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Recent decades have witnessed increased agricultural production to match 

the global demand for food fueled by population increase. Conventional 

agricultural practices are heavily reliant on artificial fertilizers that have 

numerous human and environmental health effects. Cognizant of this, 

sustainability researchers and environmentalists have increased their focus on 

other crop fertilization mechanisms. Biofertilizers are microbial formulations 

constituted of indigenous plant growth-promoting rhizobacteria (PGPR) that 

directly or indirectly promote plant growth through the solubilization of soil 

nutrients, and the production of plant growth-stimulating hormones and iron-

sequestering metabolites called siderophores. Biofertilizers have continually 

been studied, recommended, and even successfully adopted for the production 

of many crops in the world. These microbial products hold massive potential 

as sustainable crop production tools, especially in the wake of climate change 

that is partly fueled by artificial fertilizers. Despite the growing interest in the 

technology, its full potential has not yet been achieved and utilization still 

seems to be in infancy. There is a need to shed light on the past, current, and 

future prospects of biofertilizers to increase their understanding and utility. 

This review evaluates the history of PGPR biofertilizers, assesses their present 

utilization, and critically advocates their future in sustainable crop production. 

It, therefore, updates our understanding of the evolution of PGPR biofertilizers 

in crop production. Such information can facilitate the evaluation of their 

potential and ultimately pave the way for increased exploitation.
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Introduction

The earth will be home to about 10 billion people by 2050 and 
a lot of pressure will be mounted on the existing food resources 
(United Nations, 2015). Although global crop production can 
be achieved through agricultural intensification, this will escalate 
reliance on chemical agro-inputs like fertilizers that pose several 
environmental effects (Vassilev et al., 2015; Abhilash et al., 2016b). 
For instance, chemical fertilizers are extensively associated with 
greenhouse gas emissions that fuel global warming and climatic 
changes (e.g., Kahrl et al., 2010; Mapanda et al., 2011; Carmo et al., 
2013). Similarly, the eutrophication of several water bodies and 
the destabilization of aquatic ecosystems have several times been 
attributed to fertilizer runoffs from agricultural fields (Melo et al., 
2012; Deepa and Venkateswaran, 2018; Zhang et  al., 2018). 
Ironically, long-term artificial fertilization can also include the 
overall deterioration of soil productivity and quality through 
acidification (Neog, 2018; Bai et al., 2020; Yan et al., 2020).

Owing to the aforementioned challenges, the exploration of 
alternative crop fertilization mechanisms is mounting worldwide 
in an attempt to develop sustainable food production systems. The 
exploitation of plant microbiomes has particularly gathered 
surmountable interest in this regard. Among the most interesting 
plant microbiomes are the plant growth-promoting rhizobacteria 
(PGPR) that present several advantageous functions in plant 
rhizospheres, from nutrients solubilization (Ibarra-Galeana et al., 
2017; Borgi et al., 2020; Verma et al., 2020), to suppression of plant 
diseases (e.g., Rizvi et al., 2017; Agisha et al., 2019; Bektas and 
Kusek, 2021; Jayakumar et  al., 2021), nitrogen (N2) fixation 
(Bahulikar et  al., 2014; Hara et  al., 2020), and improved 
phytochemical composition (Rizvi et al., 2022a), among others. 
Biofertilizers are microbial formulations of PGPR strains that can 
either be  immobilized or trapped on inert carrier materials to 
enhance plant growth and soil fertility (Aloo et al., 2022a). Over 
the decades, considerable strides have been made to understand, 
investigate and formulate various PGPR as alternative crop 
fertilization tools (e.g., Htwe et  al., 2019; Paliya et  al., 2019; 
Bangash et al., 2021; Barin et al., 2022; Aloo et al., 2022b). The 
yield of various crops can be increased by about 25% and the use 
of inorganic N and P fertilizers be reduced by about 25–50 and 
25% through biofertilizer application (Khan and Chattopadhyay, 
2009; Saber et al., 2012).

The utilization of biofertilizers dates back to the 1980s when 
the first Rhizobium formulations were patented and marketed in 
Germany (Nobbe and Hiltner, 1986). Several developments have 
been made through the decades and today, biofertilizer 
formulations are applied for the production of several crops 
entirely or with reduced usage of artificial fertilizers as presented 
in Section 4. Despite these developments, biofertilizer technology 
is yet to be exploited to its maximum potential. It is important to 
increase our knowledge of biofertilizers and their massive 
potential in the sustainability of our food production systems to 
increase their utilization. Herein, we evaluate the history of PGPR 
biofertilizers, assess their present utilization status from a global 

perspective, and critically propound on their future in sustainable 
crop production. This can update our understanding of the 
evolution of PGPR biofertilizers in crop production. We believe 
that such information will provide a good starting point for 
debate, and intensive global efforts to harness these bio-resources 
as biotechnological-based solutions for sustainable crop 
production systems. This work has been modified from a previous 
preprint (Aloo et al., 2020).

Overview of rhizobacterial 
biofertilizers and types

The meaning of biofertilizers has evolved for several decades, 
with many interpretations. The term has therefore received several 
different definitions over time (Table  1), reflecting the 
development of our comprehension of them. Most scholars 
consider PGPR as a biofertilizer because of their positive 
influences on the plant rhizospheres that can generally stimulate 
plant growth. However, Riaz et al. (2020) advance that PGPR and 
biofertilizers should not be  used interchangeably since not all 
PGPR are biofertilizers.

This is probably because the efficient PGPR must 
be formulated into products that can be applied to plants/soils to 
stimulate plant growth to qualify as biofertilizers. Nevertheless, 
the major components of biofertilizers are PGPR whose activities 
generally contribute to the overall increment, concentration, and 
accessibility of plant nutrients in plant rhizospheres. Herein, 
we adopt the definition of biofertilizers as active microbial agents 
that stimulate plant growth by improving nutrient availability in 
plant rhizosphere(s). Other synonymous terminologies with 
biofertilizers are microbial inoculants or bioformulations, 
bioinoculants, microbial cultures, and bacterial fertilizers or 
inoculants (Figure 1).

There are several types of biofertilizers depending on their 
functions in plant rhizospheres. Notably, a single biofertilizer can 
consist of a single PGPR strain with single or multiple PGP traits, 
or microbial consortia with multifarious PGP traits. A simulation 
of the various functions of biofertilizers in PGP is shown in 
Figure 2 and subsections 2.1 to 2.5 highlight the various types of 
PGPR biofertilizers. Nevertheless, the different types of 
biofertilizers normally function synergistically and offer an 
effective and environmentally-friendly solution for achieving food 
security while minimizing environmental impacts. Consequently, 
biofertilizers and PGPR are largely documented as significant 
factors in integrated soil nutrient management for sustainable 
crop production as discussed throughout this review.

Nitrogen-fixing biofertilizers

Nitrogen-fixing biofertilizers are currently the most common 
in the global market and their demand is anticipated to grow by a 
further 11.9% compounding annual growth rate (CAGR) to reach 
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about USD 4.5 billion by 2026 up from the current USD 2.1 billion 
(Markets and Markets, 2020). Nitrogen-fixing biofertilizers 
comprise bacteria that carry out biological N2 fixation (BNF) and 
boost soil N supply to crops. The legume N2-fixing rhizobia have 
been researched for decades and shown to increase the quantity 

of fixed N in inoculated plants relative to un-inoculated ones 
(Koskey et  al., 2017; Sanyal et  al., 2020; Gedamu et  al., 2021; 
Ketema and Tefera, 2022). Previous inputs of fixed N for red 
clover, alfalfa, soybean, pea, and cowpea were estimated to range 
from 23 to 335 kg ha−1 year−1 (Thies et al., 1995; Wani et al., 1995). 
The variabilities in terms of quantities of fixed N depend much on 
the type of legume-rhizobia symbiosis which is dictated by several 
factors like the legume cultivars and genotypes (Gunnabo et al., 
2020; Riah et al., 2021), as well as the geographical distributions 
(Ramoneda et al., 2020).

According to Herridge et al. (2008), rhizobial inoculants 
can reduce the annual N fertilization costs by approximately 
USD 29 ha−1. This scenario demonstrates the importance of N2-
fixing rhizobacteria as biofertilizers. Nevertheless, there is a 
need to perform field trials of new strains for suitability and 
adaptability before application as inoculants. Besides, N2-fixing 
biofertilizers are widely investigated for leguminous plants, and 
more efforts are required to demonstrate their potential in 
non-leguminous crops using asymbiotic diazotrophs like 
Azospirillum, Azotobacter, Gluconaceotobacter, and 
Burkholderia. Earlier studies by Melchiorre et al. (2011) and 
Hungria et al. (2006) both established that the yield of grains 
in Brazil, and Argentina, respectively, could reach close to 
5 t ha−1 each season through rhizobia-mediated BNF. Similarly, 
annual N2 fixation rates of approximately 40 kg N ha−1 are 
documented in Australian soils (Unkovich and Baldock, 2008). 
Nevertheless, the contribution of asymbiotically fixed N in crop 
fields largely remains unestablished. More research is necessary, 

TABLE 1 Common definitions of biofertilizers from different literature.

Literature Provided definition

Mazid and Khan (2015) A biologically-active product or microbial inoculant/formulation with one or several beneficial microbes, conserving and mobilizing 

crop nutrients in soil.

Vessey (2003) A preparation with one or several microbial species capable of mobilizing essential plant nutrients from non-usable to usable forms.

Malusá et al. (2012) A formulation with one or several microbes that enhance soil fertility and promote plant growth by availing nutrients and increasing 

plant access to nutrients.

Bisen et al. (2015) A unique, environmentally-friendly, and cheap alternative to artificial fertilizers that improve soil health and crop productivity 

sustainably.

Sahu and Brahmaprakash (2016) A formulation/preparation with latent/living microorganisms with long-term storage, ease of handling, and delivery of effective microbes 

from the laboratory to the field for crop application.

Tomer et al. (2016) A microbial inoculant that colonizes the rhizosphere and improves plant growth by enhancing plant nutrient availability and accessibility.

Simarmata et al. (2016) A product with several beneficial microbes for improving soil productivity through nitrogen (N) fixation, solubilization of P, and plant 

growth stimulation through the synthesis of plant growth-promoting (PGP) substances.

Nair and Brahmaprakash (2017) A mixture/product containing an active ingredient and inactive/inert substances.

Kumar et al. (2014) A formulation or a biological product that contains microbes that can improve nutrient solubility in soil and fix atmospheric N and/or 

enhance crop yield.

Bhardwaj et al. (2014) A formulation made of beneficial microbes and/or biological products and can enhance nutrient solubility in soil or fix atmospheric N 

and/or has the potential of enhancing crop yield.

Brahmaprakash and Sahu (2012) A preparation of beneficial microbes that can boost plant growth or fertilizer that can meet the nutritional requirements of crops 

microbiologically.

Atieno et al. (2020) Products containing beneficial microorganisms that enhance soil fertility and crop productivity.

Riaz et al. (2020) Formulations of living microbial cells as single or multiple strains that promote plant growth by increasing nutrient availability and 

acquisition.

FIGURE 1

Terminologies used interchangeably with microbial biofertilizers.
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FIGURE 2

A simulation of the various functions of biofertilizers in plant growth promotion.

especially for crops like cereals, vegetables, and tubers, 
considering they contribute to the bulk of human food.

Some efficient N-fixing strains such as Rhizobium and 
Azotobacter spp. have successfully been formulated into 
commercial biofertilizers (Adeleke et  al., 2019). However, the 
commercially available N biofertilizers mostly consist of 
Rhizobium and a few other bacteria such as Azotobacter, and 
Azospirillum species and are widely applicable to legume crops as 
presented in Section 4 (Vassilev et al., 2015; Adeleke et al., 2019). 
Nevertheless, inoculating crops and farms with such biofertilizers 
can meet the required N levels by plants and substantially reduce 
the application of artificial fertilizers (Aloo et al., 2022a).

Phosphorus and potassium solubilizing 
biofertilizers

Apart from N-fixation, biofertilizers can also solubilize plant 
nutrients in soil and facilitate their bioavailability and crop uptake 
(e.g., Ahmad et al., 2019; Abdelmoteleb and Gonzalez-Mendoza, 
2020; El-Deen et  al., 2020). Recent biofertilizer forecasts have 

favored the increased uptake of phosphatic biofertilizers owing to 
their ability to increase soil P availability and their biocontrol 
attributes for crop pests (Soumare et al., 2020). The solubilization 
of P is however dependent on the P forms in soil, whether organic 
or inorganic (Figure 3).

Since P deficiency is inherent in numerous agricultural 
soils, such organisms are largely proposed as potential P 
biofertilizers. Despite the growing literature, research 
concerning their application as biofertilizers is still limited and 
generally inconsistent. Since the economically-mineable P 
deposits are limited (Cordell et al., 2009; Vassilev et al., 2015), 
it is doubtless that phosphatic biofertilizers can significantly 
enhance crop yields, and that the use of P solubilizing 
biofertilizers (PSB) as bioinoculants can open up a new horizon 
for sustaining soil P levels and by large, sustainable crop 
production (Rizvi et al., 2021a).

Similarly, potassium solubilizing biofertilizers (KSB) are 
equally important in crop production since these are also 
often limiting in agricultural soils. The K-solubilizing 
capacity of PGPR from K-bearing rocks through acidification 
has widely been investigated, thus KSB have a significant role 
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in enhancing crop growth and productivity, for instance, 
wheat (Laxita and Shruti, 2020), maize (Akintokun et  al., 
2019; Imran et  al., 2020), tomatoes (Reyes-Castillo et  al., 
2019; Raji and Thangavelu, 2021), and many others. These 
reports show that these bacteria can significantly improve 
germination, uptake of nutrients, growth, and crop yields 
under both controlled and uncontrolled conditions. Although 
K solubilization may not entirely fulfill plant K requirements 
like chemical fertilizers, studies show that this novel approach 
may significantly improve K availability in croplands (Huda 
et  al., 2007; Imran et  al., 2020; Laxita and Shruti, 2020). 
Furthermore, the application of KSB to agricultural soils as 
biofertilizers can greatly cut the use of artificial fertilizers and 
are eco-friendly approaches to crop production. Native KSB 
are especially emerging as a viable technology for mitigating 
K deficits in agricultural soils. The diversity, solubilizing 
abilities, and mechanisms of KSB are extensively reviewed by 
Sattar et  al. (2019) and Ahmad et  al. (2016). Despite the 
burgeoning literature, little is still known about the efficacy 
of KSB and how they can stimulate plant growth in different 
climates. Meena et al. (2018) advance that KSB are valuable 
resources for mitigating K-deficiencies in agricultural farms 
but experimental results on their field efficacy are still grossly 
inadequate. More research is needed to enhance their 
usability. This, and related knowledge will undoubtedly help 
in comprehending their value as bioinoculants for practical 
field applications.

Zinc solubilizing biofertilizers

Zinc solubilizing biofertilizers (ZSB) are equally important in 
crop production owing to worldwide Zn deficiency in soils. Such 
deficiency is prevalent in most arable lands caused by nutrient 
mining due to crop harvesting (Cakmak et al., 2017). Although 
chemical Zn fertilizers are often employed to augment these 
deficits at the recommended rates of approximately 5 kg ha−1 Zn, 
However, synthetic fertilizers are costly and do not readily get 
converted into plant-usable forms (Montalvo et al., 2016). Recent 
literature advances in rhizobacterial Zn solubilization (e.g., Joshi 
et al., 2013; Hussain et al., 2015; Kamran et al., 2017; Perumal 
et al., 2019) suggest that the field application of ZSB in the can 
increase Zn uptake by plants, and subsequently, improve their 
growth and yields. In an investigation by Naz et  al. (2016), 
Pseudomonas, Azotobacter, Azospirillum, and Rhizobium species 
were shown to significantly enhance Zn uptake in wheat. 
Similarly, Sharma et  al. (2012) studied 134 bacilli from the 
soybean (G. max) rhizosphere for Zn solubilization and 
established that the isolates greatly enhanced the concentration 
of Zn in the inoculated crops relative to the un-inoculated ones. 
Similarly, several ZSB like Pantoea dispersa, P. fragi, 
P. agglomerans, Rhizobium sp., and E. cloacae from the sugarcane 
and wheat rhizospheres were recently shown to improve the Zn 
contents and growth of potted wheat (Kamran et al., 2017). A 
more recent greenhouse trial by Dinesh et  al. (2018) that 
evaluated several rhizospheric ZSB for their effects on soil and 

FIGURE 3

Phosphorus solubilization mechanisms depending on the types of available soil P.
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A B

FIGURE 4

(A) Plant growth promotion through the production of different phytohormones and (B) PGPR-mediated plant growth promotion is governed 
through a complex network of cell signaling, genetic regulation, hormonal cross-talk, and enzymatic transformation. The PGPR generates multiple 
stimuli through the synthesis of phytohormones. These phytohormones interact through phosphorylation cascade or activating a secondary 
messenger which leads to the regulation of genes affecting hormone biosynthesis and developmental process in plants (Khan et al., 2020).

plant Zn contents revealed that the concentration in soil and 
plants was greater in treated plants than in non-treated ones. In 
India, Goteti et al. (2013) bacterized potted maize seeds with 
Zn-solubilizing Pseudomonas that significantly enhanced Zn 
uptake and concentration. Reports also exist for the Zn 
solubilizing abilities and increased Zn uptake following 
inoculation of wheat by Pseudomonads (Joshi et al., 2013), maize 
by Bacillus (Hussain et  al., 2015), wheat and soybean by 
B. aryabhattai (Ramesh et  al., 2014), and rice by several ZSB 
(Perumal et al., 2019).

Iron sequestering biofertilizers

Some biofertilizers can sequester iron (Fe) through special 
mechanisms using metabolites called siderophores with a high 
affinity for Fe in low-Fe environments (Wang et al., 2022). After 
the formation of the Fe3  + −microbial siderophores complexes 
formed in the microbial membrane, the former is reduced to Fe2+ 
which is subsequently freed into the cell through an input 
mechanism. In this process, plants access and directly assimilate 
the Fe2+ from bacterial siderophores from the Fe-siderophore 
complexes or through ligand exchange reactions (Yehuda et al., 
1996). Siderophore production is a typical example of Fe nutrition 
enhancement by rhizobacterial inoculants in biofertilizers and 
owing to its indisputable significance, should be  given more 
attention (Aloo et al., 2019).

Phytostimulators

Still, other biofertilizers can promote plant growth through 
phytohormone production and plant growth stimulation in many 
ways (Figure  4). Such biofertilizers are largely known as 
phytostimulators owing to the various roles they play in 
stimulating the growth of crops through the production of 
phytohormones. The most common phytohormones are auxins, 
gibberellins, and cytokinin. Although very small amounts of 
phytohormones are produced by PGPR, they are still very crucial 
for plant metabolic processes, including those that modulate plant 
growth (e.g., Kalimuthu et al., 2019; Haerani et al., 2021) and plant 
tolerance to various abiotic stresses (Mahmoody and Noori, 2014; 
Santhi et al., 2021). Among the most potential PGPR that can 
function as biofertilizers due to phytohormone production are 
Azospirillum (e.g., Coniglio et al., 2019) and Bacillus spp. (Kang 
et al., 2019; Bandopadhyay, 2020), and many others. Owing to the 
importance of phytostimulation, such PGPR are viable candidates 
for PGP as biofertilizers, especially if they can also solubilize plant 
nutrients and/or fix N to improve plant nutrition.

History of rhizobacterial 
biofertilizers

Whereas the application of microbial formulations is 
generally considered a modern and novel biotechnological 
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agricultural approach in, crop inoculation with efficient PGPR 
for yield improvement is a century-old practice. The 1st attempts 
at rhizobacterial formulation date back to the late 18th century 
when a French scientist called Jean-Baptiste Boussingault 
(1801–1887) recognized that plant growth was proportional to 
N quantities. This observation was later linked to the reduction 
of N2 to ammonium and the 1st commercial biofertilizer 
Nitragin® made from Rhizobium was produced (Nobbe and 
Hiltner, 1986). These were the first commercial formulations of 
PGPR that were patented and marketed over a century ago 
(Nobbe and Hiltner, 1986).

Due to the inconsistent performance of bioformulations 
relative to artificial fertilizers, the use of biofertilizers slowed 
down but picked up after subsequent decades of research that 
produced encouraging greenhouse results using Pseudomonas 
spp. (Kloepper et  al., 1980). Large-scale field trials were 
performed using Azotobacter and Bacillus spp. on more than 
35 million ha of land in the former Soviet Union in 1958 
(Cooper, 1959), but the impact of bacterization was relatively 
unsatisfactory. Nevertheless, the commercialization of 
Rhizobium formulations continued in the 19th century 
(Fages, 1992), and extended globally thereafter (Deaker et al., 
2004). A lot of biofertilizers have since been formulated and 
marketed worldwide attempts have also been made to 
formulate bacterial soil-fertilizing preparations for 
non-legume crops. The 1st preparation “Alinit” based on 
B. ellenbachensis was introduced in Germany to promote 
cereal growth (Caron, 1897).

Rhizobacterial inoculations in parts of Southern Africa can 
be  traced back to 1963 after successful soybean nodulation 
efficiency by native Bradyrhizobium and Rhizobium inoculants 
(Shurtleff and Aoyagi, 2018). Thereafter, a natural soybean 
nodulating variety called Nitrozam was formulated for use in 
Zambia and other African countries (Raimi et al., 2021). These 
concerted efforts massively increased soybean cultivation by 
48% from 6,550 ha in 1984 to 22,780 ha in 1992. Additionally, 
about US$100,000 worth of Nitrozam was sold during this 
period. In South  Africa, the biofertilizer market rapidly 
expanded in 1952, and to date, the country has one of the most 
established biofertilizer markets and regulations in the whole of 
Africa. The marketing and application of N2-fixing rhizobial 
biofertilizers in legume production have since been practiced 
for years. Globally, the total area of legumes under treatment 
with biofertilizers yearly was over 40 million ha by the year 2000 
(Phillips, 2004), half of which was used for soybean production 
(Catroux et al., 2001). There are more success stories of legume 
inoculants in different parts of the world (El-Wakeil and 
El-Sebai, 2009; Ngakou et al., 2009; Gomare et al., 2013). The 
production and marketing of rhizobial inoculants for legume 
production have thus been practiced for decades, somewhat 
decreasing the need for chemical fertilizers in several countries 
around the world. The development of new biofertilizer 
bioformulations continues to expand, and the future of the 
technology seems bright.

The current state of rhizobacterial 
biofertilizers

There is a burgeoning literature on the current application of 
microbial products as biofertilizers and agricultural inputs. Nearly 
170 establishments in 24 countries commercialize biofertilizers 
and possess factories that produce, and market microbe-based 
fertilizers at both small and large scales (Bharti et al., 2017). The 
marketing of rhizobial inoculants has particularly been practiced 
for several decades now to partially eliminate the application of 
artificial fertilizers (Paudyal and Gupta, 2018). However, the full 
potential of many potential biofertilizers is largely untapped. 
Likewise, biofertilizer commercialization remains low globally, 
albeit steadily increasing.

In developed countries where artificial agricultural inputs are 
fairly cheap, the use of PGPR is less prioritized but is albeit 
growing. In 2013, the highest demand for biofertilizers was highest 
in North America and projections were that the entire Asia-Pacific 
biofertilizer market would show the maximum growth from 2014 
to 2019 and lead in biofertilizer consumption worldwide (Markets 
and Markets, 2014). The consumption of biofertilizers is 
reportedly growing in countries such as Canada, Argentina, 
China, India, Europe, and the United States of America (USA) due 
to tax exemptions, and input subsidies, among other incentives 
(Markets and Markets, 2019). Such approaches have generally 
served to expand the global biofertilizer market, but more efforts 
are still required.

The advancement of research around the globe on the 
diversity, functions, and potentials of native rhizobacteria has 
stimulated the selection and isolation of efficient PGPR, and 
several biofertilizer formulations are already produced and 
commercialized for use in different countries across the globe 
(Table 2). The most progressive and dominant biofertilizer market 
in the world is Europe, where biofertilizer demand has grown at a 
CAGR of 12.3% from approximately US$2566 million in 2012 to 
US$4582 million in 2017 (Chandrasekhar, 2014). The global 
biofertilizer market was worth US$1.06 million in 2016 and was 
estimated to hit US$2 billion in 2019 and over US$3.8 billion in 
2026, at a CAGR of 11.2% (Markets and Markets, 2020). The 
global increase in demand for biofertilizers has greatly been 
influenced by the growing demand for organic food products.

Although there exist many reports on the formulation and/or 
commercialization and application of rhizobacterial biofertilizers 
in several parts of the world, only a few reports indicate their 
application and commercialization in Africa. The PGPR inoculant 
technology has little or no impact on crop productivity in 
developing countries since it is either not practiced or the poor 
quality of available inoculants (Bashan, 1998). According to Aloo 
et al. (2021), the potential benefits of biofertilizers have largely 
been untapped in Africa due to inadequate regulatory frameworks 
and several other challenges. Most biofertilizers are 
commercialized for use in Asia, Europe, and the USA but in 
Africa, most commercialization and application occur only in 
South  Africa. In East Africa, the production and use of 
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TABLE 2 Examples of commercial biofertilizer products in some countries around the world.

Country Product Organisms Manufacturer Crop References

Argentina Liquid PSA P. aurantiaca Laboratorios BioAgro S.A. Wheat Celador-Lera et al. (2018)

Zadspirillum Azospirillum brasilense Semillera Guasch SRL Maize Celador-Lera et al. (2018)

Rhizo Liq Bradyrhizobium sp., Mesorhizobium 

ciceri, Rhizobium spp.

Rhizobacter Chickpea, Soybean, 

Common bean, green 

gram, Groundnut

Adeleke et al. (2019)

Australia Bio-N Azotobacter spp. Nutri-Tech solution Not stated Adeleke et al. (2019)

Myco-Tea Azotobacter chroococcum, B. polymyxa Nutri-Tech solution Tea Adeleke et al. (2019)

Twin N Azorhizobium sp., Azoarcus sp., 

Azospirillum sp.

Mapleton Int. Ltd Not stated Adeleke et al. (2019)

Brazil Bioativo PGPR consortia Embrafros Ltda Beans, maize, 

sugarcane, rice, cereals

Odoh et al. (2019)

Canada Rhizocell GC Nodulator B. amyloliquefaciens IT 45, B. 

japonicum

Lallen and plant care BASF 

Inc.

Beans, maize, carrot, 

rice, cotton

Odoh et al. (2019)

Vault HP Bradyrhizobium sp. BASF Not stated Adeleke et al. (2019)

China CBF Bacillus mucilaginosus, B. subtilis China Bio-Fertilizer AG Various cereals Celador-Lera et al. (2018)

Colombia Fe Sol B Not mentioned Agri Life Bio Solutions Not stated Mishra and Arora (2016)

Germany FZB 24 fl, BactofilA 10 B. amyloliquefaciens, B. megaterium, P. 

fluorescens

AbiTEP GmbH Vegetables, cereals Odoh et al. (2019)

Hungary BactoFil A10 A. brasilense, Azotobacter vinelandii, B. 

megaterium

AGRObio Maize Mustafa et al. (2019)

India Ajay Azospirillum Azospirillum Ajay Biotech Cereals Celador-Lera et al. (2018)

Greenmax AgroTech Life 

Biomix, Biodinc, G max 

PGPR

Azotobacter, P. fluorescens Biomax Various crops Odoh et al. (2019)

Fe Sol B Not mentioned Agri Life Bio Solutions Not mentioned Mishra and Arora (2016)

Symbion van plus B.megaterium T. Stanes and Co. Ltd Not mentioned Celador-Lera et al. (2018)

Kenya Biofix Rhizobia MEA Fertilizer Ltd Not mentioned Adeleke et al. (2019)

Kefrifix Not mentioned KFRI Not mentioned Raimi et al. (2021)

Nigeria Nodumax Bradyrhizobia IITA Not mentioned Tairo and Ndakidemi 

(2014), Adeleke et al. (2019)

Russia Azobacterium Azobacterium brasilense JSC Industrial Innovations Wheat, barley, maize, Celador-Lera et al. (2018)

South Africa Organico Rhizobium, Enterobacter spp., Bacillus 

spp., Stenotrophomonas, Pseudomonas

Amka Products (Pty) Ltd Not mentioned Adeleke et al. (2019)

Azo-N, Azo-N-Plus A.brasiliense, A. lipoferum Biocontrol Products Ltd Not mentiomne Raimi (2018)

Lifeforce, Firstbase, 

Biostart, Landbac, 

Composter, Waterbac

Bacillus spp., Microbial solution (Psty) Ltd Not stated Mohammadi and Sohrabi 

(2012)

Histick B. japonicum BASF Not stated Tairo and Ndakidemi 

(2014)

N-Soy B.japoniucm Biocontrol Products Ltd Not stated Tairo and Ndakidemi 

(2014)

Soilfix Brevibacillus laterosporus, Paenibacillus 

chitinolyticus

Biocontrol Products Ltd Not stated Grady et al. (2016)

Organico Bacillus sp. Amka Products Not stated Raimi (2018)

Bac-up B. subtilis Biocontrol Products Ltd Not stated Adeleke et al. (2019)

Spain InomixR B. polymyxa, B. subtilis Lab (Labiotech) Cereals Odoh et al. (2019)

Vita Soil PGPR consortia Symborg Not stated Sekar et al. (2016)

Thailand BioPlant Streptomyces, Nitrobacter, Clostridium, 

Bacillus, Aerobacter, Achromobacter, 

Nitrosomonas

Artemis & Angelio Co. Ltd. Not stated Adeleke et al. (2019)

(Continued)
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biofertilizers are pronounced in Kenya which is the manufacturer 
of Biofix which can effectively inoculate 15 kg of common bean 
seeds per ha at approximately US$1.25 in comparison to 90 kg of 
artificial N fertilizer required for the same number of seeds per ha 
at US$12.50 (Raimi et  al., 2021). However, Biofix and other 
biofertilizers are still largely underutilized in Kenya, probably due 
to a lack of awareness and other technology adoption challenges. 
Current and future initiatives are anticipated to improve the 
uptake of biofertilizers in Africa (Raimi et al., 2021). However, 
more efforts are needed to boost the consumption of these 
microbial products and promote the sustainability of global food 
production systems (Aloo et al., 2021).

The worldwide market for biofertilizers is presently largely 
dominated by legume and N2-fixing inoculants (Vassilev et al., 
2015). While rhizobial inoculants currently dominate the global 
biofertilizer market, PSB, and other bioinoculants occupy less than 
30% altogether (Transparency Market Research, 2022). 
Nevertheless, P-, K-, and Zn-based biofertilizers are now 
developing into significant bioinoculants to address soil nutrient 
deficiencies, and KSM are already commonly used as inoculants 
in some countries with K-deficient croplands (Teotia et al., 2016). 
India is reportedly the 4th largest consumer of K bioinoculants 
globally while countries like Brazil, the USA, and China come first 
in the overall consumption of these microbial products 
(Matich, 2016).

Unlike rhizobial biofertilizers, PSB like Pseudomonas, Bacillus, 
and diazotrophs like Azospirillum have neither been used as much 
nor at a large scale (Lesueur et al., 2016). Most of the commercially-
available non-rhizobial PGPR inoculants consist of Azospirillum 
as free-living N2 fixers or Bacilli as PSB (Herrmann and Lesueur, 
2013). The application of non-rhizobial biofertilizers has a less 
significant impact on global food production probably because of 

several bottlenecks that exist in biofertilizer uptake and use 
relative to well-documented PGP functions. Yet, PGPR like PSB 
are essential candidates for improving legume P nutrition for 
efficient nodulation (Zaidi et al., 2017). The global biofertilizers 
market for crop production is projected to grow from US$2.02 
billion in 2022 to US$4.47 billion by 2029, at a CAGR of 12.04% 
from 2022 to 2029 (Fortune Business Insights, 2022). Still, there is 
a need for more efforts for adequate market infiltration 
and application.

The future of biofertilizers

The incorporation of biofertilizers as fundamental 
components of agricultural practices is quickly gathering 
momentum globally. These microbial products are already in use 
in some countries and are expected to become more popular in 
the future. The global and future expansion of the biofertilizer 
market will largely be  driven by the need to increase food 
production sustainably. With an ever-increasing demand for 
organic food products, growing awareness of sustainable 
agricultural practices, and promotion of cleaner production 
methods for reducing soil contamination, land degradation, and 
water pollution the market growth for biofertilizers will continue 
to grow over the coming years (Abhilash et al., 2016a; Anand et al., 
2022; Vaishnav et al., 2022).

Forecasts are that the present global market for biofertilizers 
which was approximated at US$396 million in 2018 will grow at a 
CAGR of 10.9% to escalate to US$4448.97 million by 2028 
(Vintage Market Research, 2022). Further indications are that the 
global biofertilizer market which was valued at close to US$ 3.0 
billion in 2020 will grow at a CAGR of 12.2% and reach about 

TABLE 2 (Continued)

Country Product Organisms Manufacturer Crop References

United 

Kingdom

Ammnite A 100 Azotobacter, Bacillus, Rhizobium, 

Pseudomonas

Cleveland biotech Cucumber, tomato, 

pepper

Odoh et al. (2019)

Legume Fix Rhizobium sp., B. japonicum. Legume Technology Common bean, 

Soybean

Adeleke et al. (2019)

Twin N Azorhizobium sp., Azoarcus sp., 

Azospirillum sp.

Mapleton Int. Ltd Not mentioned Adeleke et al. (2019)

Uruguay Nitrasec Rhizobium sp. Lage y Cia Not mentioned Adeleke et al. (2019)

United 

States

Inogro 30 bacterial species Flozyme Corporation Rice Celador-Lera et al. (2018)

Vault NP B. japonicum Becker Underwood Not mentioned Adeleke et al. (2019)

Chickpea Nodulator Mesorhizobium cicero Becker Underwood Chickpea Adeleke et al. (2019)

Cowpea Inoculant Rhizobia Becker Underwood Cowpea Adeleke et al. (2019)

PHC Biopak B. subtilis, B. azotofixans, B. 

megaterium, B. licheniformis, B. 

thuringiensis, B. polymyxa,

Plant Health Care Inc. Not mentioned Adeleke et al. (2019)

Complete Plus Bacillus strains Plant Health Care Various crops Mustafa et al. (2019)

Quickroots B. amyloliquefaciens Monsanto Wheat, common bean Celador-Lera et al. (2018)
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FIGURE 5

Schematic representation of the past present and future of biofertilizer development.

US$5 billion by 2031 (Transparency Market Research, 2022). The 
number of investigations targeting the isolation, identification, 
and evaluation of the capacity of PGPR with the potential of being 
transformed into inoculants for a variety of crops is equally 
expanding (Vatsyayan and Ghosh, 2013; Datta et al., 2015; Tan 
et al., 2015; Koskey et al., 2017; Anand et al., 2022; Aloo et al., 
2022b). It is, therefore, realistic to expect that widespread 
biofertilizer usage will soon offer countless approaches to the 
progression of sustainable crop production systems.

For the extensive utilization of biofertilizers, proper regulatory 
and legal frameworks will be required in place of the existing ones 
that are currently stringent and hinder their proper utilization. 
Fortunately, regulatory authorities are increasingly encouraging 
the implementation of alternative crop fertilization mechanisms 
to promote the development of sustainable agricultural 
technologies. Recognizing the need for a specific legislative 
framework for biofertilizers in Europe, the European Commission 
has proposed to amend existing regulations (European Parliament 
and Council of the European Union, 2016). Such initiatives will 
eventually relax the stringent regulatory frameworks and enable 
the widespread adoption of these microbial resources.

While a number of the existing biofertilizers are mainly 
composed of natural rhizobacterial strains chosen for their PGP 

qualities, the development of genetically-modified inoculants that 
are likely to be  more efficient at plant growth stimulation is 
required. Still, the biggest hurdle will be for scientists to convince 
society and regulatory authorities worldwide that such genetically-
engineered organisms are harmless. Our current ability to 
manipulate and exploit the plant microbiome in situ similarly 
remains limited, and more investigations are required to facilitate 
their large-scale application and commercialization. The inoculant 
industry is faced with various challenges in making formulations 
with prolonged shelf lives. Progress into developing formulations 
with improved shelf lives, broad spectra of action, and reliable 
field performance will therefore hasten the commercialization of 
this technology (Nakkreen et  al., 2005). In this regard, new 
approaches should be  evaluated to develop formulations with 
longer shelf lives. Micro-encapsulation is one viable approach but 
most experiments in this regard have been restricted to 
laboratories and the standardization of this technology for 
industrial and field applications should be pursued. The future of 
biofertilizer technology depends a lot on developing efficient PGP 
strains. This is quite challenging but continued research in this 
area will eventually pave the way for this (Figure 5).

Investigation on N-fixing and PSB is developing fairly well, 
unlike for K solubilizers despite K being among the important 
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macronutrients for plant development. More research in this 
regard will promote their application and utilization as 
bioinoculants in the future. Future research should additionally 
focus on the development of inoculants that can tolerate 
unfavorable environmental conditions for applicability in stressful 
environments, especially for inoculants that have been shown to 
relieve plants of metal stress (Rizvi et  al., 2019, 2020, 2022b), 
salinity stress (Shahid et al., 2021), and cold stress (Rizvi et al., 
2021b). More research is needed on the practical aspects of large-
scale formulation and production to develop stable, effective, and 
state-of-the-art bioformulations. Microbial consortia offer 
multiple PGP traits for producing novel biofertilizer formulations 
as substitutes for artificial inputs (Singh et al., 2020; Cakmaksi 
et al., 2021; Vaishnav and Singh, 2021).

The interactions among plants and biofertilizer inoculants will 
require further studies and new approaches. Future research 
should additionally include careful selection of rhizosphere 
microbiota, and their in-situ testing for use as plant inoculants. It 
is expected that the identification of effective microbiomes in 
different soil types and climates will be extremely helpful in this 
regard. To improve this strategy, establishing a global database of 
effective plant microbiomes will be an important milestone toward 
successful translational research. A lot of obstacles remain to 
be overcome before this can fully be realized. For instance, several 
formulations based on such microbes have been developed for 
applications to different crops worldwide. However, inoculation 
results are often inconsistent and dependent on the prevailing 
local soil and plant-related properties, altogether necessitating the 
optimization of each system.

The application of biotechnology and the improvement of 
biofertilizer regulations will facilitate in designing of more 
effective and reliable rhizobial bioformulations as 
biofertilizers. To design suitable rhizobial formulations, 
we  must use modern technologies to increase our 
understanding of plant-microbe interactions (Jain et al., 2021). 
For example, multi-omics approaches can greatly help us to 
comprehend complex plant-microbial symbioses to design 
suitable bioformulations for particular soils and crops (Kaul 
et al., 2016; López-Mondéjar et al., 2017; Ding et al., 2021; 
Yamazaki et al., 2021). These novel approaches will with time 
enhance the complete characterization of PGPR and their 
influence on plant nutrient acquisition and other PGP traits 
to facilitate their application. Thus, these should be prioritized 
for research.

Finally, it will be important to identify the challenges in the 
production and application of biofertilizers and strategies to 
address such problems. For example, the field efficiency of 
biofertilizers is dependent on crop species, soil complexity, and 
climatic conditions. Research on suitable biofertilizers should in 
the future be handled by agronomists that understand the nexus 
between crops, climatic conditions, and nutrients in various parts 
of the world. Besides, genomic engineering can be necessary for 
manipulating indigenous PGPR with suitable genes for enhanced 
expression of biofertilization functions for field applications. 

Additionally, particular additives could improve product stability, 
shelf life, and field efficiency.

Conclusion

The greatest global challenge in the 21st century is to invent 
and implement sustainable agricultural practices. This can only 
be  achieved if we  accommodate changing and advanced 
technologies such as the use of efficient rhizobacterial 
biofertilizers. The present discussion is useful for the 
development of sustainable agricultural systems. The use of these 
bio-resources though has been practiced in several parts of the 
globe is still low but the results are encouraging and there is 
room for development to boost their efficiency. With time, the 
practice will certainly grow and projections are that biofertilizers 
will have massive market potential soon. Researchers, 
agricultural institutions, and universities can fast-track 
biofertilizer development and promote their usage and 
adaptation for sustainable agricultural practices. If issues linked 
to regulation, policy development, and social acceptability of 
biofertilizer products can simultaneously be addressed, these 
bio-based tools can potentially and significantly contribute to 
sustainable agricultural productivity.
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