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Dilated convolution
capsule network for
apple leaf disease identification

Cong Xu, Xuqi Wang and Shanwen Zhang*

School of Electronic Information, Xijing University, Xi’an, China
Accurate and rapid identification of apple leaf diseases is the basis for

preventing and treating apple diseases. However, it is challenging to identify

apple leaf diseases due to their various symptoms, different colors, irregular

shapes, uneven sizes, and complex backgrounds. To reduce computational

cost and improve training results, a dilated convolution capsule network

(DCCapsNet) is constructed for apple leaf disease identification based on a

capsule network (CapsNet) and two dilated Inception modules with different

dilation rates. The network can obtain multi-scale deep-level features to

improve the classification capability of the model. The dynamic routing

algorithm is used between the front and back layers of CapsNet to make the

model converge quickly. In DCCapsNet, dilated Inception instead of traditional

convolution is used to increase the convolution receptive fields and extract

multi-scale features from disease leaf images, and CapsNet is used to capture

the classification features of changeable disease leaves and overcome the

overfitting problem in the training network. Extensive experiment results on the

apple disease leaf image dataset demonstrate that the proposed method can

effectively identify apple diseases. The method can realize the rapid and

accurate identification of apple leaf disease.

KEYWORDS

apple leaf disease identification, dilated convolution, capsule network (CapsNet),
dilated convolution CapsNet (DCCapsNet), inception
Introduction

Apple is one of the most popular fruits. However, it is often affected by various

diseases, which reduce its yield and quality (Pandiyan et al., 2020). Rapid and accurate

detection and identification of these diseases is a prerequisite for disease control and

accurate use of pesticides. Traditional methods of manual detection and identification of

apple diseases mainly rely on visual recognition, which is not only subjective but also

time-consuming, laborious, and inefficient and requires sufficient field experience and

subjective assumptions. This method cannot be used for the quantitative identification of
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diseases; nor can it be widely used in large apple plantations.

Apple leaves are susceptible to diseases. Because of the complex

symptoms of apple leaf disease, detection and identification by

apple disease leaf image is challenging research (Mishra et al.,

2017; Puspha Annabel et al., 2019). Zhang et al. (2017) proposed

an apple leaf disease recognition method based on image

processing techniques and pattern recognition, including

image lesion segmentation, feature extraction, dimension

reduction, and disease identification. In the method, 38

classifying features of color, texture, and shape were from each

segmented spot image, and the few most valuable features were

selected by combining genetic algorithm (GA) and correlation

feature selection algorithm. Finally, the diseases were recognized

by a support vector machine (SVM) classifier. In fact, the

similarity between the different-class disease spot images is

small, while the similarity between the within-class disease

spot images is largely due to the complex background

environment, so the traditional apple leaf disease recognition

using complex image pretreatment and feature extraction cannot

guarantee a high disease recognition rate.

With the development of deep learning and big data

processing technologies, convolutional neural networks

(CNNs) realize end-to-end detection by learning multi-level

features of different receptive fields, scenes, and scales (Lei

et al., 2018; Li et al., 2019; Sun et al., 2021) and have become a

topic of research in the crop automatic disease recognition fields

(Sun et al., 2017). Sun et al. (2021) proposed a lightweight CNN

model to detect apple leaf diseases in real time. They constructed

a dataset of apple leaf disease image dataset, namely,

AppleDisease 5, proposed a MEAN block, and built an apple

leaf disease detection model by using the MEAN block and

Apple-Inception module. Agarwal et al. (2019) developed a

CNN model to identify apple disease. It consists of three

convolution layers and three max-pooling layers followed by

two densely connected layers. They tested the model with

varying numbers of convolution layers from two to six and

found that three layers have the best. Jiang et al. (2019) proposed

an apple leaf disease real-time detection based on improved

CNN. In the method, the apple leaf disease dataset was

constructed via data augmentation and image annotation

technologies, and an apple leaf disease detection method based

on deep CNN (DCNN) was proposed by introducing the

GoogLeNet Inception structure and Rainbow concatenation.

The proposed model was trained using a dataset of 26,377

images of diseased apple leaves to detect these five common

apple leaf diseases. Yan et al. (2020) proposed an improved

VGG16 model, namely, VGG-ICNN, for apple leaf disease

recognition. It consists of approximately 6 million parameters

that are substantially fewer than most of the available high-

performing deep learning models. Zhong et al. (Zhong and

Zhao, 2020) proposed DenseNet-121 to identify apple leaf

diseases and used an apple leaf image dataset including 2,462

images of six apple leaf diseases to train and evaluate the model.
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Some deep learning approaches have recently been introduced

for leaf disease identification, such as VGG and residual network

(ResNet). Son et al. (Yu and Son, 2020) proposed a deep learning

architecture for apple disease recognition by considering the leaf

spot attention mechanism. To realize this, they designed a

feature segmentat ion subnetwork to provide more

discriminative features and a spot-aware classification

subnetwork for the feature segmentation subnet and then

trained through early fusion and late fusion to generate

semantic point feature information. The results proved that

the proposed method outperforms conventional state-of-the-

art deep learning models. Luo et al. (2021) proposed an apple

disease classification model based on a multi-scale conventional

ResNet. To solve the problem of serious loss of information in

the ResNet downsample, the channel projection and spatial

projection of downsample were separated, the 3 × 3

convention in ResBlocks was replaced by pyramid

convolution, and the dilated convolution with different

dilation rates was introduced into pyramid convolution to

enhance the output scale of feature maps and improve the

robustness of the model. The results on the dataset of this

paper demonstrated that the optimal model has a high

accuracy, which can provide a reference for the prevention

and control of apple leaf diseases. Khana et al. (2022)

proposed a real-time apple leaf disease detection system based

on deep learning. The qualitative results validated that the

proposed system can efficiently and accurately identify leaf

disease symptoms and can be used as a practical tool by

farmers and apple growers to aid them in the diagnosis,

quantification, and follow-up of infections. Di et al. (Di and Li,

2022) proposed an apple disease detection approach based on

improved CNN, namely, DF-Tiny-YOLO. Feature reuse is

combined with DenseNet dense connection network to reduce

the disappearance of depth gradient, so as to strengthen feature

propagation and improve detection accuracy. The calculation

parameters of DF-Tiny-YOLO are reduced by convolution

kernel compression, and the operation detection speed is

improved. Feature fusion is realized by feature superposition.

The results showed that this method can improve detection

performance significantly.

According to the above methods, the deeper the convolution

layer is, the more abstract the extracted features are, and the

higher the recognition rate is. However, the larger convolution

kernel and the deeper CNN model have more training

parameters, requiring longer training time and greater

computational power.

Most of the existing apple detection models based on CNN

are difficult to use on hardware resource platforms with limited

computing capacity and storage capacity due to too many

parameters. To improve the performance and adaptability of

the existing apple detection model under the condition of limited

hardware resources, while maintaining detection accuracy,

reducing the calculation of the model and the model
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computing and storage footprint, and shortening detection time,

Xia et al. (2020) proposed an apple detection model based on

lightweight anchor-free deep CNN, namely, lightweight

MobileNetV3. MobileNetV3 outperforms CenterNet and SSD

(Single Shot Multibox Detector) in comprehensive performance,

detection accuracy, capacity, and convergence speed. Li et al.

(2022) proposed an apple identification method based on

lightweight RegNet. To evaluate the effectiveness of this

method, a series of comparative experiments were conducted

using 2,141 images of five field apple leaf diseases and compared

with the state-of-the-art improved CNN such as ShuffleNet,

EfficientNet-B0, MobileNetV3, and Vision Transformer. The

results show that the performance of RegNet-Adam is better

than that of other pre-training models, and transfer learning can

realize fast and accurate identification of apple leaf diseases.

In CNN, pooling is usually used to increase the receptive

field and reduce the amount of calculation, but some useful

information may be lost. Dilated convolution can increase the

receptive field of the convolution kernel without increasing the

number of parameters to improve the feature resolution, and the

size of the output feature map can remain unchanged (Ahmed,

2021). Dilated convolution can be used to improve the quality of

the training results and decrease the required computational

costs. For example, a 3 × 3 convolution kernel with an expansion

rate of 2 has the same receptive field as a 5 × 5 convolution

kernel, while the number of parameters is only 9, which is 36% of

the number of 5 × 5 convolution parameters. Therefore, dilated

convolution can be used for constructing a lightweight CNN

model (Fang et al., 2019). Thakur et al. (2022) introduced a

lightweight CNN, namely, VGG-ICNN, for the identification of

crop diseases using plant-leaf images. It consists of

approximately 6 million parameters that are substantially

fewer than most of the available high-performing deep

learning models. Many models with large parameters have

difficulty providing an accurate and fast diagnosis of apple leaf

pests and diseases on mobile terminals. Zhu et al. (2022)

proposed a lightweight model for early apple leaf pests and

disease classification, where a LAD-Inception is built to enhance

the ability to extract multi-scale features of different sizes of

disease spots. Li et al. (2022) proposed a lightweight

convolutional neural network RegNet to realize the rapid and

accurate identification of apple leaf disease and conducted a

series of comparative experiments based on 2,141 images of five

apple leaf diseases (rust, scab, ring rot, panonychus ulmi, and

healthy leaves) in the field environment.

CNN has a strong feature extraction ability, but it cannot

acquire the relationship between feature attributes, such as

relative position and size. Its high recognition rate on the

complex image dataset depends on a large number of training

samples, but the actual amount of data obtained is often limited,

leading to the overfitting of CNN. Capsule Network (CapsNet)
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can make up for the deficiency of CNN. Capsule is a set of

neurons that capture various parameters of a particular feature,

each representing various properties of a particular entity that

appears in an image. These attributes include many different

types of instantiation parameters such as posture (position, size,

and direction), deformation, speed, hue, and texture. One special

property in the capsule is the presence of an instance of a

category in the image. CapsNet transforms the scalar output of

neurons into vector output, which is the probability of the

entity’s existence. It not only can represent whether the image

has a certain feature but also can represent the physical features

such as rotation and position of the feature (Wang et al., 2019).

Xiang et al. (2018) designed a multi-scale CapsNet (MS-

CapsNet), in which the multi-scale features are extracted by

multi-scale convolutional kernels and then used to construct the

multi-dimensional primary capsules. Deng et al. (2018) used the

improved double-layer CapsNet to classify the PaviaU (PU)

dataset of hyperspectral images and obtained a recognition rate

of 93.45%. Yang et al. (2018) compared the classical CNN with

CapsNet in terms of network structure, parameter update, and

training results. Experimental results showed that CapsNet is

better on gray images than the classical CNNs. CNN-based

architectures have performed amazingly well for disease detection in

plants but at the same time lack rotational or spatial invariance.

CapsNet addresses these limitations of CNN architectures.

Janakiramaiah et al. (2021) proposed a variant of CapsNet called

Multilevel CapsNet to characterize the mango leaves tainted by

anthracnose and powdery mildew diseases. It is validated on a

dataset of mango leaves collected in the natural environment.

Inspired by dilated convolution, MS-CapsNet, and their

improvement, a dilated convolution capsule network (DCCapsNet)

is constructed for apple leaf disease identification. The main

contributions are given as follows:
• Two dilated Inception modules are introduced into

CapsNet to extract the multi-scale classifying features

of disease leaf images, improve the classification

capability of the model, and overcome the overfitting

problem.

• DCCapsNet is constructed to recognize apple leaf

diseases, where the dynamic routing algorithm is used

between the front and back layers of CapsNet to make

the model converge quickly.

• The effectiveness of this method is verified by many

experiments.
The rest of this paper is organized as follows. Section 2

briefly introduces dilated convolution and CapsNet. DCCapsNet

is introduced in detail in Section 3. The experiments and analysis

are presented in Section 4. The summary and prospect of the

paper are given in Section 5.
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Related works

In this section, dilated convolution and CapsNet are

briefly introduced.
Dilated convolution

Dilated convolution can enlarge the receptive field of the

convolution layer by filling 0 in the middle of the convolution

kernel, without increasing network parameters and then

avoiding feature loss caused by pooling operation in CNN.

Dilated convolution structures of three dilated rates are shown

in Figures 1A–C, where (A) the receptive field is 3 × 3 with an

expansion rate of 1 (that is, the traditional convolution kernel of

3 × 3); (B) the receptive field is enlarged to 5 × 5 with a dilated

rate of 2 by filling with a 0 in the 3 × 3 standard convolution; (C)

the receptive field is increased to 7 × 7 with a dilated rate of 3 by

filling with two 0 in the 3 × 3 standard convolution. As can be

seen from Figures 1A–C, with the increase of dilated rate, the

size of the receptive field increases, but the network parameters

do not increase, that is, nine parameters. Therefore, using the

dilated convolutional instead of the traditional convolutional

can extract more features without increasing the amount

of computation.
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Assume an apple rust leaf image and a 3 × 3 sharp kernel [−1

−1 −1;−1 9 −1;−1 −1 −1] and conduct several convolutions of the

leaf image and dilated convolution kernels (r = 1, 2, 3, 5). The

convolution maps are shown in Figures 1E–H. From the

convolution maps in Figure 1, it can be seen that dilated

convolution not only can expand the receptive field but also

can extract more discriminant features than classical

convolution and keep the relative spatial position of spot

pixels unchanged without increasing computation and losing

resolution. Comparing Figures 1G, H, there is not much

difference between the two maps. Therefore, we utilized dilated

convolution kernels (r = 1, 2, 3).

In DCNN, downsampling is usually used to increase the

receptive field, but the image resolution will be reduced, resulting

in the loss of spatial detail of the image. The dilated convolution

expands the receptive field by setting the dilated rate, and setting

different dilated rates can also capture multi-scale context

information. It can be seen from Figure 1, on the basis of no

additional parameters, that the receptive field of 3 × 3

convolution is expanded to 5 × 5 and 7 × 7, which can

capture multi-scale features of the image. Therefore, multi-

scale receptive fields can be obtained through the dilated

convolution of different expansion rates. Dilated convolution

can be considered a multi-scale convolution network. Dilated

convolutional kernel and receptive field are calculated as follows
A B

D E F G H

C

FIGURE 1

Dilated convolution with three dilation rates. (A) Rate = 1. (B) Rate = 2. (C) Rate = 3. (D) Original image. (E) Dilated rate = 1. (F) Dilated rate = 2.
(G) Dilated rate = 3. (H) Dilated rate = 5.
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n = k + (k − 1)(r − 1)

lm = lm−1 + ½(fm − 1)
Ym−1

i=1

Si�
(1)

where k and n are the size of the original convolution kernel

and dilated convolution kernel, respectively; lm−1 is the receptive

field size of the (m − 1) layer; lm is the receptive field size at the

mth layer after the convolution of the void; fm is the size of the

convolution kernel at the mth layer; Si is the step size of layer l.
Capsule network

CapsNet consists of one convolution layer and a primary

capsule layer and a digital capsule layer. In its internal structure,

the capsule layer is taken as the data processing unit, and the

dynamic routing algorithm is adopted to transmit data between

capsule layers, which has better feature expression ability than

CNN. Its basic architecture is shown in Figure 2, where the

convolution layer extracts the classifying features from the

original images, the primary capsule layer mainly transforms

the upper scalar representation to a vector representation and

outputs a vector, and the digital capsule uses a dynamic routing

algorithm to update the network parameters and avoids the loss

caused by pooling. The final output is the eigenvector whose

length is the probability that the test sample belongs to a

certain class.

In Figure 2, W represents the weight. In a fully connected

neural network, every neuron is a scalar (that is, there is only one

numeric value), so every weight is just a scalar and a numeric

value. However, in CapsNet, each capsule neuron is a vector

(that is, it contains multiple values, such as [x1, x2, x3,…, xn]; the

specific number n is designed according to the network), so the

weight of each capsule neuron W should also be a vector. It is

still updated according to backpropagation.
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The input s of CapsNet is obtained as follows:

sj =o
i
ciju

∧
jji, : u

∧
jji = Wijui (2)

where u is the output of CapsNet of the upper layer and Wij

is the learnable weight matrix between the ith capsule and jth

capsule; to be multiplied by each output, the coupling coefficient

c added to the linear sum stage, is calculated by

cij = Soft​ max(bij) =
exp (bij)

ok exp (bik)
(3)

In the process of calculating s by forward propagation, W is

set as a random value, b is initialized to 0, u is the output of the

previous layer, and s of the next layer can be obtained. Sigmoid is

often used as an activation function in FCN, while Squashing is

an activation function. Its output v is as follows:

vj =
jjs2j jj

1 + jjs2j jj
sj
jjsjjj

(4)

In Sq. (4), the former part ||sj||
2/(1+||sj||

2) of the activation

function is the scale of the input vector s, and the latter part sj/||

sj|| is the unit vector of s. This activation function not only

preserves the direction of the input vector but also compresses

the modulus of the input vector to between [0, 1]. It is regarded

as the probability of an entity’s appearance.

Dynamic routing is employed to update b and then update c,

as follows:

bij bij + u
∧
jji · vj (5)

Other convolution parameters of the entire network and W

need to be updated according to the loss function, as follows:

Lc =   o
k∈CNum

Tk max (0,m+ − jjVkjj2) + l(1

− Tk)max(0, jjVkjj −m−)2 (6)
FIGURE 2

Architecture of capsule network (CapsNet).
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wherem+ andm− are the category prediction values, L is the

balance coefficient, Tk is the label of category, Tk = 1 is the

correct label, CNum is the number of disease categories, k is the

category number, and ||Vk|| is the length of the vector

representing the probability of discriminating as the class kth

disease; the total loss is the sum of all digital capsule loss

functions. The default values are set as m+ = 0.9, m− = 0.1,

and L = 0.5.
Dilated convolution
capsule network

In complex image classification methods based on CNN and

its variants, a large number of labeled training samples are

usually required to train their parameters and improve their

performance. However, it is very time-consuming to label a large

number of samples. Although increasing network depth can

improve the recognition rate, it means increasing network

training time to optimize a large number of parameters.

Traditional CapsNet only uses one convolution layer to extract

the classification features, which cannot extract the deep multi-

scale features from the complex images of disease leaves,

resulting in low disease identification accuracy. To overcome

the above problem, a DCCapsNet is constructed for apple

disease recognition. Its architecture is shown in Figure 3,

consisting of a convolution subnetwork and capsule subnetwork.

In DCCapsNet, Conv 1 of the convolution subnetwork is the

same as the convolutional layer in CapsNet, and the capsule

subnetwork is the same as the capsule layer in CapsNet, while

Conv 2 and Conv 3 are two additional dilated Inception

modules, which are introduced to enhance deep multi-scale

feature extraction capability, thus improving the feature

learning ability on complex disease leaf image dataset.

For the perception of the convolution kernel, the larger the

convolution is, the stronger the ability of extracting disease

information is. In fact, the lesions are smaller than the whole
Frontiers in Plant Science 06
image, and other information on the image can be regarded as

“noise”, which needs to be filtered. As a consequence, the dilated

Inception module is designed as shown in Figure 4A

(Janakiramaiah et al., 2021). The traditional Inception module

is also shown in Figure 4B for comparison.

By comparing Figures 4A, B, it can be seen that DCCapsNet

has more different receptive fields, such as 1 × 1, 3 × 3, 5 × 5, and

7 × 7. Since the 5 × 5 convolutions in Figure 4B are replaced by a

3 × 3 dilated convolution, the number of its convolution kernel

parameters is smaller. The superiority of DCCapsNet is

described as follows.
1. Adding two convolutional layers. The disease leaf

images are often complex with irregular and multi-

scale spots and contain an amount of healthy region

and noise. To reduce the interference of useless

information, the relationship between various features

in the image can be fully connected, and the healthy

region and noises can be filtered before entering the

primary capsule layer. After Conv 1, Conv 2 and Conv 3

are added to reduce the interference caused by

redundant information in complex backgrounds.

2. Dimension extension of capsules. After three convolutional

modules, a largenumberofdeep-levelmulti-scale featuresof

the input images are extracted, and the extracted features are

processed by the primary capsule layer and digital capsule

layer and then compressed into capsules. The typical

structure of the network is the capsule structure, which is

the unit of storing information.When the dimension of the

capsule structure is larger, there are enough storage units to

store effective information in the network. Therefore, the

network extends its dimension to 10D.

3. Intermediate capsule. In the capsule layer, the feature

capsule at the bottom predicts the feature of the upper

layer by attitude relation and then activates the upper

layer by dynamic routing algorithm and selection

decision mechanism.
FIGURE 3

dilated convolution capsule network (DCCapsNet) architecture.
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The operation of DCCapsNet is as follows. In Conv 1, the

input color image is first convolved with 256 convolution kernels

of 3 × 3 size, and the convolution step is 1. The ReLu activation

function is also used during the coiling operation. In Conv 2,

dilated Inception module is used to carry out multi-scale

convolution operation for the preliminary features obtained by

Conv 1 convolution, and the convolution step is 1, so as to

obtain the output results of the Conv 2 layer. In Conv 3, further

carry out a dilated Inception module on the features obtained by

Conv 2 convolution layers. In the primary capsule layer,

vectorize the output results of Conv 3 layer. Ten groups of

different convolutional kernels are adopted, and each group of

coil-product kernels contained different convolutional kernels.

The step of convolution is set as 1, and the activation function of

this convolution operation is ReLu. After this step, the low-level

feature is obtained, which is a vector of 1 × 10.

Dilated Inception module is composed of 1 × 1, 3 × 3, 5 × 5,

and 7 × 7 convolutional kernels and a 3 × 3 maximum pooling in

parallel. Its advantage is that four receptive fields with four sizes

are used to extract the multi-scale features without increasing the

parameters of the kernels individually at each stage of the

network. Multi-scale kernels have better feature expression

effects on the input complex images, so dilated Inception

module has a better feature expression ability by the parallel

configuration of the kernels. To test DCCapsNet on disease leaf

images, the k-dimension feature vectors extracted by the capsule
Frontiers in Plant Science 07
subnetwork are input into the Softmax classifier, which is

described as follows:

P(Y = ijx) = Softmax (Yi) =
exp(viYi)

o
K

i=1
exp(vkYk)

(7)

where P is the probability that the feature vector x belongs to

the ith category, K is the total number of categories, v is the

weight items, and yi is the corresponding label of the ith

training sample.

The average recognition rate of apple disease experiments is

often adopted to test the network performance. The test images

in each class are used to measure the classification accuracy,

which is calculated as follows:

Accuracy =
Number of disease leaf images correctly identified

Total number of test disease leaf images

(8)

The number of floating point operations (FLOPs), including

multiplication and addition, depends on the model and can be

used to evaluate model complexity. It is used as a criterion to

assess the complexity of the model. To compute the number of

FLOPs, suppose the convolution is implemented as a sliding

window and the nonlinearity function is computed for free. For

convolution layers, the FLOPs are computed as
A

B

FIGURE 4

Structures of Inception module and dilated Inception module. (A) Dilated Inception module. (B) Traditional Inception module.
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FLOPs¼ ð2CinK
2 − 1)HWCout (9)

where H, W, and Cin are the height, width, and the number

of channels of the input feature map, respectively; K is the kernel

size (assumed to be symmetric); Cout is the number of

output channels.

For fully connected layers, the FLOPs are computed as

follows:

FLOPs¼ ð2Sin − 1)Sout (10)

where Sin is the input dimensionality or the number of input

neurons and Sout is the output dimensionality or the number of

output neurons.

The FLOPs of the model are the sum of the FLOPs of the

convolution layers and fully connected layers.
Experiments and analysis

In this section, many experiments of apple disease

recognition are conducted to validate the proposed method

DCCapsNet and compared with improved convolutional

neural network (ICNN) (Yan et al., 2020), VGG-ICNN

(Thakur et al., 2022), LAD-Net (Zhu et al., 2022), and RegNet

(Li et al., 2022). The comparative experiments and results are

analyzed and discussed. The experimental configuration is

shown in Table 1.
Dataset

The dataset of apple disease leaf images built by Northwest

A&F University was used in the experiment. The dataset

contains 26,377 images of five common apple disease leaves

taken by BM-500GE color camera in an outdoor environment

and laboratory environment. The data distribution are shown in

Table 2. The dataset is randomly divided into a training set and a

test set, in which the training set is used for training parameters,

and the test set is used to verify the model. Five simple disease
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leaf images and five complex disease leaf images are shown

in Figure 5.

As can be seen from Figure 5, the color and texture of rust

and brown spots are similar with little difference. Due to

different shooting conditions and complex backgrounds, the

same subclasses may be affected by a single leaf or a cluster of

leaves, leading to a large gap within classes. Therefore, a CNN-

based method has a high probability of misjudgment in the

process of disease identification. Image annotation is a crucial

step in building the dataset. It is used to mark out the location

and category of diseased spots in infected leaves. In this section,

a tool has been developed to annotate images through

rectangular bounding boxes. With the use of the annotation

tool and the knowledge of experienced agriculture experts, areas

of diseased spots in the image can be accurately labeled. When

the annotation is complete, an XML file is generated for each

image, which includes the types of diseased spots and their

locations. The annotated image is shown in Figure 6A, and the

infected areas are surrounded by boxes. Figure 6B is a fragment

of the generated XML file, in which the disease name of rust is

described and the location of diseased spots is determined by the

upper left and lower right coordinates of the box.
Experimental results

Experimental parameters are set as follows. Batch size is 16,

the number of iterations is 3,000, the initial learning rate is

0.0005, and the momentum is 0.9. As the number of iterations

increases, the learning rate is decreased by 0.05 times. If the loss

of the network does not decrease after 10 iterations during

training, stop the training. Each image is uniformly normalized

to 512 × 512. The network parameters are initialized to generate

weight parameters with a mean value of 0 and variance of 1,

conforming to normal distribution. The average recognition

accuracy is used to measure the performance of the network.

DCCapsNet and four comparative deep learning models—

ICNN, VGG-ICNN, LAD-Net, and RegNet—are trained on the

image training set of apple disease leaves, from the beginning of

the model training to convergence, so as to ensure that the

training conditions of these models are the same. Each model is

trained from the beginning until the model converged, and the

training conditions of each model are guaranteed to be the same

for a fair comparison. Their training losses versus the number of

training iterations on the training set are shown in Figure 7,

which can more intuitively display the performance changes of

these models in the training process.

It can be seen from Figure 7 that DCCapsNet has better

convergence performance and recognition performance than

other networks, and its convergence is relatively fast; the

change in trend after 1,000 training iterations is relatively

stable. Within the 3000th training iteration, all models

converge basically, and before the 1000th training iteration,
TABLE 1 Experiment configuration.

Experimental configuration Parameter value

Processor Intel Xeon E5-2643v3@3.40GHz

Graphics card GTX2080Ti11 GB 64 GB

Memory 32 GB

Disk 100 GB

Deep learning framework PaddlePaddle 1.8.4

Operating system Ubuntu 16.04.1 LTS (64 bit)

Other tools Python 3.7.1 CUDA Toolkit10.0
Pytorch
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the loss of each network model decreases greatly, and the loss of

each network model shows a downward trend as a whole. After

2,000 training iterations, the convergence performances of all

models are improved and tend to be stable.

The apple disease recognition experiments are carried out

with a fivefold cross-validation scheme. To be fair, four trained

models are chosen after 3,000 training iterations to identify the

leaf disease images in the test set. Their recognition results are

shown in Table 3.

From Table 3, it can be seen that DCCapsNet achieves the

highest identification accuracy of 93.16%. Compared with

ICNN, VGG-ICNN, LAD-Net, and RegNet, the recognition

accuracy is improved by 4.04%, 2.05%, 0.99%, and 3.52%,

respectively. DCCapsNet has fewer FLOPs and has higher PA

than other models except for RegNet. RegNet is a lightweight

convolutional network with 5.2M training parameters and has

the least FLOPs because it aims to design spaces and find some

network design principles, rather than just search for a set

of parameters.

To verify the effectiveness of dilated Inception modules, several

kinds of experiments are set up by introducing several Inceptions
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and dilated Inceptions into the convolution subnetwork of CapsNet.

Themodified networks are similar to DCCapsNet. The structures of

Inception and dilated Inception are shown in Figures 4A, B. The

experimental conditions are the same as above. The results of

CapsNet and modified CapsNet are shown in Table 4.

From Table 4, the conclusions obtained are summarized as

follows. In general, adding convolutional modules can improve the

recognition rate, while adding dilated Inceptions can further increase

accuracy and reduce model training time. The main reason is that,

compared with Inception, dilated Inception has four different-scale

convolutional kernels without increasing additional training

parameters, which can extract multi-scale features by applying

different convolutional kernels in parallel and cascading their

output feature maps. Its advantage is that there is no need to set

the parameters of the convolutional kernels separately in each stage of

the network. Multi-scale convolution has a better feature expression

effect on the irregular disease leaf image, so Inception can have better

feature expression ability through the parallel configuration of the

convolution kernel. Dilated Inception is superior to Inception because

it has different convolutional kernels with different respective fields

without increasing training parameters.
A B D EC

FIGURE 5

Ten image examples of five kinds of diseases. (A) Mosaic. (B) Brown spot. (C) Rust. (D) Alternaria leaf spot. (E) Gray spot.
TABLE 2 Apple disease leaf image distribution.

Apple leaf disease Dataset Training set Test set

Mosaic 4,875 3,412 1,463

Brown spot 5,655 3,958 1,697

Rust 5,694 3,985 1,709

Gray spot 4,810 3,367 1,443

Spotted leaf litter 5,343 3,740 1,603

Total 26,377 18,462 7,915
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From Table 4, it is also seen that the accuracy rates show an

upward trend versus adding Inception or dilated Inception

modules, and dilated Inception is better than Inception.

However, adding three dilated Inception modules can greatly

improve the identification accuracy while increasing the long

training time. However, the addition of three dilated Inception

modules can slightly improve the accuracy of recognition while

greatly increasing the training time. Dilated Inceptions with four

dilated rates have five different convolution kernels, such as 1 ×

1, 3 × 3, 5 × 5, 7 × 7, and 9 × 9. When two dilated Inceptions with

four dilated rates are added, the accuracy decreases instead of

improving, indicating the dilated Inception module with

convolution kernel 9 × 9 is not suitable for the image

classification of disease leaves. Finally, the dilated Inception

with dilated rate r = 1, 2, and 3 is selected.
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To verify the effect of the dilated Inception module on multi-

scale features, Figure 8 shows the visualization of convolutional

feature maps of DCCapsNet. From Figure 8, it can be seen that

DCCapsNet can obtain the multi-scale and multi-level feature by

dilated Inception with three dilated rates.
Result analysis

The results of Figure 7 and Tables 3, 4 show that DCCapsNet

has the highest recognition rate and the least FLOPs except for

RegNet. The reason is that it makes use of the advantages of

dilated Inception module and CapsNet. RegNet has the fewest

FLOPs, but its recognition rate is lower but slightly higher than

that of ICNN. LAD-Net is the next best because it uses LAD-
FIGURE 7

Losses of five networks versus training iterations.
A B

FIGURE 6

Annotation of apple rust disease leaf image. (A) Annotated image. (B) XML file fragment of rust disease.
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TABLE 4 The results of CapsNet and modified CapsNet with different Inception modules.

Insert module into CapsNet Accuracy Training time

0 Inception, i.e., CapsNet 82.63 8.12 h

1 Inception 86.52 6.74 h

2 Inceptions 89.73 5.25 h

3 Inceptions 90.14 5.97 h

1 dilated Inception 90.15 4.76 h

2 dilated Inceptions, i.e., DCCapsNet 93.16 3.44 h

3 dilated Inceptions 93.18 4.61 h

1 Inception and 1 dilated Inception 92.06 5.11 h

2 dilated inceptions with 4 dilated rates 93.11 3.83 h
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TABLE 3 The recognition results of ICNN, VGG-ICNN, LAD-Net, RegNet, and DCCapsNet.

Method ICNN VGG-ICNN LAD-Net RegNet DCCapsNet

Pixel Seg. accuracy (PA) 89.12 91.11 92.17 89.64 93.16

FLOPs (G) 44.5 45.7 42.5 27.4 41.8

Training time (h) 7.51 6.41 7.17 6.50 3.44

Testing time (s) 3.18 2.82 3.19 3.73 2.51
FIGURE 8

An original image and its feature map examples in different convolutional layers.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1002312
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2022.1002312
Inception and attention mechanism to enhance the ability to

extract multi-scale features of different sizes of disease spots and

replaces a full connection with global average pooling to further

reduce parameters. Although it is a lightweight model, it has

little higher FLOPs than DCCapsNet due to the attention

mechanism. VGG-ICNN is better than ICNN because it has

few training parameters and has three Inception v7 blocks to

extract the multi-scale features.

The result validates that when the depth of the network

reaches a certain level, increasing convolutional layers of the

network again is not as significant as expected, but as the depth

of the network model increases, the model becomes more

complex and the training time becomes longer. Therefore,

ICNN is not easy to converge. Compared with ICNN and

RegNet, DCCapsNet has better convergence performances due

to the multi-branch parallel structure of dilated Inception,

indicating that a multi-branch network is superior to a single-

branch network in the disease identification task. It can extract

multi-scale image features. Compared to VGG-ICNN and LAD-

Net, DCCapsNet adds two dilated Inception modules that can

extract rich features and overcome well the adverse effects of

complex background environments and disease spots.
Conclusion

CNN focuses on detecting important features of the input image

and obtains invariance by pooling but loses some local information.

Its output is only one scalar value, while the output of CapsNet is a

vector, which not only can represent the characteristics of the input

image but also can include the direction and state of the target. It is

suitable for irregular disease leaf image classification, but its

recognition accuracy is not high because there is only one

convolutional layer. To improve accuracy, a DCCapsNet is

constructed for apple leaf disease identification. Multi-scale

classification features are extracted by adding two dilated Inception

modules into CapsNet. The results on the apple disease leaf image

dataset show that DCCapsNet is superior to other networks in

recognition rate and training performance. This method has

stronger practical application capabilities to promote the

development of intelligent management systems for crop diseases
Frontiers in Plant Science 12
in thefield. In the future,wewill embed thiswork into a smartphone-

based disease diagnostic system for farmers in remote places.
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