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The precision spray of liquid fertilizer and pesticide to plants is an important

task for agricultural robots in precision agriculture. By reducing the amount

of chemicals being sprayed, it brings in a more economic and eco-friendly

solution compared to conventional non-discriminated spray. The prerequisite

of precision spray is to detect and track each plant. Conventional detection

or segmentation methods detect all plants in the image captured under the

robotic platform, without knowing the ID of the plant. To spray pesticides

to each plant exactly once, tracking of every plant is needed in addition to

detection. In this paper, we present LettuceTrack, a novel Multiple Object

Tracking (MOT) method to simultaneously detect and track lettuces. When

the ID of each plant is obtained from the tracking method, the robot knows

whether a plant has been sprayed before therefore it will only spray the

plant that has not been sprayed. The proposed method adopts YOLO-V5

for detection of the lettuces, and a novel plant feature extraction and data

association algorithms are introduced to e�ectively track all plants. The

proposed method can recover the ID of a plant even if the plant moves

out of the field of view of camera before, for which existing Multiple Object

Tracking (MOT) methods usually fail and assign a new plant ID. Experiments

are conducted to show the e�ectiveness of the proposed method, and

a comparison with four state-of-the-art Multiple Object Tracking (MOT)

methods is shown to prove the superior performance of the proposedmethod

in the lettuce tracking application and its limitations. Though the proposed

method is tested with lettuce, it can be potentially applied to other vegetables

such as broccoli or sugar beat.
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agriculture, detection, tracking, MOT, deep learning, precision spray, robotics

1. Introduction

Robotic application in precision agriculture has become a popular topic recently.

Deploying robots in agricultural applications has the potential to significantly reduce

the labor cost of repetitive tasks such as weeding (Lee et al., 2014; McCool et al., 2018;

Jiang et al., 2020), fruit detection and yield estimation (Bargoti and Underwood, 2017),
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harvesting (Bac et al., 2017; Kurita et al., 2017; Sa et al.,

2017), fertilizer or pesticide application (Adamides et al.,

2017), crop mapping (Dong et al., 2017), and plant

phenotyping (Ruckelshausen et al., 2009). In the case of

robotic fertilizer and pesticide application in lettuce farms,

compared to the conventional agricultural standard of treating

the land indiscriminately, robotic autonomous spraying allows

the crop to be targeted individually (Chebrolu et al., 2017). Not

only does this make spraying more economical, it is also more

eco-friendly. To precisely spray individual plants only once,

the perception system of the robot needs to be able to detect

crops against soil and weeds, as well as identify and track all

individual crops.

There have been plenty of studies that exist in the literature,

which successfully resolved the detection of individual plants

of vegetables (Saleem et al., 2021; Jin et al., 2022; Ulloa et al.,

2022). They allow robots to use their vision sensors to capture

images of the farm field, and find the locations of plants in the

images.With the detection results, the robot can spray each plant

in the captured image precisely. However, only with detection

results, the robot is unable to know which plants it has sprayed

already when it travels through the farm lanes, without tracking

each individual plant. To spray each plant exactly once, existing

methods for robotic precision spray usually require the robot

to travel in one direction and at a fixed distance to make sure

the images continuously captured by the robot exactly follow

one another and without the same plant in two images. When

the robot needs to stop or slightly reverse back for obstacle

avoidance, human intervention is needed to prevent the same

plant to be sprayed twice, making the autonomy of the robot

reduced significantly. Another common approach to tackle this

FIGURE 1

Overview of the proposed method. (A) VegeBot: The agricultural robot designed by the China Agricultural University, which travels through a

lettuce farm, detects and tracks each plant, and sprays them precisely. (B) The proposed method detects lettuces and extracts features of the

targets. Take the target in the red dotted box in the figure as an example, a novel feature for the middle target is obtained with the help of the

upper and lower targets to reveal its identity information. The novel matching approach proposed in the paper can successfully re-identify the

same target even if it disappears from the camera’s field of view for a long time and re-appears again.

problem is to use RTK-GPS or Simultaneous Localization and

Mapping (SLAM) techniques to record the geometric locations

of plants. However, usage of accurate RTK-GPS increases the

cost of the robot considerably, and it also does not work in a

greenhouse environment. Vision based SLAM techniques are

not always robust, especially in the farm environment, and

failure of them will directly lead to failure of spray action.

In this paper, we present LettuceTrack, a perception pipeline

that incorporates the detection and tracking of lettuces using a

camera attached to an agricultural robotic platform. As shown

in Figure 1, a RGB camera is fixed facing downward in front

of the VegeBot, an agricultural robot designed by the China

Agricultural University, which is used to detect and track each

plant when the robot travels through the lettuce farm. The

proposed method detects lettuces and forms location features

of them. Take the target in the red dotted box in the figure as

an example, a novel feature for the middle target is obtained

with the help of the upper and lower targets to reveal its

identity information. It is combined with the novel matching

approach proposed in the paper to successfully re-identify the

same target even if it disappears from the camera field of

view for a long time and re-appears again. The details of

the feature extraction and the matching method are given in

Section 3.2.

The contributions of the paper are 2-fold. First, we proposed

a deep learning-based Multiple Object Tracking (MOT) method

to solve the joint detection and tracking of lettuces problem for

agricultural robots to perform the precision spray task. With

tracking incorporated, the robot relieves the requirement of

traveling in one direction and at a fixed distance, so it can

stop or reverse back whenever it needs. Second, we introduced
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a novel feature to help identify each individual plant, which

makes it possible for the robot to successfully re-identify the

same plant even when it reverses back and sees the plant that

has been seen by the robot and gone out of sight before, where

conventional Multiple Object Tracking (MOT) methods usually

fail. Experimental results have been conducted to show the

effectiveness of the proposed method, and a comparison with

four state-of-the-art MOT methods is provided to prove the

superior performance of the proposed method in the lettuce

tracking application and its limitations. Although the proposed

method is tested with lettuce, it can be potentially applied to

other vegetables such as broccoli or sugar beat.

The rest of the paper is organized as follows. In Section 2,

related work on crop detection in agriculture andMOTmethods

are discussed. In Section 3, the experimental setup and the

details of the proposed method are described. In Section 4,

experimental results of the proposed method and performance

comparison with four state-of-the-art MOT methods are

presented. In Section 5, conclusions and a discussion about

further work are presented.

2. Related work

The key aspect for agricultural robots to execute precision

spray task is to accurately detect and track each individual plant.

Therefore, there are two fields of research that are closely related

to our method, which is namely computer vision based crop

detection and multiple object tracking.

2.1. Crop detection

Crop detection based on computer vision is a key

component of precision spray and intelligent weeding systems

for agricultural robots. There exist many works of detecting

crops using hand-crafted features (Haug et al., 2014; Lottes et al.,

2017; Milioto et al., 2017). However, hand-crafted features need

to be adjusted differently according to different applications and

situations. The disadvantages of using them are being easily

affected by illumination and poor robustness. Most traditional

methods aim to solve the limitation of information extracted

by hand-crafted feature by using complex linear classifiers, e.g.,

SVM (Guerrero et al., 2012).

In recent years, the progress of the Deep Neural Network

(DNN) has led to fundamental changes in all aspects of life.

With the development of DNN, the perception capabilities of

agricultural robots have been improved significantly (Saleem

et al., 2021). Recently, more and more crop weed discrimination

and classification methods based on Convolutional Neural

Network (CNN) have been proposed and achieved surprising

results (Milioto et al., 2018; Su et al., 2021; Ulloa et al., 2022).

More abstract and representative information can be extracted

through dozens or even hundreds of convolution layers with

pooling layers. Jiang et al. (2020) presented GCN-ResNet-

101, which is a semi-supervised learning method based on

Graph Convolutional Network (GCN), to detect crops and

weeds. Recognition accuracies are 97.80, 99.37, 98.93, and

96.51% on four different datasets which include crop and

weed with the proposed approach. Ulloa et al. (2022) proposed

Convolutional Neural Network (CNN) to detect vegetables and

extract geometric characteristics of vegetables, which helped to

conduct fertilization operation with the robot arm. Jin et al.

(2022) proposed a method of crop-weed detection based on

deep learning which can recognize vegetable crops and classify

bother green objects as weed.Magalhães et al. (2021) provided an

annotated visual dataset containing green and red tomatoes and

tested it with five deep learningmodels. The results show that the

single-shot multibox detector can be used to accurately identify

targets in the dataset, which helps the harvesting robot to detect

tomatoes in real time and in situ. Moreira et al. (2022) proposed

to utilize a deep learning model to detect tomatoes and classify

them to determine their mature stages. The results show that the

YOLO-V4 model achieves the best performance with a macro

F1-score of 85.81 and 74.16% in the detection and classification

tasks, respectively.

In terms of segmentation of vegetable crops, Su et al. (2021)

proposed a semantic segmentation algorithm based on DNN

to solve the problem of similar appearance between wheat

and ryegrass. The algorithm has high segmentation accuracy

and can achieve the real-time segmentation performance of

48.95 Frames Per Second (FPS) on Nvidia GTX 1080 GPU

to ensure that it can be deployed in real-time. Milioto et al.

(2018) proposed a semantic segmentation system using the

existing vegetation index to solve the problem of separating

beets and weeds in crop fields. This method can achieve real-

time classification at the running speed of 20 Hz on a real

agricultural robot. You et al. (2020) presented a DNN-based

semantic segmentation model, which introduces an attention

mechanism to capture long-range contextual information to

improve segmentation accuracy. Khan et al. (2020) presented

CED-Net, a semantic segmentation approach, that exploits a

cascaded encoder-decoder network structure to discriminate

between crop and weed.

These methods based on object detection or segmentation

can accurately detect and localize all crops in given images.

However, they do not solve the correspondence of crops between

consecutive images. As a result, conventional robotic precision

spray usually requires the robot to travel at a fixed distance

so that consecutive images just follow each other without any

overlapping or missed crop. This is usually hard for a robot

with high autonomy since it might stop or reverse back for

dynamic obstacle avoidance. To overcome such a limitation, a

better option is to adopt MOT and both detect and track each

plant. With each detection assigned with a unique plant ID, the

robot ensures to spray each plant exactly once.
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2.2. Multiple object tracking

Multiple Object Tracking [or Multiple Target Tracking

(MTT)] is a very important task in computer vision. Its essence

is to detect and locate multiple targets in an image, give them

their identities, and maintain their identities in consecutive

frames (Luo et al., 2021). At present, advanced online MOT

methods can be divided into two categories: two-stages MOT

systems (Bewley et al., 2016; Bochinski et al., 2017; Wojke et al.,

2017) and one-shot MOT systems (Wu et al., 2021; Zhang et al.,

2021a,b; Liang et al., 2022).

The two-stage methods that follow the tracking-by-

detection paradigm divide MOT systems into two independent

tasks. Detection is first produced by various detector networks,

then candidate boxes are added to tracklets across different

frames by the data association network. SORT is a simple and

fast tracker presented by Bewley et al. (2016) that uses the

Kalman filter (Kalman, 1960) to predict the position of the

target in the next frame and match it with the detected target

with the Hungarian algorithm (Kuhn, 2010). It mainly uses

Intersection Over Union (IOU) cost of the predicted bounding

box and that of target detection as the basis for data association.

However, objects are easy to lose or switch assigned IDs when

situations like crowded targets or occlusion between objects

happen. In order to solve these problems, DeepSort is proposed

byWojke et al. (2017), which applies a CNN trained with a large-

scale person re-identification dataset to extract the appearance

information of objects. DeepSort obtains appearance descriptors

through a feature embedding to improve the performance of

SORT. On the basis of inheriting the motion information of

SORT, it combines the motion and appearance information

to perform data association. The method is validated to be

more effective in solving the problems of object loss, occlusion,

and identity switch in complex scenarios. Zhang et al. (2021a)

propose ByteTrack, which performs a simple and efficient

data association method called BYTE without appearance. In

this method, detection boxes with high confidence and low

confidence are processed separately, so that the objects in the

low score detection boxes are also exploited as much as possible

rather than ignored.

Two-stage MOT methods are normally inefficient and

slow because the task needs to be processed separately.

One-shot MOT methods are introduced to tackle such a

limitation. It performs object detection and re-identification (re-

ID) feature embedding in separate networks simultaneously.

Wang et al. (2020) proposed the first near real-time MOT

system, which integrates object detection and appearance feature

embedding into one task network. The inference speed of

this method can reach from 18.8 FPS to 24.1 FPS when

different input resolutions are set. Zhang et al. (2021b) proposed

FairMOT, a simple approach that utilizes two homogeneous

branches to predict objects and extract re-identification features.

Since the unfairness of the two tasks is overcome by this

method, it achieves high detection and tracking accuracy

on several public MOT datasets. It also verifies that an

anchor-free detector is more suitable for identity embedding

extraction than an anchor-based detector. The above methods

combine detection and feature extraction as one task, but the

subsequent data association and matching are still separate

tasks. CenterTrack (Zhou et al., 2020) combines detection and

tracking into one network and forms an integratedMOT system.

It is based on CenterNet (Zhou et al., 2019) which regards

the detected objects as points from the detector. The method

learns the offset vector between the object center points of two

consecutive frames. Greedy matching is performed based on the

distance between the predicted offset and the obtained center

point in the previous frame for data association. TraDeS (Wu

et al., 2021) utilizes tracking clues to assist detection based on

CenterTrack (Zhou et al., 2020). It introduces a cost volume-

based association module and motion-guided feature warper

module to improve tracking accuracy in complex scenarios.

The existing MOT methods extract the feature information

of targets to identify the targets that have appeared before.

However, these methods tend to fail when the targets disappear

in multiple frames or highly similar targets are presented.

Unfortunately, these situations are quite common in the case

of robotic crop detection and tracking. When the robot needs

to reverse back, it observes crops that have been previously

observed and lost tracking. Individual crops are also similar in

shape, color, and texture. To tackle such challenging scenarios,

we propose LettuceTrack, a novel MOTmethod that exploits the

relationship of a plant with its neighbors to improve the accuracy

of lettuce detection and tracking for robotic precision spray.

3. Materials and methods

When the robot travels along the farm, there exists a relative

motion between the camera and the ground, and we adopt vision

based detection and tracking to follow each plant. However, the

positions of crops are actually immobile relative to the ground.

We exploit such a characteristic to build a novel feature for

each plant. Together with the proposed matching method, a

unique ID for each plant can be reliably established. In the

following part of the section, details of the data acquisition,

the proposed feature extraction, and data association strategies

are illustrated.

3.1. Data acquisition

The data was collected by the authors at a farm in Tongzhou

District, Beijing, China. As shown in Figure 2, we used our

agricultural robot which is equipped with an RGB camera to

capture images when moving in many rows of the farm with

lettuce growing in different stages. The speed of the robot varies
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FIGURE 2

Data acquisition. (A) The lettuce farm. (B) The agricultural robot capturing images through a downward facing RGB camera.

in different parts of the dataset, which ranges from 0.35 to 0.45

m/s through the entire data acquisition process, according to the

feedback data from wheel encoders.

We set the camera angle to be vertically down and at a height

of 1.5 m from the ground to ensure that the number of plants

in a single column of collected data is greater than three to

construct the proposed feature for each plant. This is due to the

fact that the proposed feature extraction of a plant is determined

by its neighboring plants. The camera is set with a resolution

of 1, 920×1, 080 and a frequency of 30 Hz. We collected data

at two different growth stages of lettuce, which are namely the

rosette stage and the heading stage, respectively. Lettuces are

in the third and fourth weeks after transplanting. The distance

between adjacent plants is from 0.3 to 0.35 m, and the distance

between two rows of plants is about 0.3 m. Due to frequent

weeding operations, there are fewer weeds, and the maximum

weed density is about 10 weeds/m2.

There is an obvious difference between plant images at the

two growth stages as shown in Figure 3 since the weather and

lighting conditions are different at the time of collection. This

helps to verify the generality of our method for crops in different

growth stages and lighting conditions. The data of each growth

stage is divided into one training set and two test sets. The

training set is the images collected by the robot traveling straight

from the starting point to the end point. The first test set is

collected in the same way as the training set. We define this test

set as test − straight. The second test set is collected when the

robot travels straight to the end point and then reverses back to

the starting point. We define it as test - back and forth (B&F).

Our method and other state-of-the-art methods are trained and

tested on the data of each growth period separately. Left and

right parts of images are cropped from the raw camera images to

get rid of unrelated area, so the resolution of images decreased

from 1, 920×1, 080 to 810×1, 080. Following the MOT16

(Milan et al., 2016; Dendorfer et al., 2021) dataset, we annotate

the six parts of our dataset and obtain ground truth MOT

labels, which include the frame, ID number, and bounding

box information of every plant. Details about the dataset are

summarized in Table 1.

3.2. Feature extraction and matching

3.2.1. Feature extraction

In the proposed method, a state-of-the-art and light

weighted detection method, YOLO-V5, is adopted to detect

lettuces (Jubayer et al., 2021; Zhao et al., 2021;Wang et al., 2022).

Then, we can get the bounding box of each object in one frame

and calculate the center point of each bounding box. As shown

in Figure 4, a center line can be fitted through center points of

detected plants as follows,

x = k · y+ b. (1)

Once the center line is determined, plants can be divided into

different lanes. Suppose there are two lanes on the farm, then

two plants, whose center points of bounding boxes are (x1, y1)

and (x2, y2), respectively, are in the same lane if their center

points satisfy,

(k · y1 + b− x1) · (k · y2 + b− x2) > 0. (2)

If there are multiple lanes, plants at each lane can be

determined judging from their distance to the center line.

To identify each individual plant, a novel geometric feature

is generated for the plant. As all plants are fixed on the

farm, we exploit this characteristic and design the feature

based on its relationship with its neighboring plants at the

same line. Take the second plant from the top on the left

Frontiers in Plant Science 05 frontiersin.org

https://doi.org/10.3389/fpls.2022.1003243
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2022.1003243

FIGURE 3

Data acquisition during two growth stages of lettuce. (A–C) are lettuces in the third week after transplanting, (D–F) are lettuces in the fourth

week after transplanting.

TABLE 1 Summary of six parts of the dataset used in the paper.

Dataset The rosette stage The heading stage

Train1 Test-straight1a Test-B&F1b Train2 Test-straight2a Test-B&F2b

Resolution 810× 1,080 810× 1,080 810× 1,080 810× 1,080 810× 1,080 810× 1,080

Length(Frame) 880 545 791 598 873 855

Tracks 191 108 95 106 143 142

Boxes 7,832 4,699 6,707 6,196 8,177 8,021

Application Train Test Test Train Test test

aThe test set test − straight is the images collected by the robot traveling straight from the starting point to the end point.
bThe test set test − B&F is collected when the robot travels straight to the end point and then reverses back to the starting point.

line in Figure 5 as an example, its feature is determined by

the plant above it, the plant below it, and itself. We will

concentrate on these three plants to illustrate the generation

of plant features. From the detection results, we can obtain

the coordinates of the center point, width, and height of each

bounding box. The coordinates, widths, and heights of the

middle plant, the upper plant, and the lower plant are expressed

as (x, y,w, h), (x1, y1,w1, h1), and (x2, y2,w2, h2), respectively.

Finally, the feature of each plant F can be constructed as

follows:

F =











d1

d2

wr

hr











=















c1 ·
√

(x1 − x)2 + (y1 − y)2

c2 ·
√

(x2 − x)2 + (y2 − y)2

cw ·
w1

w2

ch ·
h1

h2















, (3)
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FIGURE 4

Plants detection and center line extraction. (A) Vegetable plants detections. (B) Center points extraction. (C) Center line (Yellow) extraction.

FIGURE 5

Feature generation for a plant. To construct the feature for the second plant from the top on the left line, detection results of the plant above it,

the plant below it, and itself are utilized. The feature is specifically defined by Equation (3).

where d1 and d2 are the distances from the center point

of the upper and lower bounding boxes to the center point of

the middle bounding box, respectively. wr and hr are the width

ratio and height ratio between the upper and lower bounding

boxes. In order to balance the influences of different parts of the

feature vector, we multiply them with weighting parameters c1,

c2, cw, and ch. These parameters control the importance of two

distances and two ratios during the feature matching later. cw

and ch can be tuned slightly larger to balance the influence of the

distance and the ratio.
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3.2.2. Data association

Once the feature for each plant is computed as described in

the previous section, it can be used tomatch plants in the current

image to those in the previous image. Specifically, the distance

between two features F1 and F
2 are defined as follows:

dist(F1,F2) =
√

(F1 − F2)T(F1 − F2)

=

√

(d11 − d21)
2 + (d12 − d22)

2 + (w1
r − w2

r )
2

+(h1r − h2r )
2 ,

(4)

where F
1 and F

2 are feature vectors of two detected plants

as defined in Equation (3), and d11 , d
1
2 , w

1
r , h

1
r , and d21 , d

2
2 ,

w2
r , and h2r are corresponding feature elements. In essence,

Euclidean distance is used to evaluate feature similarity of two

detected plants for data association. If two targets involved in

the comparison are the same target, the calculated distance in

Equation (4) is less than a predefined threshold. Based on the

feature distance, we construct a feature cost matrix denoted

as Matrixfeat to perform the association of the targets in the

later stage.

In addition to feature distance, we also utilize the Kalman

filter (Kalman, 1960) to predict the positions of plants in the

current frame according to those in the previous frame. We

calculate the IOU of the predicted bounding box from the

Kalman filter and the bounding box from the detection result

to construct an IOU cost matrix denoted as MatrixIOU. We

perform subtraction operation on two matrices as follows to get

the final cost matrix denoted asMatrixfinal,

Matrixfinal = Matrixfeat −MatrixIOU. (5)

When two plants have a smaller feature distance and larger

IOU, the cost matrix Matrixfinal has a smaller value at the

corresponding element, which means those two plants are more

likely to be one plant. Matrixfinal has better matching accuracy

than usingMatrixfeat andMatrixIOU alone. Finally, Hungarian

algorithm (Kuhn, 2010) is deployed for an association of various

plants based on theMatrixfinal.

In order to tackle the situation of re-identifying a plant that

goes out of the camera field of view for a long time and re-

appears in the current frame, an object library is built to store

the plants that have appeared before. The plants in the object

FIGURE 6

The structure of the proposed data association method based on the proposed feature extraction.
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library are ordered by their ID numbers. When constructing

the cost matrix Matrixfeat, MatrixIOU, and Matrixfinal, match

candidates are searched from neighbors around the biggest ID

that appeared in the previous frame. If thematching cost is larger

than a predefined threshold, a new ID is assigned. An example

is shown in Figure 6, there are three plants in the middle part

of images of the previous frame and the current frame whose

plant feature can be extracted as stated in Section 3.2.1. Since

the biggest ID in the previous frame is 130, when constructing

the cost matrix, matching candidates are searched from the

neighbors of 130, i.e., from 130− x1 to 130+ x2. Then, the cost

matrixMatrixfinal is computed between the detected plants with

the proposed feature, i.e., Det1, Det2, and Det3, and plants from

130− x1 to 130+ x2 in the object library according to Equation

(5). After applying the Hungarian method, Det1, Det2, and Det3

are matched to ID 130, 129, and 128, respectively.

Finally, we focus on the plants on top and bottom of the

images, whose features cannot be extracted as described in

Section 3.2.1, since they do not have complete top or bottom

neighbors. To assign IDs to these plants, first, the travel direction

of the robot is determined by comparing image coordinates of

plants in the middle part of images that have been successfully

detected and tracked. Then, those plants which are going to go

out of the camera’s field of view are matched with plants in the

previous frame. Those plants which are newly appeared in the

camera field of view are further divided into new cases. If the

ID of the nearest successfully detected and tracked plant in the

middle part of the image is equal to the maximum ID of the

object library, then a new ID is assigned to the newly appeared

plant. Otherwise, they arematched with local neighbors of plants

in the middle.

Two examples are shown in Figure 7. The robot travels

forward from the starting point until the plant with ID 20 in

Figure 7A, then it keeps traveling until the plant with ID 30,

and then reverses back to the plant with ID 20 in Figure 7B. In

both images, red rectangles denote plants whose features can be

extracted as described in Section 3.2.1, blue rectangles denote

plants that are matched with previously appeared plants, and

green rectangles denote plants that are assigned with new IDs.

In Figure 7A, the robot travels up, so plants with IDs 14 and

15 are matched with plants in the previous frame. Similarly

in Figure 7B, the robot travels down, then plants with IDs 19

and 20 can also be matched with plants in the previous frame

in the same way. Regarding plants that are newly appeared in

FIGURE 7

ID assignment for plants whose features cannot be extracted as described in Section 3.2.1. In (A), the robot travels forward from the starting

point until the plant 20, and in (B), it keeps moving forward until the plant 30 and moves backward to the plant 20. Red rectangles represent

plants whose features can be extracted as described in Section 3.2.1, blue rectangles denote plants that are matched with previously appeared

plants, and green rectangles denote plants that are assigned with new IDs.
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Figure 7A, since the object library has the maximum ID of 18,

which is equal to the ID of plant 18 in the current frame, new IDs

of 19 and 20 are assigned to these plants. However, in Figure 7B,

the maximum ID of the object library is 30 which is different

from the ID of plant 16 in the current frame, they are matched

with neighbors of plant 16, and then matched to plants with IDs

of 14 and 15.

4. Experimental results

In this section, implementation details of the proposed

method, evaluation metrics for MOT accuracy, results of the

proposed method, and its comparison with four state-of-the-

art methods, as well as limitations of the proposed method

are discussed.

4.1. Implementation details

As mentioned before, YOLO-V5 is employed as the detector

in our method. Specifically, we choose to use the YOLO-V5m

model of YOLO-V5 as our detector because it has both high

inference speed and detection accuracy. It is trained on two parts

of training data corresponding to two growth stages of lettuces in

Table 1 based on the pre-trained model on COCO dataset with

the SGD optimizer for 150 epochs. A NVIDIA RTX 2080Ti GPU

is used for training and inference. The learning rate is initialized

with 1e−2, and the input resolution of the neural net is set to be

640×640.

For the other four state-of-the-art MOT methods, which are

ByteTrack, FairMOT, TraDeS, and SORT1, we finetune them on

our dataset using their default hyperparameters. We conduct

150 epochs of training for each method on the pretrained model

provided by the authors.

4.2. Evaluation metrics

The evaluation of MOT task is more complex than the

detection and segmentation task. Multiple Object Tracking

Accuracy (MOTA) (Bernardin and Stiefelhagen, 2008) is

commonly used in many existing MOT works, but it is

also shown to be affected by the detection and cannot well

reflect the quality of data association in a method. To resolve

this, Ristani et al. (2016) proposed identity related measures,

i.e., Identification Recall (IDR), Identification Precision (IDP),

and IDF1, which can better reflect the performance of

1 The following open source implementations are used in the

experiment. ByteTrack: https://github.com/ifzhang/ByteTrack, FairMOT:

https://github.com/ifzhang/FairMOT, TraDeS: https://github.com/

JialianW/TraDeS and SORT: https://github.com/abewley/sort.

data association. Formulations of IDR, IDP, and IDF1 are

summarized as follows,

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
, (6)

IDR =
IDTP

IDTP + IDFN
, (7)

IDP =
IDTP

IDTP + IDFP
, (8)

where IDTP, IDFN, and IDFP refer to the number of true

positive, false negative, and false positive ID assignment,

respectively. In addition, ID Switch (IDSW) (Bernardin and

Stiefelhagen, 2008; Li et al., 2009) is proposed to measure the

stability of tracking.

Another popular metrics for evaluating MOT accuracy is

Higher Order Tracking Accuracy (HOTA) presented by Luiten

et al. (2021), which balances between detection and association

performance. HOTA is calculated by detection accuracy score

(DetA) and association accuracy score (AssA) as follows,

HOTA =
√
DetA · AssA. (9)

Among them, AssA is a combination of association accuracy

score (AssRe) and association precision (AssPr) as follows,

AssA =
AssRe · AssPr

AssRe+ AssPr − AssRe · AssPr
, (10)

where AssRe reflects the proportion of predicted trajectories

in ground truth trajectories, and AssPr measures the accuracy

of predicted trajectories tracking the trajectories in the ground

truth. The detailed description of DetA, AssA, AssRe, and AssPr

can be found in the original work (Luiten et al., 2021), which is

omitted here for the brevity of the paper. In general, HOTA can

better reflect the human’s visual perception for MOT evaluation.

In this paper, we compute the above-mentioned

MOT evaluation metrics with the MOTChallenge official

kit2 (Dendorfer et al., 2021).

4.3. Results and discussions

We evaluate the MOT performance of the proposed

method and four state-of-the-art methods with our dataset

using the evaluation metrics mentioned above. The results are

summarized in Table 2. In the table, test − straight1 and test −
straight2, test − B&F1, and test − B&F2 indicate the situations

where the robot travels only forward and the situations where

the robot travels both forward and backward in the first and

second growth stages, respectively.

2 https://github.com/JonathonLuiten/TrackEval

Frontiers in Plant Science 10 frontiersin.org

https://doi.org/10.3389/fpls.2022.1003243
https://github.com/ifzhang/ByteTrack
https://github.com/ifzhang/FairMOT
https://github.com/JialianW/TraDeS
https://github.com/JialianW/TraDeS
https://github.com/abewley/sort
https://github.com/JonathonLuiten/TrackEval
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2022.1003243

TABLE 2 Performance of the proposed method and comparison to four state-of-the-art Multiple Object Tracking (MOT) methods.

Dataset Method IDSWa ↓ HOTA(%)↑DetA(%)↑ AssA(%)↑ AssRe(%)↑AssPr(%)↑IDF1(%)↑IDR(%)↑ IDP(%)↑ FPS ↑

Test-straight1 ByteTrack 0 61.010 58.492 64.246 67.990 86.835 83.586 72.824 98.080 30.13

FairMOT 57 75.800 76.029 75.889 78.878 89.468 91.261 87.338 95.553 27.04

TraDeS 59 69.292 82.572 58.675 80.109 67.936 71.471 69.121 73.986 23.84

Sort 0 80.014 79.661 80.337 84.330 91.313 94.011 90.360 97.970 98.281

ours 10 77.589 79.405 75.814 76.860 95.734 86.053 77.336 96.984 91.85

Test-B&F1 ByteTrack 89 45.963 58.947 36.439 37.775 85.711 50.661 44.849 58.204 29.69

FairMOT 1,710 40.203 63.200 25.878 26.571 75.102 41.858 36.753 48.610 28.57

TraDeS 220 47.119 83.570 26.866 42.121 58.283 45.782 44.670 46.952 23.21

Sort 86 58.314 78.574 43.301 44.386 91.722 54.283 51.633 57.221 98.355

ours 53 76.809 79.691 74.032 75.423 94.496 85.295 76.756 95.973 91.62

Test-straight2 ByteTrack 0 55.553 53.609 57.860 62.545 83.010 76.976 66.687 91.020 29.63

FairMOT 17 71.706 70.980 72.810 75.893 88.247 90.674 84.958 97.215 29.09

TraDeS 10 63.437 88.991 45.361 90.234 48.031 51.250 50.642 51.873 24.57

Sort 0 78.080 77.733 78.462 82.992 88.878 94.116 90.962 97.496 97.717

ours 3 71.617 71.255 71.987 72.319 98.974 84.070 72.545 99.949 92.00

Test-B&F2 ByteTrack 131 37.297 46.163 31.227 32.528 82.975 45.124 37.639 56.325 29.51

FairMOT 1,102 42.513 63.676 28.730 29.586 81.424 41.663 37.240 47.278 27.65

TraDeS 187 52.445 89.490 30.823 45.931 58.509 50.359 49.882 50.845 23.36

Sort 133 52.812 71.886 38.871 39.981 88.304 48.362 45.194 52.009 97.108

ours 50 70.315 72.238 68.445 69.527 95.551 81.857 70.876 96.865 89.80

aSymbols ↑ and ↓ after the evaluation metrics indicate the value of it is the higher the better or the lower the better, respectively. The bold numbers show the best performing method.

It can be seen from the table that SORT performs the

best among other methods overall in terms of HOTA and

IDSW, in the test data test − straight1 and test − straight2

where the robot only moves forward. Our method is slightly

worse than SORT but better or similar to other methods. It is

because this is a simple situation where all plants move in one

direction in captured images, and SORT is especially suitable

for such cases. Other state-of-the-art methods like FairMOT

and TraDeS try to extract plant features for re-identification.

However, different from human tracking, individual plants are

visually quite similar to each other in terms of both color and

texture. Therefore, the advanced object feature extraction and

matching for object re-identification parts of FairMOT and

TraDeS sometime provide misleading information. Our method

also performs feature extraction and matching, but our feature

extraction is based on the geometric relationship of a plant with

its neighbors. Therefore, it provides better differentiation than

the image feature of an individual plant, thereby suffering less

from similar appearance of plants.

In the test data test − B&F1 and test − B&F2 where

the robot moves both forward and backward, our method

shows significantly better performance than other state-of-

the-art methods, thanks to the proposed feature extraction

and data association strategies. Other state-of-the-art methods

cannot handle the situation where a plant disappeared from

the camera field of view a long time ago and re-appears again

and will assign new a ID to this plant. However, the proposed

method can successfully search and re-identify the plant from

its object library by comparing the proposed feature. For the

robotic precision spray application, this is quite meaningful

since assigning a new ID to the same plant means spraying the

same plant twice.

In addition, to investigate the impact of the color contrast

of the captured images on the performance of the proposed

method, experiments are conducted by changing the color

contracts of all images in the dataset. As shown in Figure 8,

we change the original images in the dataset to be grayscale

images, images with a contrast factor of 0.5 and images with a

contrast factor of 1.5. The proposedmethod is trained and tested

on the dataset with different color contrasts independently, and

the results are summarized in Table 3. We can see from the

table that in the test data of test − straight1 and test − B&F1,

the performances of our method with images of different color

contrasts are quite similar. In test data of test − straight2 and

test−B&F2, the performance of our method with the gray-scale

images is noticeably lower than those of the other three. This

is mainly because there exists a certain level of over exposure

in the captured images of test − straight2 and test − B&F2,

which increase the difficulty of detection, especially with the

grayscale images, as shown in Figure 8B. In comparison, lettuces

aremore clear in the grayscale images of test−straight1 and test−
B&F1, as shown in Figure 8A. In summary, the performance
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FIGURE 8

Images in the dataset with di�erent color contrasts. (A,B) are images of lettuces in the rosette stage and the heading stage. Images from left to

right correspond to the original images, the gray-scale images, images with a contrast factor of 0.5, and images with a contrast factor of 1.5,

respectively.

of the proposed method is generally similar with images of

different color contrasts, when captured images are clear and not

overexposed. However, when the images of lettuces are not very

clear, e.g., when they are overexposed, the performance tends to

degrade especially with the grayscale images.

Qualitative comparisons of MOT performance between the

proposed method and other state-of-the-art methods in the test

data test−B&F1 and test−B&F2 are shown in Figure 9. In both

Figures 9A,B, the blue arrows in the figure indicate the direction

of robot motion. Specifically, the robot moves forward to a place

and captures images in the left columns. It continues its travel

for a while, then reverses back, comes to the same place, and

captures images in the right columns of Figures 9A,B. Thus, the

left and right columns show images of the same plants when the

robot moves forward and reverses back. It can be seen that only

the proposed method successfully re-identifies the same plants,

while other methods assign new IDs for them. Note that in the

left columns of Figures 9A,B, although SORT, as well as other

methods, shows different ID numbers to ground truth ID labels,

it does not necessarily mean the assigned ID is incorrect. In fact,

as long as IDs for plants are consistent during the whole process,

the result is acceptable.

The inference speed is shown in Table 2 in terms of inference

FPS. We can see from the table that the FPS of SORT is the

highest among others since it does not need to extract object

features. Although our method also extracts features of plants

and perform data association, this process takes very little time,

and it is only less than 10% slower than SORT while significantly

better than othermethods. Since the average FPS of the proposed

method is approximately 90 FPS, it well meets the requirements

of the real-time robotic spray action.

4.4. Limitations

There are two limitations that exist in the proposedmethods.

First, our method assumes that the positions of targets to

be detected and tracked are fixed on the ground. While

it is obviously true for robotic precision spray application,

it is not the general case of MOT in computer vision
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TABLE 3 Performance of the proposed method with images of di�erent color contrasts.

Dataset Image Tpye IDSWa ↓ HOTA(%) ↑ DetA(%) ↑ AssA(%) ↑ AssRe(%) ↑ AssPr(%) ↑ IDF1(%) ↑ IDR(%) ↑ IDP(%) ↑ FPS ↑

Test-straight1 Gray-scale Image 10 77.530 79.376 75.728 76.809 95.691 86.066 77.357 96.985 91.09

Image with contrast factor of 0.5 22 76.488 79.408 73.677 75.409 93.258 84.409 75.867 95.117 91.22

Image with contrast factor of 1.5 13 77.592 79.453 75.775 76.814 95.698 85.995 77.293 96.905 90.47

Original Image 10 77.589 79.405 75.814 76.860 95.734 86.053 77.336 96.984 91.85

Test-B&F1 Gray-scale Image 36 77.922 79.798 76.090 77.245 95.679 86.692 78.038 97.504 90.65

Image with contrast factor of 0.5 46 77.511 79.771 75.316 76.495 95.354 86.121 77.531 96.852 93.07

Image with contrast factor of 1.5 46 77.526 79.863 75.256 76.613 94.854 86.166 77.591 96.873 90.09

Original Image 53 76.809 79.691 74.032 75.423 94.496 85.295 76.756 95.973 91.62

Test-straight2 Gray-scale Image 19 66.250 66.352 66.303 67.717 92.335 82.240 71.126 97.469 91.92

Image with contrast factor of 0.5 3 71.710 71.367 72.060 72.422 98.883 84.202 72.741 99.950 88.51

Image with contrast factor of 1.5 3 71.083 70.730 71.450 71.889 98.468 83.987 72.447 99.899 90.32

Original Image 3 71.617 71.255 71.987 72.319 98.974 84.070 72.545 99.949 92.00

Test-B&F2 Gray-scale Image 197 62.834 67.143 58.908 61.252 86.497 77.363 67.149 91.242 87.74

Image with contrast factor of 0.5 45 70.688 72.256 69.156 69.901 96.457 82.190 71.201 97.192 86.79

Image with contrast factor of 1.5 62 69.719 71.904 67.604 68.788 94.844 81.475 70.540 96.421 84.77

Original Image 50 70.315 72.238 68.445 69.527 95.551 81.857 70.876 96.865 89.80

aSymbols ↑ and ↓ after the evaluation metrics indicate the value of it is the higher the better or the lower the better, respectively. The bold numbers show the best performing method.
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FIGURE 9

Qualitative comparisons of the proposed method and other state-of-the-art methods in the test data test− B&F1 and test− B&F2 where the

robot moves both forward and backward. (A) results on test−B&F1 and (B) results test−B&F2. The left and right columns of (A,B) show images

of the same plants when the robot moves forward and reverses back.
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society, but a special case of it. Second, it can be seen

from the experimental results that the performance of the

proposed method is similar to or a little worse than the

best performing method, SORT, when the robot travels

forward only. Its advantages over other state-of-the-art methods

become obvious when the robot moves back and forth,

which is quite normal in reality, e.g., it needs to avoid

dynamic obstacles.

5. Conclusions

In this paper, an MOT method, LettuceTrack, for detection

and tracking of lettuces is presented to solve robotic precision

spray application. We propose a novel feature extraction and

data association strategy to re-identify plants which go out of

the camera’s field of view and re-appear again. This ensures

the robot to correctly recognize the same plant and spray

them only once when it needs to reverse back for different

reasons. Experimental validation of the proposed method is

conducted using the dataset collected by our agricultural robot

on a lettuce farm, and a comparison with other state-of-

the-art methods has been provided. The results show that

the proposed method shows superior performance to other

methods by successfully re-identifying the same plants when

the robot travels back and forth. The proposed method

also runs at a high-speed of 90 FPS, which confirms its

real-time deployment at the camera frame rate, i.e., around

30 FPS. Furthermore, limitations of the proposed method

are also provided. The future work is to find a global re-

identification strategy for the robot to recognize the same

plants when it completely moves out of the farm and re-enters

it again.
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