
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Zhiqian Pang,
University of Florida, United States

REVIEWED BY

Arunabha Mohan Roy,
University of Michigan, United States
Jin Xu,
Moffitt Cancer Center, United States

*CORRESPONDENCE

Jian Zhao

zhaojian@faas.cn

Qi-Yong Weng

wengqy@faas.cn

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent
Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 25 July 2022
ACCEPTED 07 December 2022

PUBLISHED 20 December 2022

CITATION

Qiu R-Z, Chen S-P, Chi M-X, Wang R-
B, Huang T, Fan G-C, Zhao J and
Weng Q-Y (2022) An automatic
identification system for citrus
greening disease (Huanglongbing)
using a YOLO convolutional
neural network.
Front. Plant Sci. 13:1002606.
doi: 10.3389/fpls.2022.1002606

COPYRIGHT

© 2022 Qiu, Chen, Chi, Wang, Huang,
Fan, Zhao and Weng. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 20 December 2022

DOI 10.3389/fpls.2022.1002606
An automatic identification
system for citrus greening
disease (Huanglongbing)
using a YOLO convolutional
neural network

Rong-Zhou Qiu, Shao-Ping Chen, Mei-Xiang Chi,
Rong-Bo Wang, Ting Huang, Guo-Cheng Fan, Jian Zhao*

and Qi-Yong Weng*

Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant
Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
Huanglongbing (HLB), or citrus greening disease, has complex and variable

symptoms, making its diagnosis almost entirely reliant on subjective

experience, which results in a low diagnosis efficiency. To overcome this

problem, we constructed and validated a deep learning (DL)-based method

for detecting citrus HLB using YOLOv5l from digital images. Three models

(Yolov5l-HLB1, Yolov5l-HLB2, and Yolov5l-HLB3) were developed using

images of healthy and symptomatic citrus leaves acquired under a range of

imaging conditions. The micro F1-scores of the Yolov5l-HLB2 model (85.19%)

recognising five HLB symptoms (blotchy mottling, “red-nose” fruits, zinc-

deficiency, vein yellowing, and uniform yellowing) in the images were higher

than those of the other two models. The generalisation performance of

Yolov5l-HLB2 was tested using test set images acquired under two

photographic conditions (conditions B and C) that were different from that of

the model training set condition (condition A). The results suggested that this

model performed well at recognising the five HLB symptom images acquired

under both conditions B and C, and yielded a micro F1-score of 84.64% and

85.84%, respectively. In addition, the detection performance of the Yolov5l-

HLB2 model was better for experienced users than for inexperienced users.

The PCR-positive rate ofCandidatus Liberibacter asiaticus (CLas) detection (the

causative pathogen for HLB) in the samples with five HLB symptoms as

classified using the Yolov5l-HLB2 model was also compared with manual

classification by experts. This indicated that the model can be employed as a

preliminary screening tool before the collection of field samples for

subsequent PCR testing. We also developed the ‘HLBdetector’ app using the

Yolov5l-HLB2 model, which allows farmers to complete HLB detection in
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seconds with only a mobile phone terminal and without expert guidance.

Overall, we successfully constructed a reliable automatic HLB identification

model and developed the user-friendly ‘HLBdetector’ app, facilitating the

prevention and timely control of HLB transmission in citrus orchards.
KEYWORDS

citrus greening, Huanglongbing, automated identification, deep learning,
convolutional neural networks
1 Introduction

Citrus is the most widely cultivated fruit tree species in

southern China. Citrus Huanglongbing (HLB), or citrus

greening disease, is the most devastating disease for the citrus-

producing industry associated with the pathogen Candidatus

liberibacter asiaticus (CLas). Affected plants are small, deformed,

produce green or “red nose” fruits, and are likely to develop

other problems including tree vigour decline, fruit yield

reduction, and quality degradation. While there is no

treatment for the disease, HLB symptoms can be alleviated by

spraying additional foliar mineral nutrients and plant-growth

regulators including plant hormones, such as gibberellin, and

synthetic plant hormone derivatives (Bassanezi et al., 2021; Ma

et al., 2022); however, this does not reduce the incidence of HLB

in orchards, and can even increase the risk of transmission.

To ensure healthy citrus orchards, strict vector control

through insecticide spraying and the removal of diseased

plants in HLB-affected orchards remains the best long-term

control measure (Bassanezi et al., 2021; Yuan et al., 2021). The

key to the successful implementation of this measure is the early

detection of HLB-affected plants. However, HLB-affected plants

often have a variety of symptoms, such as blotchy mottling,

uniform yellowing, zinc-deficiency, and “red nose” fruits, which

can make HLB diagnosis difficult.

Morphological classification and diagnosis in the field and

polymerase chain reaction (PCR) in a laboratory (Jagoueix et al.,

1996) are the most commonly used methods for identifying

HLB. Because the symptoms of HLB-affected plants are diverse,

morphological classification and diagnosis in the field require

extensive practical experience, background knowledge, and a

basic understanding of the orchard being investigated. Diagnosis

is, therefore, somewhat subjective, and the rate of misdiagnosis

can exceed 30% (Futch et al., 2009). PCR testing is more reliable

for diagnosis but requires highly skilled operators with

specialised equipment, and involves a cumbersome and

lengthy process, which reduced efficiency when detecting

HLB-affected citrus plants (Li et al., 2007). Given that accurate

field diagnosis of citrus HLB is an important skill for citrus

producers, there is an urgent need for a rapid, reliable, and field-
02
applicable testing method for early detection that will allow

citrus producers to detect affected plants as early as possible.

Previous studies have employed various sensor techniques

and simulation models to identify HLB-affected leaves, including

thermal imaging (Sankaran et al., 2013), chlorophyll

fluorescence spectroscopy (Weng et al., 2021), laser-induced

fluorescence spectroscopy (Pereira et al., 2011), visible

spectroscopy (Gómez-Flores et al., 2019), near-infrared

spectroscopy (Sankaran and Ehsani, 2011), and hyperspectral

sensors (Deng et al., 2019). While these studies show promising

experimental results, these techniques currently have limited

practical applications because they are relatively expensive

(Picon et al., 2019).

Deep learning (DL) is a relatively new artificial intelligence

technique that offers state-of-the-art modelling performance

(LeCun et al., 2015). Among the range of DL methods

available, Convolutional Neural Networks (CNNs) have shown

excellent potential for the automatic extraction of visible

features, and have been widely employed in agricultural

applications including plant disease recognition (Ma et al.,

2018; Sun et al., 2021; Yadav et al., 2021; Hua et al., 2022;

Zhou et al., 2022), pest detection (Cheng et al., 2017; Roosjen

et al., 2020; Hong et al., 2021; Dai et al., 2022), and fruit detection

(Bresilla et al., 2019; Afonso et al., 2020; Lawal, 2021).

Representative CNN algorithms include Region-based

Convolution Neural Networks (R-CNN) (Ren et al., 2017),

Fast R-CNN (Ren et al., 2017), Single Shot MultiBox Detector

(SSD) (Liu et al., 2016), and You Only Look Once (YOLO)

(Redmon et al., 2016). The YOLO series represents one-stage

algorithms, which are more suited to practical applications than

two-stage algorithms (such as Faster R-CNN) owing to their

better balance between accuracy and speed. For instance, Lawal

(2021) proposed improved YOLO-Tomato models for tomato

detection under uneven environmental conditions, achieving

higher detection accuracy and speed than Fast R-CNN.

Previous studies have showed that YOLO algorithms

perform better than other two-stage algorithms in plant

disease recognition. For instance, SSD, Faster R-CNN, and

YOLO algorithms have been applied to detect tomato diseases

and pests, with the YOLO algorithm providing superior
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detection accuracy and speed (Liu and Wang, 2020). Similarly,

Wang et al. (2021) showed that the accuracy and speed of the

YOLO framework was better when constructing models aimed

at detecting tomato diseases and pests compared to those of

Faster R-CNN, Mask R-CNN, and SSD, even with image

occlusion and overlapping in the natural environment.

Mathew and Mahesh (2022) also employed YOLOv5 to detect

bacterial spot disease in bell pepper plants, achieving better

accuracies and speeds than those obtained from previous

versions of the YOLO algorithm. Although studies have shown

that the YOLO framework holds great promise for plant disease

recognition, it relies on large datasets and there are few open

datasets available for plant diseases. Furthermore, sample

collection in some studies is not always consistent with field

conditions, which can lead to inaccuracies and limits wider

application (Mohanty et al., 2016; Barbedo, 2019).

Here, we built a dataset without image augmentation

containing 7,516 images, including images of healthy citrus

leaves and fruits (1,413 images), five HLB symptoms

(including blotchy mottling, “red-nose” fruits, zinc-deficiency,

vein yellowing, and uniform yellowing; 3,017 images), and seven

other citrus disease symptoms (including magnesium-

deficiency, boron-deficiency, anthracnose, citrus greasy spot,

citrus moss, sooty mould, and canker; 3,086 images). We then

constructed citrus HLB detection models with different dataset

combinations using YOLOv5l, and selected an optimal model

for further testing using different test data obtained under
Frontiers in Plant Science 03
different scenarios. In addition, we used the PCR-positive rate

of CLas to examine the feasibility of using our model for the

automated diagnosis of citrus HLB. Finally, we interfaced our

model with an Android app that instantly detects citrus tree HLB

infection in real-time. To our knowledge, our study is the first to

employ YOLO for citrus HLB identification based on a primary

image dataset without image augmentation.
2 Methods

2.1 Sample collection

Samples were collected from 12 citrus orchards in Fuzhou,

Ningde, Nanping, Sanming, and Zhangzhou cities in Fujian

Province, China (Figure 1). The sampled species were the

Ponkan (Citrus reticulate Blanc Ponkan), Tankan (C. reticulata

var. tankan), Satsuma mandarin (C. unshiu Marc.), Orah

mandarin, Hongmeiren citrus hybrid, Shatangju mandarin (C.

reticulata cv Shatangju), Navel orange (C. sinensis Osb. var.

brasiliensis Tanaka), and Shatian pomelo (C. grandis var.

shatinyu Hort). Images of citrus plants with HLB, canker,

citrus greasy spot, anthracnose, sooty mould, magnesium-

deficiency, boron-deficiency, and citrus moss were acquired

along with images of healthy citrus plants. The leaves used for

the image acquisition were intact and naturally expanded, with

corresponding intact fruits with a clearly visible pedicel base.
FIGURE 1

Geographical locations of citrus orchards in Fujian Province, China, from which plant images were acquired. A1, A2: Fuzhou (Navel orange, Citrus
sinensis Osb. var. brasiliensis Tanaka); B1, B2: Ningde (Navel orange, C. sinensis Osb. var. brasiliensis Tanaka); C1: Nanping (Shatian pomelo, C.
grandis var. shatinyu Hort); C2: Nanping (Ponkan, C. reticulate Blanc Ponkan); D1: Sanming (Shatangju mandarin, C. reticulata cv Shatangju; Orah);
D2: Sanming (Satsuma mandarin, C. unshiu Marc.); D3: Sanming (Hongmeiren citrus hybrid); D4: Sanming (Ponkan, C. reticulate Blanc Ponkan);
E1: Zhangzhou (Ponkan, C. reticulate Blanc Ponkan); E2: Zhangzhou (Ponkan, C. reticulate Blanc Ponkan; Tankan, C. reticulata var. tankan).
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A total of 7,516 disease and healthy images were captured at

a distance of 50–150 mm from the sample and under different

conditions by five experimenters using the following mobile

phones and digital cameras: a Hornor Play4T Promobile phone

(HUAWEI Technologies Co., Ltd, Shenzhen, China); an MI 9

mobile phone (XIAOMI Technologies Co., Ltd., Beijing, China);

an MI 5X mobile phone (XIAOMI Technologies Co., Ltd,

Beijing, China); an iPhone 12 (Apple Technologies Co., Ltd.,

Silicon Valley, United States); and a Sony-RX100 digital camera

(Sony Technologies Co., Ltd, Tokyo, Japan). The weather at the

time of sampling was either sunny, cloudy, or rainy. Since the

images were taken between 8:00 am and 06:00 pm, the final

dataset contained images acquired under different light

intensities, which ensured the adaptability of the method to

different illumination conditions. To increase sample diversity,

some samples were also photographed indoors with white or

black plates as a background.

As the images were captured at variable pixel resolutions

(3,000 × 4,000; 2,250 × 4,000; or 3,648 × 5,472 pixels), the
Frontiers in Plant Science 04
captured original images were uniformly processed in

Photoshop to JPG format with an image resolution of 72 pixels/

inch while proportionally down-scaling their size to 640 ×m pixels

(m ≤ 640 pixels). To improve the efficiency of sample labelling, the

custom-made sample-labelling software ‘HyperSpider LabelTool’

was used to indicate the HLB-affected and unaffected leaves and

fruits with bounding boxes along with annotations of plant

coordinates and health status categories. For a given leaf or fruit,

the bounding box was minimised to cover only the target so that

the number of background pixels inside the box was reduced to the

allowable minimum. The annotation files were stored in TXT

format with the same names as the corresponding images.
2.2 Image dataset construction

Sample symptoms were classified by experts into the

following five major categories and 14 subcategories (S1–S14)

based on differences in leaf and fruit symptoms (Table 1):
TABLE 1 Symptom categories, varieties, and sample sizes of citrus image database acquired under different conditions.

Major categories
of symptom

Subcategories of
symptom Citrus varieties

Acquisition condition A Acquisition
condition B

Acquisition
condition C

Training
sets

Validation
sets

Test
sets Test sets Test sets

Healthy (Dataset A)
Healthy fruit (S1) Ponkan, Orah 537 60 57 43 43

Healthy leaf (S2) Ponkan, Orah 471 60 56 43 43

Typical HLB symptoms
(Dataset B)

Blotchy mottling (S3)
Ponkan, Tankan,
Shatian pomelo

586 70 67 43 43

“Red-nose” fruit (S4)
Ponkan, Tankan,
Navel orange

208 26 26 43 43

Suspected HLB
symptoms (Dataset C)

Zinc-deficiency (S5)
Ponkan, Tankan,
Hongmeiren

622 80 76 43 43

Vein-yellowing (S6)
Ponkan, Tankan,
Navel orange

391 47 44 43 43

Uniform yellowing
(S7)

Ponkan, Tankan,
Orah

275 35 34 43 43

HLB-like symptoms
(Dataset D)

Magnesium-
deficiency (S8)

Ponkan, Satsuma
mandarin

262 33 32 43 43

Boron-deficiency (S9) Navel orange 254 32 32 43 43

Anthracnose (S10)
Ponkan, Shatangju
mandarin

286 36 36 43 43

Citrus greasy spot
(S11)

Ponkan, Satsuma
mandarin

202 27 27 43 43

Citrus moss (S12)
Ponkan, Satsuma
mandarin

361 45 44 43 43

HLB-irrelevant
symptoms (Dataset E)

Sooty mould (S13)
Ponkan, Satsuma
mandarin

327 42 36 43 43

Canker (S14) Orah, Navel orange 298 37 35 43 43

Total 5080 602 602 602
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Dataset A: images of healthy fruits (S1) and leaves (S2) from

healthy plants (Figure 2A). These images covered both new and

old leaves as well as green fruits before colour change and mature

fruits after colour change.

Dataset B: images of fruits and leaves from plants with one of

two typical HLB symptoms, including blotchy mottling (S3) and

“red-nose” fruits (S4) (Figure 2B). Blotchy mottling referred to

uneven alternation between yellow and green colours, while

“red-nose” fruits refer to fruits that are orange-red at the stalk

end and cyan elsewhere.

Dataset C: images of leaves from plants with suspected HLB

symptoms, covering three types of yellowing including zinc

deficiency-induced yellowing (i.e., zinc deficiency) (S5), vein

yellowing (S6), and uniform yellowing (S7) (Figure 2C). Uniform

yellowing referred to the whole leaf turning yellow; zinc deficiency-

caused yellowing referred to the veins turning a blue-green and the

mesophylls turning yellow; and vein yellowing referred to the veins

turning yellow and the mesophylls turning green or yellow with

clear boundaries between the veins and mesophylls.
Frontiers in Plant Science 05
Dataset D: images of leaves in plants mainly affected by non-

HLB diseases with the following HLB-like symptoms:

magnesium deficiency (S8), boron deficiency (S9), anthracnose

(S10), citrus greasy spot (S11), and citrus moss (S12)

(Figure 2D). The magnesium deficiency symptoms included

yellowing of the leaves in an inverted V-shape; the boron

deficiency symptom was a swelling of the veins; the

anthracnose symptom referred to a concentric ring-like

pattern of black dots on the leaves; the citrus greasy spot

symptom was the development of yellow patches or brown

greasy spots on the leaves; and the citrus moss symptoms

included green epiphytic chlorellas and moss in a fuzzy,

lumpy, or irregular shape on the leaves.

Dataset E: images of leaves from plants affected by non-HLB

diseases without HLB-like symptoms, such as sooty moulds

(S13) and cankers (S14) (Figure 2E). The sooty mould

symptoms included a black or dark-brown layer of fuzzy

mould on the leaves, and the canker symptoms included

lesions with volcano-shaped cracking in the centre.
A

B

C

D

E

FIGURE 2

Example of leaf and fruit images with different symptoms used in the study. (A), representative images classified as dataset ‘A’ (healthy).
(B), representative images classified as dataset ‘B’ (typical HLB symptoms). (C), representative images classified as dataset ‘C’ (suspected HLB
symptoms). (D), representative images classified as dataset ‘D’ (HLB-like symptoms). (E), representative images classified as dataset ‘E’ (HLB-
irrelevant symptoms). S1, healthy fruit; S2, healthy leaf; S3, blotchy mottling; S4, “red-nose” fruit; S5, zinc-deficiency; S6, vein-yellowing; S7,
uniform yellowing; S8, magnesium-deficiency; S9, boron-deficiency; S10, anthracnose; S11, citrus greasy spot; S12, citrus moss; S13, Sooty
mould; S14, canker.
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To test the generalised performance of the final model, the

sample images were also classified under the following

acquisition conditions according to different photographic

devices used and the environmental conditions at the time of

acquisition (Table 1):

Acquisition condition A: a total of 6,312 images acquired

using Huawei and Xiaomi mobile phones in the field or indoor

against a background plate (either solid white or solid black),

from which all training datasets as well as test sets T1–T3 were

constructed (Table 2).

Acquisition condition B: a total of 602 images acquired in

the field using a camera and an Apple iPhone (43 photos for each

symptom subcategory), from which test sets T4–T6 were

constructed (Table 2).

Acquisition condition C: the same leaf or fruit samples

photographed under acquisition condition B but isolated from

the plants and placed on a white background plate for secondary

photography with a camera or mobile phone. A total of 602 images

were collected (43 images for each symptom subcategory), from

which test sets T7–T9 were constructed (Table 2).

The plants selected for photography, the time of image

acquisition, and the photographers undertaking acquisition

conditions B and C were different from those of acquisition

condition A.
2.3 Experimental setup

We used the YOLO v5l algorithm (Jocher et al., 2021) and its

implementation in the Darknet library to create several HLB-

detection models using the collected image datasets. The

network structure of HLB detection based on YOLO v5l is

shown in Figure 3. The parameters used to train the network

included a base learning rate = 0.001; momentum = 0.937;

weight decay = 0.0005; batch size = 20; and epoch = 200. All
Frontiers in Plant Science 06
experiments were run using a computer with a GeForce RTX

3090 GPU.

The experiments were divided into three main groups

(Figure 4). The first group aimed to develop an optimal model

using different data combination regimes. The YOLO v5l

network was trained and validated using datasets A+B+C,

datasets A+B+C+D, and datasets A+B+C+D+E, which yielded

three HLB-detection network models, referred to as

Yolov5l_HLB1, Yolov5l_HLB2, and Yolov5l_HLB3. To

identify the optimal model, the three models were evaluated

using the corresponding test sets T1, T2, and T3 (Table 2),

respectively. In each case, the datasets captured under

acquisition condition A were split using about 80% for

training, 10% for validation, and 10% for testing (Table 1).

The second group focused on the influence of the test set on

the recognition accuracy of the selected optimal model in the

first group under different acquisition conditions, focusing on

inconsistency in image acquisition conditions between the test

samples and the training samples (Barbedo, 2016). Test sets T2,

T4, and T7 (Table 2), which were captured under acquisition

condition A, B, and C, respectively, but contained the same

symptom subcategories (S1–S12) were used to validate the

symptom-recognition accuracy of the optimal model selected

in the first group. A confusion matrix was employed to assess the

accuracy of the selected model for recognising all 14 symptoms

captured under the different acquisition conditions. F1-scores

were further employed to assess the accuracy of the selected

model in recognising the five HLB symptoms (i.e., blotchy

mottling, S3; “red-nose” fruits, S4; zinc deficiency, S5; vein

yellowing, S6; and uniform yellowing, S7) captured under the

different acquisition conditions.

The third group focused on confirming whether the

knowledge or experience level of a user (i.e., the sample

collector) impacted the model’s performance in practice. T6

and T9 (Table 2), which contained the same symptom
TABLE 2 Symptoms and sample sizes of test datasets acquired under different conditions.

Test datasets Symptom Number of images Acquisition condition

T1 S (1–7) 360 A

T2 S (1–12) 531 A

T3 S (1–14) 602 A

T4 S (1–12) 516 B

T5 S (1–14) 602 B

T6 S (3–9) 301 B

T7 S (1–12) 516 C

T8 S (1–14) 602 C

T9 S (3–9) 301 C

S1, healthy fruit; S2, healthy leaf; S3, blotchy mottling; S4, “red-nose” fruit; S5, zinc-deficiency; S6, vein-yellowing; S7, uniform yellowing; S8, magnesium-deficiency; S9, boron-
deficiency; S10, anthracnose; S11, citrus greasy spot; S12, citrus moss.
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FIGURE 3

Architecture of YOLO v5l network used in this study. Focus is lossless down sampling. Conv (S=2) denotes convolution with a step size of 2 and
a convolution kernel size of 3×3. Conv (S=1) uses a filter with a size of 1×1 and convolution with a step size of 1. CSP_n denotes a convolution
module integrated with n residual units. SPP denotes spatial pyramid pooling. Concat is the feature map fusion operation. Upsample is the
upsampling operation.
FIGURE 4

Workflow used to develop and evaluate a HLB-detection model based on the YOLO (You Only Look Once) image-detection system.
Frontiers in Plant Science frontiersin.org07
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subcategories), represented two types of image test sets acquired

by experienced users under conditions B and C, respectively; T5

and T8 (Table 2), which contained the same symptom

subcategories (S1–S14), represented two types of image test

sets acquired by inexperienced users under conditions B and

C, respectively; and, finally, T4 and T7 (Table 2) were employed

as control sample images that were acquired under conditions B

and C, respectively, and contained the same 12 symptom

subcategories (S1–S12) as the training set.
2.4 Evaluation criteria

The constructed models were evaluated using different

metrics including precision (P), recall (R), F1-scores (F1), and

confusion matrices. A detailed explanation of these evaluation

metrics is described by Hossin and Sulaiman (2015). The

precision, recall and F1-scores are calculated as follows:

Precision (P) =
TP

TP + FP
(1)

Recall (R)  =  
TP

TP + FN
(2)

F1 − Scores (F1) =
2PR
P + R

(3)

where TP, FP and FN represent the number of true positive

cases, false positive cases and false negative cases, respectively. A

confidence level threshold equal to 0.4 was set for all the datasets,

and in the case of multiple detection results, the one with the

highest confidence level was selected. If a model could not meet

the confidence level threshold, the detection result was

considered FN because the test sample images were acquired

in advance and could not be re-acquired.

To test whether the optimal model could be used for field

identification and assist with plant sampling, the S3–S7 samples

were also subjected to PCR detection. These samples were

manually identified by experts from the images acquired under

condition B (Table 1), and were identified by both experienced

and inexperienced users using the optimal model from images of

T6 and T5 acquired under condition B (Table 2), respectively.

The DNA was isolated from leaf vein or fruit pith by using the

DNAsecure Plant Kit (DP320-03, Tiangen, China) as per the

manufacturer’s protocol. The PCR primers used were LAS606

(GGAGAGGTGAGTGGAATTCCGA)/LSS (ACCCAACAT

CTAGGTAAAAACC). The total volume of the PCR reaction

was 25 mL, which consisted of 9.5 mL of ddH2O, 12.5 mL of 2 ×

Taq Master Mix (P112-03, Vazyme, China), 1 mL each of

forward and reverse primers (10 mmol/L), and 1 mL of

template DNA. PCR amplification was performed in a PCR

machine (Bio-Rad T100) using an initial denaturation at 95°C

for 3 min followed by 30 cycles at 95°C for 30 s, 58°C for 30 s,
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and 72°C for 30 s, and then a final extension at 72°C for 5 min.

The PCR products were detected by electrophoresis on 1.0%

agarose gel, and those with bands the size of the target product

(approximately 501 bp) were considered PCR-positive.
2.5 Construction of the ‘HLBdetector’

We developed the mobile software ‘HLBdetector’ based on

the trained neural network model for HLB disease detection. The

application software is available for Android phones and consists

of a mobile client and web service application software that

supports the acquisition of photos with the phone’s camera or

the images stored on the phone. The user can upload the image

file to the service interface of a designated server, and the service

interface software transfers the received image to the trained

neural network model for classification and recognition. The

service then provides the classification and recognition result

back to the mobile phone, which is displayed on the

phone screen.
3 Results

3.1 Influence of data category on
model outcome

The p-value, R-value, and F1-score of the Yolov5l-HLB2

model was 3.13%, 5.89%, and 5.56% higher than model

Yolov5l-HLB1, respectively, which indicated that including a

dataset of HLB-like symptoms (i.e., dataset D) in the training

set improved the classification accuracy of the model.

Furthermore, compared to Yolov5l-HLB2, Yolov5l-HLB3 had a

0.51% lower p-value, a 0.54% higher R-value, and a 0.06% lower

F1-score, indicating that including dataset E in the training set

was not effective at improving the recognition accuracy of the

model (Table 3).

The recognition accuracy of the three models was further

compared for typical and suspected HLB symptoms, including

blotchy mottling (S3), “red-nose” fruits (S4), zinc deficiency

(S5), vein yellowing (S6), and uniform yellowing (S7). In

decreasing order, the corresponding micro F1-scores were

Yolov5l-HLB2 (85.19%) > Yolov5l-HLB3 (83.73%) > Yolov5l-

HLB1 (83.33%); for p-values, the order was Yolov5l-HLB2

(90.07%) > Yolov5l-HLB1 (89.18%) > Yolov5l-HLB3 (87.97%);

and for R-values, the order was Yolov5l-HLB2 (81.84%) >

Yolov5l-HLB3 (81.49%) > Yolov5l-HLB1 (81.38%). These

results suggested that including a dataset of non-HLB

symptoms (i.e., dataset E) in the training set did not improve

HLB identification accuracy, and Yolov5l-HLB2 outperformed

Yolov5l-HLB3. Therefore, Yolov5l-HLB2 was selected as the

optimal model.
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TABLE 3 Detection results of three models using different training datasets.

Model Symptom TP FP FN P R F1

Yolov5l-HLB1
(Dataset A+B+C)

S1 58 4 2 0.9355 0.9667 0.9508

S2 56 4 4 0.9333 0.9333 0.9333

S3 67 22 3 0.7528 0.9571 0.8428

S4 20 2 6 0.9091 0.7692 0.8333

S5 78 5 2 0.9398 0.9750 0.9571

S6 24 0 23 1.0000 0.5106 0.6761

S7 30 5 5 0.8571 0.8571 0.8571

Average 0.9039 0.8527 0.8644

Yolov5l-HLB2
(Dataset A+B+C+D)

S1 56 5 1 0.9180 0.9825 0.9492

S2 50 3 6 0.9434 0.8929 0.9174

S3 62 15 5 0.8052 0.9254 0.8611

S4 20 1 6 0.9524 0.7692 0.8511

S5 75 4 1 0.9494 0.9868 0.9677

S6 31 2 13 0.9394 0.7045 0.8052

S7 24 4 10 0.8571 0.7059 0.7742

S8 32 1 0 0.9697 1.0000 0.9846

S9 32 0 0 1.0000 1.0000 1.0000

S10 35 2 1 0.9459 0.9722 0.9589

S11 27 1 0 0.9643 1.0000 0.9818

S12 44 1 0 0.9778 1.0000 0.9888

Average 0.9352 0.9116 0.9200

Yolov5l-HLB3
(Dataset A+B+C+D+E)

S1 56 4 1 0.9333 0.9825 0.9573

S2 47 3 9 0.9400 0.8393 0.8868

S3 60 16 7 0.7895 0.8955 0.8392

S4 22 1 4 0.9565 0.8462 0.8980

S5 76 3 0 0.9620 1.0000 0.9806

S6 25 2 19 0.9259 0.5682 0.7042

S7 26 8 8 0.7647 0.7647 0.7647

S8 32 1 0 0.9697 1.0000 0.9846

S9 31 0 1 1.0000 0.9688 0.9841

S10 35 2 1 0.9459 0.9722 0.9589

S11 27 0 0 1.0000 1.0000 1.0000

S12 44 3 0 0.9362 1.0000 0.9670

S13 36 0 0 1.0000 1.0000 1.0000

S14 35 4 0 0.8974 1.0000 0.9459

Average 0.9301 0.9170 0.9194

TP, FP, FN, P, R, and F1 indicate true positive, false positive, false negative, precision, recall, and F1-score, respectively. S1, healthy fruit; S2, healthy leaf; S3, blotchy mottling; S4, “red-
nose” fruit; S5, zinc-deficiency; S6, vein-yellowing; S7, uniform yellowing; S8, magnesium-deficiency; S9, boron-deficiency; S10, anthracnose; S11, citrus greasy spot; S12, citrus moss.
The values in bold represent the average values for each column.
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3.2 Influence of test sets acquired
under different conditions on
model performances

For image acquisition condition A, 10 samples with vein

yellowing (S6) and four samples with uniform yellowing (S7) were

misclassified as having blotchy mottling (S3), and five samples with

“red-nose” fruits (S4) were misclassified as having healthy fruits (S1)

(Figure 5A). For image acquisition condition B, four samples with

uniform yellowing (S7) were misclassified as having vein yellowing

(S6), and four samples with citrus greasy spot (S11) were

misclassified as having blotchy mottling (S3). Four samples with

magnesium deficiency (S8) were misclassified as having boron-

deficiency (S9), and nine samples with magnesium deficiency (S8)

and four with anthracnose (S10) were misclassified as having citrus

greasy spot (S11) (Figure 5B). For image acquisition condition C, six

samples with healthy fruits (S1) were misclassified as having “red-

nose” fruits (S4), and eight samples of blotchy mottling (S3) and five

samples of zinc deficiency (S5) were misclassified as having

anthracnose (S10). Five samples with vein yellowing (S6) were

misclassified as having uniform yellowing (S7), and nine samples

of magnesium deficiency (S8) were misclassified as having citrus

greasy spot (S11) (Figure 5C). Together, these results indicated the

Yolov5l-HLB2 model performed well at recognising 12 symptoms

using the images acquired under different conditions.

The F1-scores were further used to evaluate the detection

accuracy of the Yolov5l-HLB2model for the images of two typical

HLB symptoms (S3 and S4) and three suspected HLB symptoms

(S5, S6, and S7) acquired under different conditions (Figure 6).

The micro F1-scores of the model for the five symptoms were

85.19%, 84.64%, and 85.84% using image acquisition conditions

A, B, and C, respectively. Compared to image acquisition

condition A, the following differences were observed: (1) the

identification F1-scores of the model for symptom images

acquired under condition B were 6.25%, 4.54%, and 5.08%

higher for “red-nose” fruits (S4), vein yellowing (S6), and

uniform yellowing (S7), respectively, but were 10.25% and

8.35% lower for blotchy mottling (S3) and zinc deficiency (S5),

respectively; and (2) the identification F1-scores of the model for

symptom images acquired under condition C were 7.20%, 3.43%,

and 6.45% higher for S4, S6, and S7, respectively, but were 11.44%

and 2.39% lower for S3 and S5, respectively. These results suggest

that the Yolov5l-HLB2 model performed better at recognising

symptom images S4, S6, and S7 acquired under both conditions B

and C than those acquired under condition A, but performed less

well on the identification of symptom images S5 and S3.
3.3 Comparison of model identification
F1-scores between different users

As shown in Figure 7, the detection performance of the

optimal model was related to the level of user knowledge.
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Specifically, experienced users were able to initially ignore

those images in which symptoms unrelated to HLB were

confidently observed, such as anthracnose (S10), citrus greasy

spot (S11), citrus moss (S12), sooty mould (S13), and canker

(S14). This reduced the risk of HLB symptom misclassification,

such as citrus greasy spot (S11) being classified as blotchy

mottling (S3), and citrus moss (S12) being classified as blotchy

mottling (S3) or uniform yellowing (S7). Therefore, the

detection performance of the model was better for experienced

users compared to inexperienced users.
3.4 PCR validation of citrus HLB
disease symptoms recognised using
different methods

The PCR-positive rate was higher for blotchy mottling (S3)

and “red-nose” fruits (S4) than for the other three symptoms for

all three users (Table 4). For the same symptom, the higher the

user’s experience level, the higher the PCR-positive rate of each

symptom except for vein-yellowing (S6) (Table 4). The PCR-

positive rates of typical HLB symptoms (S3 and S4) detected by

the Yolov5l-HLB2 model were considerable, and the PCR-

positive rates of other three symptoms detected by this model

were close to those classified by experts. This indicates that the

optical model can serve as a preliminary screening tool before

the field collection of samples for subsequent PCR testing.
3.5 ‘HLBdetector’ development
and validation

The ‘HLBdetector’ employs the Yolov5l-HLB2 model to first

obtain a photo from a phone’s album or camera, and then displays

a bounding box requesting the user to crop the detection target

(e.g., a leaf or fruit) so that it just fits within the box. The image is

then scaled down to 640 × 640 pixels and uploaded using an

“Identify” button in the application software. The identification

result is then shown on the screen. If the confidence level of the

identification result is less than 0.4, the user will be prompted to

provide a different image. In this study, the photos taken in the

field were transferred to an Android phone for testing, and the

detection results for the S3 (Figure 8A), S4 (Figure 8B), S5

(Figure 8C), S6 (Figure 8D), and S7 (Figure 8E) samples were

observed on the phone screen. The ‘HLBdetector’ software is also

able to correctly detect the location and category of a target object

when there are multiple objects in the image (Figure 8C).
4 Discussion

CNN networks learn the characteristics displayed in a

training dataset, and so high accuracy can usually be expected
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in a model trained using a comprehensive training set (Barbedo,

2018b). In this study, we included the following image datasets

groups under five major categories: dataset A included healthy

fruits and leaves; dataset B included two typical HLB symptoms
Frontiers in Plant Science 11
(i.e., blotchy mottling leaves and “red-nose” fruits), dataset C

included three suspected HLB symptoms that might cause the

yellowing of leaves (i.e., zinc deficiency, vein yellowing, and

uniform yellowing); dataset D included five HLB-like symptoms
A

B

C

FIGURE 5

Confusion matrices of model HLB2 for recognising images of 12 citrus diseases acquired under different acquisition conditions. (A), acquisition
condition (A, B), acquisition condition (B, C), acquisition condition (C). S1, healthy fruit; S2, healthy leaf; S3, blotchy mottling; S4, “red-nose” fruit;
S5, zinc-deficiency; S6, vein-yellowing; S7, uniform yellowing; S8, magnesium-deficiency; S9, boron-deficiency; S10, anthracnose; S11, citrus
greasy spot; S12, citrus moss. Note: Missed detection is not reflected in these matrices. The confusion matrices are given in terms of absolute
numbers and not percentages.
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of leaves that were not caused by CLas (i.e., magnesium

deficiency, boron deficiency, anthracnose, citrus greasy spot,

and citrus moss), and dataset E included two HLB-irrelevant

symptoms (i.e., sooty mould and canker), respectively. The
Frontiers in Plant Science 12
micro F1-scores of the models trained with datasets A+B+C, A

+B+C+D, and A+B+C+D+E when recognising HLB symptoms

were 83.33%, 85.19%, and 83.73%, respectively, which indicates

that including the dataset containing images of HLB-like
FIGURE 6

Effect of image acquisition condition on model identification F1-scores for the five symptoms. Note: The value on the bar indicates the exact F1-score.
FIGURE 7

Comparison of the model identification F1-scores between different users. Images used in control group included test sets 4 and 7, which were
acquired under condition B and C, respectively, and covered 12 subcategories of symptoms (S1–S12). Images used in unexperienced users
included test sets 5 and 8, which were acquired under condition B and C, respectively, and covered all 14 subcategories of symptoms (S1–S14).
Images used by experienced users included test sets 6 and 9, which were acquired under condition B and C, respectively, and covered seven
subcategories of symptoms (S3–S9). Note: The value on the bar indicates the exact F1-score.
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symptoms (dataset D) helped improve the accuracy of the

model. In contrast, including images of irrelevant symptoms

(dataset E) did not improve the accuracy of the resulting model.

This is likely because the similar features in dataset D would

have helped the CNN network learn the characteristics of the

two typical HLB symptoms and the three suspected HLB

symptoms, while the features of the two HLB-irrelevant

symptoms in dataset E likely differed considerably from the

other symptoms and, therefore, were not helpful for the

learning process.

Although the Yolov5l-HLB2 model showed good

performance when recognising citrus HLB, the model

detection accuracy could be further improved. Qi et al. (2022)
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proposed an improved YOLOv5 model by adding a squeeze-

and-excitation module, which showed high accuracy (91.07%)

when detecting tomato virus disease. Li et al. (2022a) also

proposed an improved YOLOv5-based vegetable disease-

detection method, which improves the Cross Stage Partial,

Feature Pyramid Networks, and Non-Maximum Suppression

modules in YOLOv5s, yielding a mean average precision (mAP)

of 93.1%. Furthermore, Li et al. (2022b) employed an improved

YOLOv5 model for cucumber disease detection that integrates

the Coordinate Attention and Transformer architecture and a

multi-scale training strategy and feature fusion network, offering

higher detection accuracies and speeds than those obtained from

the original YOLOv5 model. Roy et al. (2022) proposed an
FIGURE 8

Examples of detection results for five citrus HLB symptoms using ‘HLBdetector’. (A), blotchy mottling (S3); (B), “red-nose” fruits (S4); (C), zinc-
deficiency (S5); (D), vein yellowing (S6); (E), uniform yellowing (S7). Note: The colour of hollow squares outside leaves and fruits is randomly
selected by the ‘HLBdetector’ software.
TABLE 4 PCR-positive rates of five HLB symptoms classified by different users manually or using model Yolov5l-HLB2.

Symptom

Experienced user(Classified using
model)

Inexperienced user(Classified
using model) Expert user(Classified manually)

Number of
samples

PCR-positive
rate (%)

Number of
samples

PCR-positive
rate (%)

Number of
samples

PCR-positive
rate (%)

S3 37 86.49 41 78.05 43 90.70

S4 36 91.67 38 86.84 43 97.67

S5 51 47.06 56 42.86 43 53.49

S6 44 38.64 45 37.78 43 30.23

S7 33 21.21 36 19.44 43 27.91

Others 100+301* 3.49 386 3.63 387 0.78

Total/Average
(S3–S7)

602 57.01 602 52.99 602 60.00

S3, blotchy mottling; S4, “red-nose” fruit; S5, zinc-deficiency; S6, vein-yellowing; S7, uniform yellowing; Others, symptoms contain in the tested samples except for S3–S7, and samples
miss detected. “*” represents the number of images excluded by experienced user manually.
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improved YOLOv4 model for detecting different plant diseases

in complex scenarios by including the DenseNet, two new

residual blocks, spatial pyramid pooling, and a modified Path

Aggregation Network, maximizing both detection accuracy and

speed. The previous studies showed that the accuracy of most

plant disease-detection models based on YOLO can be improved

by modifying the component network modules. Thus, in our

future work, we plan to optimise our HLB-detection model to

further enhance its detection accuracy.

The backgrounds of images may adversely influence

classification results produced by CNN models (Barbedo,

2016; Barbedo, 2018a; Barbedo, 2018b). For example, striking

differences have been reported when models trained only with

images captured in the field were employed to identify images

captured under controlled laboratory conditions and vice versa

(Ferentinos, 2018). In our study, we used images acquired both

in the field and against black or white plates in the laboratory to

train our models. Notably, as discussed in Section 3.2, training

the models with these two types of images had little impact on

the classification results of the five HLB symptoms, yielding a

micro F1-score of 85.19% compared to 84.64% for model tested

only with field images, and 85.84% for models tested only with

laboratory images. This suggests that in the case of HLB

detection, the potential influence of image background on

detection accuracy may be diluted if a wide variety of image

backgrounds are included in initial training sets.

The detection performance of our optimal model was better

when used by experienced rather than inexperienced users. In

practice, experienced users can take advantage of their

knowledge to reduce the inclusion of irrelevant samples in the

test set and, thereby, improve the detection performance of the

model. In turn, this means that increasing the number of

symptoms included in the test sets might increase the chances

of misclassification. Moreover, the correct detection rates of the

test images with typical and atypical symptoms classified by

experts were 91.76% and 81.78% (data not shown), respectively,

which indicates that symptom variations might have a serious

impact on model detection performance. A possible explanation

for this might be that our training dataset was not

comprehensive; however, even when training datasets are

carefully selected, considering the considerable effort required

to capture images and the even more difficult task of labelling the

images correctly, it is unpractical to build a training dataset that

considers all possible capture conditions and symptom

variations (Kamilaris and Prenafeta-Boldú, 2018). It is worth

mentioning that such problems will be diminished over time as

new images continue to be added to our database.

PCR testing remains the most reliable method for HLB

diagnosis, although it is relatively expensive due to skilled

operators and specialised equipment required (Li et al., 2007).

Compared with the PCR-positive rates for HLB symptoms

classified by expert users, our Yolov5l-HLB2 model can be
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employed as a valuable tool to assist HLB diagnosis, and in

particular, can serve as a preliminary screening tool to minimise

PCR testing samples. It is worth noting that even the PCR-

positive rate of the samples with “red-nose” fruit classified by the

inexperienced users was 86.84%, which indicates that the model

may serve as a useful recognising tool for this symptom.

Software that can perform automated identification of plant

diseases is more useful when it can be used in the field

(Ferentinos, 2018). We specifically designed ‘HLBdetector’ to

be user-friendly and for field application for the detection of

HLB-symptomatic citrus trees. Using this tool has low

operational costs and takes only a few seconds using a mobile

phone, which has significant advantages for practical agricultural

application. In addition, our findings provide an important

means for farmers to conduct continuous and timely HLB

detection, which facilitates the wider prevention and control of

HLB transmission and overcomes the existing problems of citrus

HLB detection including the need for manual detection and high

PCR testing costs.
5 Conclusion

We constructed a dataset containing images of healthy citrus

leaves and fruits and those affected by twelve citrus disease

symptoms without image augmentation. Using these data, we

constructed citrus HLB-detection models using different dataset

combinations and the YOLOv5l algorithm. Based on our results,

we found that our Yolov5l-HLB2 model outperformed all other

models, yielding a micro-F1 score of 85.19%. Our study suggests

that similarities between images helped the network learn the

characteristic symptomatic features of the HBL, illustrating the

opportunities for building image dataset of other plant diseases

that could be used for developing disease-detection models.

However, our Yolov5l-HLB2 model has some limitations,

including the need to further improve detection accuracy. To

address this, we plan to optimise our model by modifying the

component modules and via integration with other algorithms.

In addition, we aim to improve the models by obtaining more

sample images in future work, for which qPCR instead of PCR

will be employed as the gold standard to confirm HLB presence.

Nevertheless, we successfully applied the Yolov5l-HLB2 model

in the ‘HLBdetector’ app, which can automatically detect HLB

symptoms in the field. This user-friendly app can guide citrus

fruit growers’ decision-making regarding disease monitoring

and intervention to help minimise potential losses.

Overall, our study extends the application prospects of DL in

field-based plant-disease diagnosis, providing a reference for the

artificial intelligence-based identification of plant diseases and

pests and their application. In the future, pilot applications of the

‘HLBdetector’ app will be performed in China to continue

enriching our image dataset and optimise the detection model.
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