common part, it means that the two reads should be
assembled together. We think this is the correct result. We write a
program to do this work. First, the program reads the output file
and the check file; find each pair of reads and the corresponding
overlapping regions information in the output file (if the overlap
length is less than 100, it is regarded as invalid data and discarded
directly) and then find the corresponding interval in the check
file and check the interval. If there is a common part in the two
intervals, we can find the corresponding interval in the check
file, which is considered the correct result. After calculation, the
accuracy of the two versions of the SLDMS is above 99.99%.

The SLDMS software itself and the program code used in the
above accuracy proof process are stored on the GitHub website at
https://github.com/Dongliang-You/sldms.

RESULTS

The SLDMS and Flye and Canu software were tested on 6
PacBio-HiFi datasets of different sizes and sequenced species
and 32 simulated datasets (16 ultrahigh-accuracy datasets and
16 datasets with errors at both ends of the read) on a desktop
computer with an Intel Core (TM) i7-9700 CPU (3.00 GHz 8-core
processor), 32 GB RAM, and 477 GB hard disk. Due to the limited
hardware conditions of the test environment, the oversized
dataset was cut where the descriptions of the PacBio-HiFi dataset
are shown in Table 1, which are the datasets downloaded from the
official National Center for Biotechnology Information (NCBI)
website. The Sequence Read Runs (SRR) in the description
represents the data record of the dataset on the website and the
specific data information can be viewed at the official website
of the NCBI according to the data record information, which is
located at https://www.ncbi.nlm.nih.gov/. The data information
of the simulated dataset is shown in Supplementary Tables 1, 2.

The timing in the experiment starts when the sequencing
data are read and ends when the contig is ready to be acquired.
This means that it is necessary to be able to build the edge-
weight graph from the overlapping regions information to
obtain the contig.

For the SLDMS versions that do not allow for mismatching, six
PacBio-HiFi datasets with 16 high-accuracy simulated datasets
were chosen for testing and comparison with both the Canu and
Flye software. When running the Flye software, the genomeSize
parameter is the best estimate according to the uasge.md
documentation of the Flye software, which is approximately 1%
of the file size. The min-overlap parameter is set to 1,000 and
the rest of the parameters are the default parameters. When
running the Canu software, the genomeSize parameter is the
best guess value entered according to the usage documentation,

Frontiers in Plant Science | www.frontiersin.org 7 January 2022 | Volume 12 | Article 813036

https://github.com/Dongliang-You/sldms
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 8

Chen et al. SLDMS

TABLE 1 | The PacBio-HiFi dataset used in the experiment and its description.

Dataset Size(MB) Description

Z. mays 579 WGS of Zea mays “B73” using PacBio HiFi
Sequencing(SRR11606869)

E_coli_K12 1,914 WGS of E. coli K12 with PacBio HiFi DNA
sheared on Megaruptor to
20 kb(SRR10971019)

F. × ananassa_part1 1,131 WGS of Fragaria × ananassa Royal Royce
using PacBio HiFi Sequencing
(SRR11606867)

F. × ananassa_part2 2,190 WGS of Fragaria × ananassa “Royal
Royce” using PacBio HiFi
Sequencing(SRR11606867)

M. musculus_part1 1,567 WGS of Mus musculus “C57/BL6J” using
PacBio HiFi Sequencing(SRR11606870)

M. musculus_part2 2,760 WGS of Mus musculus “C57/BL6J” using
PacBio HiFi Sequencing(SRR11606870)

which is the same as the genomeSize parameter of the Flye
software and the rest of the parameters are default values without
any restrictions.

The time required for different software programs to run the
PacBio-HiFi datasets to find the overlapping regions is given in
Figure 7 and Supplementary Table 3. The SLDMS software ran
faster than Flye on all the datasets, faster than Canu on most
datasets, and only slightly slower than the Canu software on the
M. musculus_part1 dataset due to the nature of the algorithm of
the Canu software, which makes it potentially efficient at running
certain datasets. This result suggests that the SLDMS software
runs more efficiently than Canu and Flye for sequence alignment
on most PacBio-HiFi datasets.

The time required for different software programs to run
ultrahigh-accuracy simulation datasets to find overlapping
regions is given in Figures 8, 9 and Supplementary Table 4.

As shown in the two line graphs in the first row of Figure 8,
these are the results of running the ultrahigh accuracy simulation
dataset with different average lengths for the same data volume
of 5,000, 10,000, 15,000, and 20,000 reads. As shown in the two
line graphs in the second row of Figure 8, these are the results of
running the ultrahigh-accuracy simulation dataset with different
data volumes for the same average data lengths of 5,000, 10,000,
15,000, and 20,000. As seen from the graphs in all the runs, the
SLDMS software has a shorter run time than the other two, which
suggests that in most cases, it is a good choice to use the SLDMS
software to find the overlapping regions information.

For the SLDMS versions that allow for mismatching, there are
no real data available that match the conditions for this version
to run, so it was only possible to test this version using simulated
data. Each read in the simulated data was divided into three parts
in order, with the first and third parts being 80% accurate, the
second part being 100% accurate, and the second part being at
least half the length of the read. The Canu and Flye software
selected PacBio-Raw for the data type during the tests and the rest
of the parameter settings were the same as the previous version.

The time required for different software programs to run
the simulation datasets with errors to find overlapping regions
is given in Figure 9, in which row 1 is an experiment with
the average length of the data as the variable and row 2 is an
experiment with the amount of data as the variable. As seen
from the graph, when running these datasets, both when running
datasets with different average lengths for the same amount of
data and when running datasets with different amounts of data
for the same average length, the SLDMS runs much faster than the
other two. This shows that using the SLDMS to run this dataset
with errors only at both the ends of the data is much better and
takes less time than using the other two software tools.

In the experiment, we tested the performance of the different
software programs on different datasets. The SLDMS software

FIGURE 7 | Time required for different software programs to run PacBio-HiFi datasets to find the overlapping regions.

Frontiers in Plant Science | www.frontiersin.org 8 January 2022 | Volume 12 | Article 813036

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 9

Chen et al. SLDMS

FIGURE 8 | Time required for different software programs to run ultrahigh-accuracy simulation datasets to find overlapping regions.

FIGURE 9 | The time required for different software to run simulation datasets with errors to find overlapping regions.

was stable and efficient in obtaining overlapping regions
information for the various test data. The running time of the
SLDMS is only related to the size of the input dataset and does
not fluctuate depending on differences in the accuracy of the data.
This means that the SLDMS is suitable for processing a wide

variety of data without the worry that the SLDMS will take a
particularly long time to process a particular type of data.

The SLDMS software uses the gsufsort algorithm to calculate
the three arrays of SA, LCP, and DA information, which takes
a significant amount of time. If new methods are developed to

Frontiers in Plant Science | www.frontiersin.org 9 January 2022 | Volume 12 | Article 813036

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 10

Chen et al. SLDMS

obtain this information more quickly, the SLDMS software will
be more efficient.

DISCUSSION

The main contribution of the proposed method SLDMS for
extracting information about the overlapping regions between
sequences based on suffix arrays and monotonic stacks is to
substantially improve the time efficiency of calculating the
overlapping regions. Obtaining overlapping regions information
is useful in many bioinformatics applications. As the price
of sequencing technology decreases and genome sequencing
technology develops, it becomes easier to obtain sequencing data
with a wide range of characteristics and higher accuracy. When
assembling these sequencing data, it is essential to efficiently
extract overlapping regions information between sequences
to provide a more favorable environment for subsequent
genome assembly work.

The Flye software uses the ABruijn algorithm, which combines
the OLC and DBG algorithms to generate its own unique ABG
graph, obtains the overlapping regions information of nodes in
the graph, and then processes the ABG graph to obtain contigs.
In this process, it takes considerable time to process the graph, so
we can see from the experimental results that the Flye software
takes about twice as long to run as the SLDMS on almost
all the datasets.

The Canu software uses the MHAP algorithm to aggregate
reads with the same k-mer for error correction and pruning
and then obtains the overlapping regions information. When
dealing with high-accuracy data without error correction, the
SLDMS is around 20% faster than Canu. With respect to error
correction, the Canu software is very slow, regardless of the error
characteristics of the data, indicating that the Canu software does
not take full advantage of the error characteristics of the data. The
SLDMS does a very good job in this respect and in some data with
most sequencing errors occur at both the ends of the sequencing
data, the SLDMS runs at many times the speed of Canu.

The SLDMS obtains the three arrays of SA, LCP, and DA
by processing the input data and quickly finds the overlapping
regions information in the input data with the help of these three
arrays and the monotonic stack. The calculation speed of the
overlapping regions information is improved. The experimental
results show that compared with the other two kinds of software,
the SLDMS have faster speed in the calculation of the overlapping
regions and with the help of the SA array containing all the

suffixes, it also has the ability of data fault tolerance by cutting
the suffixes. This shows that the SLDMS is very efficient as an
approach based on suffix arrays and monotonic stacks and that
suffix arrays are still the ideal data structure for solving the
problem of calculating overlapping regions of gene sequences.

ABOUT THE SLDMS

The SLDMS is an open source software tool developed in C
and can only be run on Linux systems. The link to the project
is (https://github.com/Dongliang-You/sldms). Permission from
the author is required before use for non-academic purposes.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://bioinfor.nefu.
edu.cn/chenyu/sldms_web/, sldms.

AUTHOR CONTRIBUTIONS

YC: conceptualization. DY: software. GW: writing – original draft.
TZ: writing – review and editing. All the authors conducted
experiments and read and agreed to the published version
of the manuscript.

FUNDING

This study was supported by the National Natural Science
Foundation of China (61771165, 62072095, and 62172087),
the National Key R&D Program of China (2021YFC2100100),
the Fundamental Research Funds for the Central Universities
(2572021BH01), and the Innovation Project of State Key
Laboratory of Tree Genetics and Breeding (Northeast Forestry
University) (2019A04).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
813036/full#supplementary-material

REFERENCES
Denisov, G., Walenz, B., Halpern, A. L., Miller, J., Axelrod, N., Levy, S., et al.

(2008). Consensus generation and variant detection by Celera Assembler.
Bioinformatics 2008:btn074. doi: 10.1093/bioinformatics/btn074

Fischer, J. (2010). Wee LCP. Inf. Process Lett. 110, 317–320. doi: 10.1016/j.ipl.2010.
02.010

Hon, T., Mars, K., Young, G., Tsai, Y. C., and Rank, D. R. (2020). Highly accurate
long-read hifi sequencing data for five complex genomes. Sci. Data 7:077180.
doi: 10.1101/2020.05.04.077180

Huang, X. (1992). A contig assembly program based on sensitive detection
of fragment overlaps. Genomics 14, 18–25. doi: 10.1016/S0888-7543(05)
80277-0

Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G.,
et al. (2012). Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nat. Biotechnol. 30, 693–700. doi: 10.1038/nbt.2280

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy,
A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive
k-mer weighting and repeat separation. Genome Res. 27, 722–736. doi: 10.1101/
gr.215087.116

Frontiers in Plant Science | www.frontiersin.org 10 January 2022 | Volume 12 | Article 813036

https://github.com/Dongliang-You/sldms
https://bioinfor.nefu.edu.cn/chenyu/sldms_web/
https://bioinfor.nefu.edu.cn/chenyu/sldms_web/
https://www.frontiersin.org/articles/10.3389/fpls.2021.813036/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.813036/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btn074
https://doi.org/10.1016/j.ipl.2010.02.010
https://doi.org/10.1016/j.ipl.2010.02.010
https://doi.org/10.1101/2020.05.04.077180
https://doi.org/10.1016/S0888-7543(05)80277-0
https://doi.org/10.1016/S0888-7543(05)80277-0
https://doi.org/10.1038/nbt.2280
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1101/gr.215087.116
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

fpls-12-813036 December 21, 2021 Time: 14:59 # 11

Chen et al. SLDMS

Leena, S., and Eric, R. (2014). LoRDEC: accurate and efficient long read error
correction. Bioinformatics 30, 3506–3514. doi: 10.1093/bioinformatics/btu538

Li, Z. (2012). Comparison of the two major classes of assembly algorithms: overlap-
layout-consensus and de-bruijn-graph. Brief. Funct. Genom. 11, 25–37. doi:
10.1093/bfgp/elr035

Lin, Y., Yuan, J., Kolmogorov, M., Shen, M. W., Chaisson, M., and Pevzner, P. A.
(2016). Assembly of long error-prone reads using de Bruijn graphs. Pro. Natl.
Acad. Sci. U S A. 113:E8396. doi: 10.1073/pnas.1604560113

Louza, F. A., Gog, S., and Telles, G. P. (2017). Inducing enhanced suffix arrays for
string collections. Theor. Comput. Sci. 678, 22–39. doi: 10.1016/j.tcs.2017.03.039

Louza, F. A., Telles, G. P., Gog, S., Prezza, N., and Rosone, G. (2020). gsufsort:
constructing suffix arrays, LCP arrays and BWTs for string collections.
Algorithms Mol. Biol. 15:18. doi: 10.1186/s13015-020-00177-y

Mahmoud, M., Zywicki, M., Twardowski, T., and Karlowski, W. M. (2017).
Efficiency of pacbio long read correction by 2nd generation illumina
sequencing. Genomics 2017:S0888754317301660. doi: 10.1016/j.ygeno.2017.
12.011

Manber, U., and Myers, G. (1993). Suffix Arrays: A New Method for On-Line String
Searches. SIAM J. Comput. 22, 935–948. doi: 10.1137/0222058

Muthukrishnan, S. (2002). Efficient algorithms for document retrieval problems.
Proc. SODA 2002, 657–666.

Schatz, M. (2006). Celera Assembler Celera Assembler Overview. Honolulu, HI:
University Of Hawaii.

Wang, J., Chen, S., Dong, L., and Wang, G. (2020). Chtkc: a robust and efficient
k-mer counting algorithm based on a lock-free chaining hash table. Brief.
Bioinformat. 22:bbaa063. doi: 10.1093/bib/bbaa063

Xie, Y., Wu, G., Tang, J., Luo, R., Jordan, P., Liu, S., et al. (2014).
SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq
reads. Bioinformatics 12:1660. doi: 10.1093/bioinformatics/btu077

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Chen, You, Zhang and Wang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 11 January 2022 | Volume 12 | Article 813036

https://doi.org/10.1093/bioinformatics/btu538
https://doi.org/10.1093/bfgp/elr035
https://doi.org/10.1093/bfgp/elr035
https://doi.org/10.1073/pnas.1604560113
https://doi.org/10.1016/j.tcs.2017.03.039
https://doi.org/10.1186/s13015-020-00177-y
https://doi.org/10.1016/j.ygeno.2017.12.011
https://doi.org/10.1016/j.ygeno.2017.12.011
https://doi.org/10.1137/0222058
https://doi.org/10.1093/bib/bbaa063
https://doi.org/10.1093/bioinformatics/btu077
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	SLDMS: A Tool for Calculating the Overlapping Regions of Sequences
	Introduction
	Methods
	Data Structure
	Algorithm Principle

	Implementation
	Constructing the SA Array, LCP Array, and DA Array
	Maintaining the Monotonic Stack
	Deal With Reads Without Mismatch
	Deal With Reads With Mismatch
	Output the Final Overlapping Regions Result
	Accuracy Analysis

	Results
	Discussion
	About the Sldms
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

