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Based on how plants respond to shade, we typically classify them into two groups:
shade avoiding and shade tolerance plants. Under vegetative shade, the shade
avoiding species induce a series of shade avoidance responses (SARs) to outgrow
their competitors, while the shade tolerance species induce shade tolerance responses
(STRs) to increase their survival rates under dense canopy. The molecular mechanism
underlying the SARs has been extensively studied using the shade avoiding model
plant Arabidopsis thaliana, while little is known about STRs. In Aarabidopsis, there is
a PHYA-mediated negative feedback regulation that suppresses exaggerated SARs.
Recent studies revealed that in shade tolerance Cardamine hirsuta plants, a hyperactive
PHYA was responsible for suppressing shade-induced elongation growth. We propose
that similar signaling components may be used by shade avoiding and shade tolerance
plants, and different phenotypic outputs may result from differential regulation or altered
dynamic properties of these signaling components. In this review, we summarized the
role of PHYA and its downstream components in shade responses, which may provide
insights into understanding how both types of plants respond to shade.
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INTRODUCTION

Plants grown in complex and dynamic light environments are constantly in fierce competition
with their surrounding neighbors for limited light sources. Once light reaches plant leaves, it
is absorbed by chlorophylls and other pigments of the photosynthetic apparatus and used for
photosynthesis. The upper leaves preferentially absorb blue (B, λ = 400–500 nm) and red (R,
λ = 600–700 nm) light for photosynthesis while reflecting most of the far-red (FR) (λ = 700–
800 nm) light (Vandenbussche et al., 2005; Franklin, 2008). As a result, the shading of upper leaves
not only reduced the total intensity but also the R:FR ratio of light reaching lower leaves (Franklin,
2008). The reduction in R:FR serves as an indicator of local vicinity of vegetation (Vandenbussche
et al., 2005; Franklin, 2008) and is perceived by phytochromes, a family of R\FR photoreceptors.

Depending on the strategy that is adopted by plant to cope with vegetative shade, we typically
classify plants into two groups: shade avoiding or shade tolerance species. In response to shade,
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plants living in open habitats often induce a series of shade
avoidance responses (SARs) to outgrow their competitors. On
the other hand, species typically found in forest understories
exhibit shade tolerance responses (STRs), which allows them
being adapted to shade environment. The molecular mechanism
that underlies the SARs have been extensively studied, while little
is known about the STRs. Recent studies indicated that during
the SARs, several negative regulators of the SARs, including
PHYTOCHROME A (PHYA), were induced. PHYA functions
to tune down the SARs under excessive or prolonged shade
conditions, which may allow the shade avoiding species to
become tolerant to shade (Song et al., 2020). Interestingly, PHYA
was also reported to suppress hypocotyl elongation in Cardamine
hirsuta, a shade tolerance plant (Molina-Contreras et al., 2019).
It is thus possible that some signaling components are shared
between the shade avoiding and shade tolerance species. In this
review, we summarize results from recent studies on the role of
PHYA in regulating low R:FR induced SARs, which may provide
hints for understanding the potential mechanism of the STRs.

THE SHADE AVOIDANCE RESPONSES

The SARs encompass various phenotypic traits, including
elongation of stems and petioles, upward leaf movement
(increased hyponasty), enhanced apical dominance and reduced
branching, which allows plants to reach out for more light
(Morgan et al., 1980; Johnson, 1982; Franklin and Whitelam,
2005; Mullen et al., 2006; Franklin, 2008). These responses
come at the cost of reduced development of leaf, root and
storage organs, such as reduced leaf area, chlorophyll content
and chlorophyll a:b ratio (Smith and Whitelam, 1997). Under
prolonged shade, flowering is accelerated to allow seed set
(Halliday et al., 1994; Casal, 2012). Furthermore, SARs are
also accompanied by reduced resistance to various pathogens
and symbiotic interactions with microorganisms (Moreno et al.,
2009; Cerrudo et al., 2012; De Wit et al., 2013; Ballare, 2014;
Konvalinková and Jansa, 2016).

The R/FR light signal is perceived by the phytochrome family
of photoreceptors. Three major types of phytochromes, PHYA,
PHYB, and PHYC, were identified in angiosperms (Sharrock and
Quail, 1989). In Arabidopsis thaliana, there are five phytochromes
(PHYA-PHYE) (Sharrock and Quail, 1989; Clack et al., 1994).
Among them, PHYB is the major phytochrome repressing
SARs under sun light. phyB mutants display constitutive shade
avoidance phenotype (Somers et al., 1991; Devlin et al., 1992;
Reed et al., 1993; Robson et al., 1993; Kerckhoffs et al.,
2010). phyA mutant, on the other hand, displayed exaggerated
hypocotyl extension in response to low R:FR signal, but was
indistinguishable from the wild type under continuous white light
(Johnson et al., 1994). PHYA is thus believed to mediate the
negative feedback regulation of the SARs.

THE SHADE TOLERANCE RESPONSES

In contrast to the well-defined SARs, the STRs vary a lot
between species and are influenced by plant ontogeny and various

biotic and abiotic factors (Valladares and Niinemets, 2008).
The shade tolerance species usually have reduced elongation of
stem and petiole in shade, as compared to the shade avoidance
species (Smith, 1979; Niinemets, 1997; Niinemets and Valladares,
2004). However, shade tolerance is not just a lack of shade
avoidance. Shade tolerance species induce STRs to optimize their
survival under shade, such as lower growth rates, having thinner
leaves, altered chlorophyll a:b ratio, reduced apical dominance
(increased branching) (Beneragama and Goto, 2011; Casal, 2012;
Gommers et al., 2013; Roig-Villanova and Martinez-Garcia,
2016). Several hypotheses have been proposed to explain the
survival strategy of the shade tolerance species. The “carbon
gain hypothesis” proposed that the shade tolerance may be
achieved through optimizing light capture and lowering dark
respiration rate, and therefore increasing maximum potential
carbon gain (Givnish, 1988; Valladares and Niinemets, 2008).
For example, shade tolerant species can optimize light capture
and utilization by increasing PSII (photosystem II):PSI ratio
(Melis and Harvey, 1981) and special leaf area [SLA, leaf area
(m2) per leaf dry mass (kg)], lowering chlorophyll a:b ratio
(Melis and Harvey, 1981; Evans and Poorter, 2001). Other studies
suggested that it is the pattern of the relationship between
leaf nitrogen and irradiance (Niinemets, 1997) or the relative
growth rate (Reich et al., 1998) that correlates with the shade
tolerance. An extension of the carbon gain hypothesis is the
“trade-off hypothesis,” which predicts an inverse correlation
between growth rates in high light and survival rates in low
light (Valladares and Niinemets, 2008). The “Stress tolerance
hypothesis,” on the other hand, proposed that survival in
shade positively correlates with resistance to biotic and abiotic
stress (Kitajima, 1994). Shade tolerance correlates positively with
resistance to pathogens and diseases and increasing physical
defense to the external environment (Augspurger, 1984). In
deciduous trees, it was also found that the shade-tolerant species
restrict carbon allocation toward defense and radial growth
instead of increasing height and storage capacities (Giertych et al.,
2015). In shade avoiding Arabidopsis, mutant that failed to induce
elongation growth in shade still exhibited FR-induced attenuation
in defense response, suggesting alteration in defense is not a
simple trade-off response (Ballare, 2014; Moreno and Ballare,
2014). In summary, the STRs may be much more complex than
the SARs, as different strategies/responses may be employed
by plant species with variable shade tolerance ability, or by
plants at different developmental stages, or by plants facing
shade along with other stresses (Valladares and Niinemets, 2008).
So far, there is limited number of studies on the molecular
mechanisms of the STRs.

PHYTOCHROME A-MEDIATED
INHIBITION OF SHADE AVOIDANCE
RESPONSES

In nature, there are different degrees of shade. Light with
reduced R:FR ratio can be generated under three situations:
light reflection from nearby plants [neighbor detection, no direct
vegetative shade, and little reduction in photosynthetically active
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radiations (PARs)]; direct, but unclosed shade (mild shade,
modest reduction in R:FR and PARs); and dense canopy shade
(strong shade, low R:FR, and PARs) (Casal, 2012; Martinez-
Garcia et al., 2014). Most shade-tolerant plants are herbaceous
species that live in the understory of the forest and usually receive
strong canopy shade. For shade avoiding plants grown under
dense canopy, the elongation growth of stems, a typical SAR, is
also inhibited in a PHYA-dependent manner (Martinez-Garcia
et al., 2014; Yang et al., 2018; Song et al., 2020). By measuring
the hypocotyl growth rates under mild (R:FR ca. 0.7) and strong
shade (R:FR ca. 0.1), Song et al. (2020) demonstrated that
PHYA mainly functions after prolonged shade (24 h) and under
very low R:FR ratio light. Through whole genome expression
profiling, Devlin et al. (2003) also showed that there was an
antagonistic effect of PHYA after prolonged shade treatment
(24 h). Furthermore, PHYA is also involved in repressing FR-
dependent senescence and leaf yellowing in shade (Brouwer
et al., 2014; Lim et al., 2018). phyA mutant had reduced survival
in deep vegetative shade (Yanovsky et al., 1995). Both the
transcript and protein level of PHYA increased after low R:FR
treatment, nuclear localization of PHYA was also enhanced by
prolonged strong shade treatment (Devlin et al., 2003; Yang
et al., 2018; Song et al., 2020). Thus, in shade avoiding plants,
PHYA is activated by shade to inhibit some of the SARs and
to prevent exaggerated responses to shade, especially under
dense canopy.

Theoretically, it is plausible for shade-tolerant plants to
develop some of the STRs through enhancing PHYA signaling
pathway. Over-expressing PHYA in tomato, tobacco, rice,
potato and creeping bentgrass, and zoysiagrass all inhibited
stem elongation in shade (McCormac et al., 1992; Robson
et al., 1996; Rousseaux et al., 1997; Kong et al., 2004; Garg
et al., 2006; Ganesan et al., 2012). Recent studies showed
that PHYA protein in a shade-tolerant plant C. hirsuta
(a close relative of Arabidopsis) has stronger activity in
inhibition of hypocotyl elongation than that of the Arabidopsis
(Jose Molina-Contreras et al., 2019). It was reported that a
single amino-acid change in PHYA caused a 100-fold shift
in the threshold for FR light sensitivity (Maloof et al.,
2001). Thus, natural variations in PHYA may allow plants
to activate PHYA-mediated negative feedback regulation with
different dynamics and to cope with a wide range of
shade conditions. By comparing PHYA sequence in species
with different degrees of shade tolerance may help us to
understand if this a widely adopted strategy in regulating
shade responses.

CONSTITUTIVE PHOTOMORPHOGENIC
1 IS A KEY REGULATOR OF THE
PHYTOCHROME A PATHWAY

Under shade, PHYA was proposed to act through the FR-
high irradiance response (Martinez-Garcia et al., 2014) and it
may attenuate the SARs through antagonizing PHYB signaling
(Johnson et al., 1994; Ciolfi et al., 2013). Results from the
genome wide expression profiling suggested that PHYA acts

partially through antagonizing the effect of PHYB, while there
also exist shade responsive genes that are specifically targeted
by PHYA alone (Devlin et al., 2003). Song et al. (2020)
reported that shade-induced nuclear localization of COP1
(CONSTITUTIVE PHOTOMORPHOGENIC 1), a key negative
regulator of photomorphogenesis, was suppressed in a PHYA-
dependent manner after prolonger shade. Mutation in COP1
fully suppressed the long hypocotyl phenotype of phyA under
strong shade, indicating it is a key regulator in PHYA-mediated
elongation growth. COP1 interacts with the suppressor of
phyA-105 (SPA) proteins and functions as an E3 ubiquitin
ligase that promotes the ubiquitination and degradation of
target proteins, including negative regulators of the SARs
such as HY5 (ELONGATED HYPOCOTYL 5), HFR1 (LONG
HYPOCOTYL IN FAR-RED) and PAR1,2 (PHYTOCHROME
RAPIDLY REGULATED 1,2) and BBX21,22 (B-box-containing
proteins 21,22) (Ang and Deng, 1994; Holm et al., 2002; Saijo
et al., 2003; Jang et al., 2005; Zhu et al., 2008; Crocco et al.,
2010; Zhou et al., 2014). Indeed, comparing HY5 protein level
in the strong shade vs. that in the mild shade, a PHYA-
dependent increase was observed. As COP1 acts downstream
of both PHYA and PHYB, it may account for the antagonizing
effect of PHYA.

REGULATION OF PHYTOCHROME
INTERACTING FACTORS BY
PHYTOCHROME A

PHYTOCHROME INTERACTING FACTOR (PIF)
transcriptional factors play a key role in regulating the expression
of shade responsive genes and elongation growth. Mutation
in PIF4,5,7 led to reduced SARs, including shade-induced
hypocotyl elongation and response of shade marker genes.
PIF4,5,7 accumulated rapidly after low R:FR treatment, which is
proceeded by changes at protein phosphorylation level (Lorrain
et al., 2008; Hornitschek et al., 2009, 2012; Li et al., 2012;
Huang et al., 2018). After prolonged strong shade treatment,
PIF4 protein level decreased in a PHYA-dependent manner
(Song et al., 2020). Mutation in PIF4,5 partially suppressed the
exaggerated hypocotyl growth of phyA mutant in strong shade,
and the altered expression of PHYA downstream target genes
(Song et al., 2020).

Little is known about how PHYA regulates PIF after prolonged
strong shade treatment. Based on previous studies, we speculate
that under strong shade, PHYA may regulate the stability,
modification and activity of PIFs. First, COP1 is required for
accumulation of PIF3 in darkness (Bauer et al., 2004). Ling et al.
(2017) reported that COP1/SPA complex associates with and
stabilizes PIF3 through repressing BIN2 (BRASSINOSTEROID-
INSENSITIVE 2)-mediated phosphorylation of PIF3 and its
subsequent degradation. Thus, Shade-activated PHYA may
regulate the protein level of PIFs through COP1-dependent
route. But not all PIFs are degraded under FR light. PIF8 is
degraded in a COP1-dependent manner in dark. Under FR
light, activation of PHYA led to stabilization of PIF8, which
inhibits suppression of hypocotyl growth by PHYA in FR
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light (Oh et al., 2020). Whether PIF8 is involved in PHYA-
mediated SARs remains to be investigated. Secondly, PHYA
preferentially interacts with PIF1 and PIF3 in its Pfr form. In
most cases, the interaction led to phosphorylation of PIFs and
its subsequent degradation (Shen et al., 2005, 2007, 2008; Al-
Sady et al., 2006). An Avena sativa phytochrome A (AsPHYA)
was shown to directly phosphorylate PIF3, and a mutant version
of AsPHYA with reduced kinase activity compromised FR-
induced phosphorylation and degradation of PIF3 (Shin et al.,
2016). Finally, shade induces the expression of several PIF-
interacting proteins, such as HFR1, PAR1,2, which represses
the transcriptional activity of PIFs (Roig-Villanova et al., 2007;
Hornitschek et al., 2009; Galstyan et al., 2011; Hao et al.,
2012). PHYA does not affect early induction of PAR1 and HFR1
by shade. After prolonged shade treatment, PHYA partially
suppresses PAR1 expression, but does not affect HFR1 expression
(Song et al., 2020). Thus, PHYA does not inhibit SARs through
upregulating the transcript level of PAR1 and HFR1. FHY3 (FAR-
RED ELONGATED HYPOCOTYL3) and FAR1 (FAR-RED-
IMPAIRED RESPONSE1) are two homologous transcription
factors that act downstream of PHYA in FR light signaling
(Wang and Deng, 2002; Lin et al., 2007). fhy3far1 mutant
displayed exaggerated hypocotyl elongation under shade, which
was similar to phyA (Liu et al., 2019). They also directly interact
with PIF3,5 and repress their transcriptional activity (Liu et al.,
2020). It would be interesting to see if FHY3 and FAR1 mediate
PHYA signaling in shade and how they are regulated. Recently,
Fraser et al. (2021) showed that early evening expression of the
central circadian clock components TOC1 (TIMING OF CAB
EXPRESSION 1), PRR7 (PSEUDO RESPONSE REGULATOR
7), and ELF3,4 (EARLY FLOWERING 3,4) was elevated in
photocycles of low R:FR and low PAR in a PHYA-dependent
manner. And among them, TOC1, PRRs, and ELF3 also interact
with PIFs and negatively regulate their transcriptional activities
and/or DNA binding ability (Nieto et al., 2015; Soy et al., 2016;
Martin et al., 2018; Jiang et al., 2019; Zhang et al., 2020). Together,
these proteins suppress stem elongation under strong shade
(Figure 1).

Thus, in addition to affecting PIFs through up-regulating
PHYA level and/or activity, shade tolerance plants may also tune
down the activity of PIFs through a PHYA-independent pathway,
either through having PIFs with altered protein dynamics or
activity, or by using negative regulators that can strongly
reduce the activity or protein level of PIFs. Ciolfi et al. (2013)
demonstrated that although in Arabidopsis, both PHYA and
HFR1 are negative regulators of SARs, they act independently
in regulating several shade-induced target genes. HFR1 was
also shown to regulate shade-induced flowering independent
of PHYA. HFR1 interacts with CO (CONSTANS) and PIF7,
which inhibit their DNA binding activities to downstream target
genes (Zhang et al., 2019). It was reported that HFR1 in the
shade tolerant C. hirsuta was more stable than its counterpart
in Arabidopsis due to its lower binding capacity to COP1. The
enhanced HFR1 activity then caused a reduction in PIFs’ activity
and attenuated PIF-mediated responses (Paulisic et al., 2021).
Furthermore, it was reported that the shade avoiding Scots
pine lacks FR high irradiance response, suggesting a different

negative regulatory pathway in angiosperm, if there is any
(Mohr, 1990).

PHYTOHORMONES AND THE
PHYTOCHROME A SIGNALING
PATHWAYS

In shade avoiding plants, changes in plant architecture, defense
responses and metabolism are associated with both altered
level and sensitivity of various phytohormones as previously
reviewed (Yang and Li, 2017; Fernandez-Milmanda and Ballare,
2021; Liu et al., 2021). For example, in Arabidopsis, shade
induced stem elongation requires growth promoting hormones:
auxin, gibberellins (GAs) and brassinosteroids (BRs), while shade
reduced expression of defense genes that are responsive to
jasmonic acid (JA) and salicylic acid (SA). Here we summarize
phytohormones that are influenced by PHYA under shade.

Biosynthesis of auxin increases in shade. Mutation in TAA1
(Trp aminotransferase in Arabidopsis), a key enzyme in Trp-
dependent auxin biosynthesis, severely impaired hypocotyl
elongation in shade (Tao et al., 2008). However, this mutation had
limited effect on hypocotyl growth in phyA mutant, suggesting a
TAA1-independent mechanism may be employed by PHYA. Both
PHYA and PHYB can interact with a similar set of AUX/IAA
(auxin/indole-3-acetic acid) proteins, and PHYA activated under
deep shade can thus counteract the effect of PHYB through
stabilizing these proteins and subsequently suppressing the auxin
sensitivity and the SARs (Xu et al., 2018; Yang et al., 2018).

Both BR biosynthesis and signaling components are required
for petiole and stem growth under low R/FR (Kim et al.,
1998; Luccioni et al., 2002; Kozuka et al., 2010; Keller et al.,
2011). Activation of the BR signal pathway lead to the
dephosphorylation of BES1/BZR1 transcriptional factors, which
then move into the nucleus and promote the expression
of BR-responsive genes (Belkhadir and Jaillais, 2015). PHYA
inhibits hypocotyl elongation partially through repressing key
BR biosynthesis genes’ expression in hypocotyls, which is
mediated by COP1, PIF4, and PIF5 (Song et al., 2020). In
addition, BES1/BZR1 directly interacts with PIF4, they regulate
downstream target genes and promote hypocotyl elongation
interdependently in response to BR, darkness and heat (Oh et al.,
2012). HY5 also directly interacts with the active form of BZR1
and attenuates its transcriptional activity (Li and He, 2016). HY5
represses BZR1 accumulation through enhancing BIN2 kinase
activity (Li et al., 2020). After prolonged strong shade treatment,
protein level of both PIF4 and the active form of BES1 were
much higher in phyA mutant than those in the wild type, while
HY5 protein level was repressed by PHYA (Song et al., 2020).
Thus, PHYA may also repress BR signaling through regulating
BES1/BZR1-interacting proteins (Figure 1).

Although little is known about how PHYA affects GA pathway,
the dwarf phenotype of PHYA overexpressing-tobacco was
related to a reduction in the active GA level (Jordan et al., 1995).
DELLA proteins are transcriptional regulators that inhibit GA
signaling. DELLAs are also targets of COP1, which promotes
degradation of DELLAs through direct protein interactions
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FIGURE 1 | A proposed model for phytochrome A (PHYA)-mediated regulatory network in shade. Proteins outlined in blue are negative regulators of the shade
avoidance responses (SARs), while those in red are positive regulators.

and ubiquitination (Blanco-Tourinan et al., 2020). Furthermore,
DELLAs interact with BZR1 and PIFs to repress their activities
(Feng et al., 2008; Bai et al., 2012). BZR1 and PIF4 share
common target genes, including PRE1 (PACLOBUTRAZOL
RESISTANCE1), which is co-regulated by BR, GA, and auxin (Bai
et al., 2012). By forming heterodimers with PAR1, PRE1 prevents
PAR1 from interacting with PIF4 and represses its activity
(Hao et al., 2012). These findings defined a regulating network
including DELLAs, BZR1, PIFs, and downstream targets, which
can integrate GA and BR signaling with light signal to fine-tune
SARs. How this signaling network is influenced by PHYA and in
the shade tolerance species remain to be illustrated.

Jasmonic acid is a lipid-derived plant hormone that is
well known for its involvement in responses to wounding,
necrotrophic pathogens and herbivores. Furthermore, JA
participates in plant development regulation, including root
growth inhibition, trichome initiation, male fertility, leaf
senescence and photomorphogenesis. JA suppresses hypocotyl
elongation and promotes cotyledon opening through inhibiting
COP1 activity (Zheng et al., 2017). In Arabidopsis, both
JA biosynthesis and sensitivity is reduced in shade due to
inactivation of PHYB (De Wit et al., 2013; Leone et al., 2014;
Fernandez-Milmanda et al., 2020). phyA seedlings grown
in dark and FR contains higher level of OPDA [cis-(+)-12-
oxophytodienoic acid], an intermediate of JA biosynthesis, than

wild type (Robson et al., 2010). In addition, PHYA is required
for inhibition of root growth by JA, and wound/JA-induced
degradation of JAZ1 (JASMONATE-ZIM-DOMAIN PROTEIN
1), repressors of JA signaling (Robson et al., 2010), indicating
that PHYA is also required for JA signaling. Arabidopsis
FIN219 (FAR-RED INSENSITIVE219)/JAR1 (JASMONATE
RESISTANT 1) is involved in PHYA-mediated FR light signaling
(Hsieh et al., 2000). It encodes an enzyme catalyzing the final
step of JA-Ile (an active form of JA) production. Jar1 mutant
was hypersensitive to shade-induced hypocotyl elongation
(Robson et al., 2010). In seedlings grown in FRc (continuous FR),
FIN219/JAR1 directly interacts with COP1 and retains COP1
in the cytoplasm, which subsequently increases HY5 protein
level (Wang et al., 2011). Under shade, FIN219/JAR1 protein
level is reduced. It affects shade-induced accumulation of PHYA
protein and shade-regulated expression of PIF5, PAR1 and the
auxin responses gene IAA29 and SAUR68 (Swain et al., 2017).
Interestingly, through analyzing phyAfin219 double mutants, it
was proposed that FIN219 and PHYA synergistically regulating
shade-induced hypocotyl elongation and gene expression,
and FIN219-mediated repression of SARs is independent of
PHYA-mediated high irradiance response (Swain et al., 2017).
Thus, FIN219 may serve as a key node that can sense PHYA-
independent shade signal and regulates downstream components
of the PHYA signaling pathway.
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Phytochrome A signaling components FHY3 and FAR1 were
shown to repress hypocotyl growth through direct transcriptional
activation of PAR1 and PAR2 and their transcriptional activities
were attenuated by JAZ proteins through direct protein
interactions (Liu et al., 2019). Interestingly, JA also promoted
the accumulation of FHY3 protein and unleashed them from
inhibition by JAZ proteins (Liu et al., 2019). FHY3 interacts with
MYC2, a key transcription factor in the JA pathway, enhances
its transcriptional activity on the expression of JA-responsive
genes, and affects defense responses (Liu et al., 2019). FHY3
and FAR1 were thus proposed to be regulators that balance
growth and defense. As shade rapidly induced accumulation of
FHY3 protein (Liu et al., 2019), but repressed JA biosynthesis,
a detailed characterization on the dynamics of FHY3 protein
level in shade and how PHYA is involved is required to fully
illustrate the role of FHY3. In addition to regulating hypocotyl
growth, FHY3 and FAR1 are involved in an array of SAR-related
biological processes, including senescence, starch metabolism,
chloroplast development, circadian gating, shoot branching,
flowering control etc. (McCormac et al., 1992; Allen et al., 2006;
Stirnberg et al., 2012; Tang et al., 2012; Ma et al., 2016, 2017; Liu
et al., 2019, 2020; Tian et al., 2020; Xie et al., 2020a,b). It would be
interesting to examine if these processes are also inhibited under
prolonged strong shade and how PHYA and FHY3, FAR1 are
involved (Figure 1).

Through studying a shade-avoiding and a shade tolerance
species of genus Geranium, Gommers et al. (2018) found that
auxin and GA levels, but not BR, increased in elongating petioles
through local perception of FR light in the shade-avoiding
species, which did not occur in the shade-tolerance species
(McCormac et al., 1992). In the shade-avoiding species, BR level
decreased in petioles after long exposure (11.5 h) to FR-enriched
light, it would be interesting to know if this reduction in BR
and the lack of induction in auxin and GA level is PHYA-
regulated. Transcriptional profiling data revealed up-regulation
of ethylene and cytokinin pathway genes in shade tolerance
Swarnaprabha rice (Panigrahy et al., 2019). In Arabidopsis, shade
arrests leaf primordia development is associated with an auxin-
dependent induction of AtCKX6, a gene encoding a cytokinin
oxidase involved in cytokinin breakdown (Carabelli et al., 2007).
Cytokinin level is reduced after shade treatment in soybean
(Wu et al., 2017). The higher rate of panicle emergence of
Swarnaprabha rice in shade may thus be related to its upregulated
cytokinin pathway. Shade treatment increases ethylene level

and promotes petiole elongation in Arabidopsis (Pierik et al.,
2009). Similar to JA, ethylene also plays an important role in
various defense and stress responses. How ethylene affects the
STRs and survival of the shade tolerance species remains to
be investigated.

CONCLUSION REMARKS

Most of the crops are shade avoiding plants. When planted at
high density, SARs are induced, which is often detrimental to
yield (Smith, 1995; Duvick, 1997; Kebrom and Brutnell, 2007).
Shade tolerance plants are naturally evolved to be adapted to
grow under dense canopy. STRs are induced to achieve efficient
light utilization and high survival rate under prolonged strong
shade. Thus, suppressing SARs alone may not be sufficient to
enhance the performance of crops planted at high density. Recent
studies indicate that the shade avoiding plants processes a PHYA-
mediated negative feedback regulation, which suppresses some of
the SARs and may increase the survival of these plants under
prolonged strong shade. Furthermore, some shade tolerance
plants may also utilize the PHYA-mediated pathway to regulate
their responses to shade. Understanding how the PHYA signaling
pathway is regulated in both types of plants, what are the
downstream components, and besides elongation growth, what
and how other physiological processes are being regulated, can
help us understand how plants survive under dense canopy.
Modifying the shade responses of various crops using their
existing components may be a shortcut to obtain high-yield shade
tolerance crops.
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