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Infection caused by Fusarium head blight (FHB) has severely damaged the 

quality and yield of wheat in China and threatened the health of humans 

and livestock. Inaccurate disease detection increases the use cost of 

pesticide and pollutes farmland, highlighting the need for FHB detection in 

wheat fields. The combination of spectral and spatial information provided 

by image analysis facilitates the detection of infection-related damage in 

crops. In this study, an effective detection method for wheat FHB based 

on unmanned aerial vehicle (UAV) hyperspectral images was explored by 

fusing spectral features and image features. Spectral features mainly refer 

to band features, and image features mainly include texture and color 

features. Our aim was to explain all aspects of wheat infection through 

multi-class feature fusion and to find the best FHB detection method for 

field wheat combining current advanced algorithms. We  first evaluated 

the quality of the two acquired UAV images and eliminated the excessively 

noisy bands in the images. Then, the spectral features, texture features, 

and color features in the images were extracted. The random forest 

(RF) algorithm was used to optimize features, and the importance value 

of the features determined whether the features were retained. Feature 

combinations included spectral features, spectral and texture features 

fusion, and the fusion of spectral, texture, and color features to combine 

support vector machine, RF, and back propagation neural network in 

constructing wheat FHB detection models. The results showed that the 

model based on the fusion of spectral, texture, and color features using the 

RF algorithm achieved the best performance, with a prediction accuracy of 

85%. The method proposed in this study may provide an effective way of 

FHB detection in field wheat.
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Introduction

Wheat is the second largest grain crop in China. The stable 
and high yield of wheat has been the focus of agricultural 
production (Huang et al., 2020). Fusarium head blight (FHB), also 
known as scab, is a devastating wheat disease caused by the fungal 
plant pathogen Fusarium graminearum (Gibberella). Fusarium-
infected wheat typically results in small, low mass, and shrunken 
grains, which can rapidly lead to very large crop losses and quality 
degradation (Bauriegel et al., 2011b). Furthermore, the fungus 
produces a large number of mycotoxins (deoxynivalenol, nivalenol 
and zearalenones etc.), among which the most toxic 
deoxynivalenol (DON) can disrupt normal cell function by 
inhibiting protein synthesis, posing a significant threat to human 
and animal health (Barbedo et al., 2015). In recent years, with 
global climate change, wheat FHB infection has become 
increasingly serious, resulting in severe damage to wheat quality 
and yields. Ineffective FHB management practices hinder the 
profitable and sustainable production of wheat, affecting its 
economic and social benefits in China. Therefore, the detection of 
disease development of wheat is important and essential for 
successful disease control.

Traditional FHB detection mainly relies on professionals to 
scout the development of wheat infection through visual 
interpretation, or scholars use chemical methods, such as gas 
chromatography (GC) (Simsek et al., 2012), high performance 
liquid chromatography (HPLC) (Simsek et al., 2012), enzyme-
linked immunosorbent assay (ELISA) (Maragos et al., 2006), and 
polymerase chain reaction (PCR) (Amar et al., 2012; Atoui et al., 
2012) to detect FHB and DON production. However, these 
methods are time-consuming, labor-intensive, unable to achieve 
large-scale monitoring, and are destructive to wheat. Remote 
sensing technology has been widely used in the monitoring and 
identification of wheat FHB with nondestructive inspections and 
rapid measurements. At present, monitoring of wheat FHB using 
remote sensing technology is mainly manifested in three aspects: 
(i) identify wheat kernels with varying degrees of damage under 
laboratory conditions to accurately judge the quality of wheat 
kernels (Delwiche et al., 2011; Barbedo et al., 2015; Jaillais et al., 
2015; Alisaac et al., 2019; Femenias et al., 2020; Liang et al., 2020; 
Zhang D. Y. et al., 2020a; Zhang  D. Y.  et al., 2020b); (ii) use 
remote sensing technology to capture the information of 
individual or canopy wheat infected with FHB to accurately detect 
the disease (Dammer et al., 2011; Menesatti et al., 2013; Whetton 
et al., 2018a,b; Huang et al., 2019b; Zhang et al., 2019; Huang et al., 
2020; Ma et al., 2020; Huang et al., 2021); and (iii) monitor wheat 
FHB on a regional scale with remote sensing (Liu et al., 2020b). 
However, there are many limitations in these studies. The 
inspection of wheat kernels has a time lag that only allows the use 
of kernels with different qualities and cannot fundamentally 
ameliorate wheat infection. Quantitative detection studies at the 
single plant scale or canopy scale only provides a theoretical 
reference without the spatial distribution of wheat infection to 
meet the needs of practical applications. Optical satellite images 

are at risk of being covered by clouds, and FHB may occur severely 
and frequently in cloudy and foggy areas, reducing the availability 
of remote sensing images (Liu et al., 2020a). Therefore, there is an 
urgent need for new technological means to solve the 
current problems.

Unmanned aerial vehicles (UAVs) are considered a practical 
detection method for crop pests and diseases. Unlike near-ground 
and satellite-based remote sensing platforms, applications of UAV 
have the advantages of large coverage, high efficiency, and 
flexibility (Fu et al., 2022; Zhu et al., 2022a). UAV can collect very 
high-resolution images and data in a cost-effective manner over a 
short period of time (Ye et  al., 2020). As a new technological 
means, UAV technology has made significant progress in crop 
classification, growth monitoring, and identification of pests and 
diseases. UAV also allows for a proper balance between image 
quality, sensing efficiency, and operating cost (Li et al., 2019). At 
present, UAV images are mainly divided into multispectral images 
and hyperspectral images. Hyperspectral images have dozens to 
hundreds of continuous and subdivided spectral bands in the 
ultraviolet, visible, near-infrared, and mid-infrared regions, 
making them more sensitive to the reflected energy of light and 
increasingly available (Liu et al., 2020a). Hyperspectral images can 
provide image and spectral data of each pixel, thus detecting the 
internal chemical compositions and external phenotypic traits of 
objects (Zhang D. Y. et al., 2020b). Currently, there are few reports 
on the detection of FHB infection in wheat using UAV 
hyperspectral technology (Liu et al., 2020a; Ma et al., 2021; Xiao 
et al., 2021). We attempted to use UAV hyperspectral technology 
to explore wheat FHB detection methods in our study. What’s 
more, scholars have primarily mined spectral features that could 
characterize physiological and biochemical changes (such as 
moisture, pigment, etc.), as well as considered texture features that 
can represent spatial changes of wheat to detect FHB. In fact, the 
infected wheat tissue usually transitions from green (healthy 
tissue) to yellow–white (diseased tissue) as the disease progresses. 
Color has been proven to be  the most effective means to 
distinguish different image objects and realize object recognition 
among phenotypic traits (e.g., color, texture, and size) extracted 
from images (Zhang et al., 2018). However, the application of UAV 
color features in FHB detection has not been explored. Therefore, 
this study combines color features to further explore the wheat 
FHB detection methods based on UAV hyperspectral images.

Our study investigated the potential of fusing spectral and 
image features of UAV hyperspectral images to improve the ability 
of detecting wheat FHB in the field. The overall technical flow 
chart is shown in Figure 1. First, we determined the most suitable 
sensitive spectral features to identify FHB; these features reflect 
the disease stress of the host. Second, we extracted texture features 
that could represent the disease distribution based on band images 
containing the most disease information. Finally, we calculated 
the color features that characterize disease incidence. 
We  combined multiple algorithms to construct classification 
models and examine the effect of multi-features on the detection 
accuracy of FHB. Our goals were to (1) evaluate the performance 

https://doi.org/10.3389/fpls.2022.1004427
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1004427

Frontiers in Plant Science 03 frontiersin.org

of UAV hyperspectral images in identifying wheat FHB 
occurrence; (2) evaluate the potential of multi-features in FHB 
detection; (3) explore the best classification method for UAV 
images; and (4) map the occurrence of FHB in a wheat field using 
the optimal model. In general, we developed a novel method for 
FHB detection based on UAV images, which forms a basis for the 
precise prevention and control of FHB.

Materials and methods

Experiment site and data acquisition

Our experiment site was situated in the Anhui Agricultural 
University Production Base (31°290 N, 117°130E) in Lujiang 
County, Anhui Province, China (Figure 2). The main wheat variety 
in this area is Yangmai 25, which is susceptible to FHB. Zero tillage 
and a typical subtropical humid monsoon climate provide favorable 
conditions for the occurrence of wheat FHB in this region. 
According to the Anhui Meteorological Service, the average 
temperature from April to early May 2019 in Lujiang County was 
about 20°C, accompanied by several days of rainfall. The wheat was 
in the flowering period in April. Sufficient fungus sources and 
climatic conditions caused natural wheat FHB in the experiment site.

Data were sourced from UAV image acquisition and field 
investigation. The UAV images were obtained using an M600 Pro 
aircraft of Dajang Innovations (DJI) during the wheat filling stage 

on May 3 and 8, 2019. This system was equipped with a Cubert 
S185 FireflEYE SE hyperspectral imaging camera (Cubert GmbH, 
Ulm, Baden-Württemberg, Germany), which can collect the 
reflected radiation in the 450–950 nm range. The spectral sampling 
interval was 4 nm, and there were 125 bands in total. The UAV 
flew at a speed of 3 m/s at an altitude of 60 m. The camera triggers 
at a frequency of 0.8 s, with a forward overlap of 80% and a side 
overlap of 65%. All UAV images were collected under clear 
weather and cloudless skies between 11 a.m. and 1 p.m. (local 
time). Before capturing hyperspectral images, radiometric 
correction of the camera was required. A panchromatic image 
with high spatial resolution and hyperspectral cube image with a 
low spatial resolution were fused and spliced for subsequent 
analysis. The final hyperspectral images had a spatial resolution of 
4 cm. Field investigation experiments were carried out while 
capturing the UAV images. Fifty plots (each with an area of 1 m2) 
were evenly selected across the experiment field. These plots were 
used as ground sample points to verify the quality of the UAV 
images. To accurately locate the sampling points, we  fixed a 
flagpole next to each point. The canopy spectral reflectance of the 
sample points was collected using an ASD FieldSpec Pro 
spectrometer (Analytical Spectral Devices, Inc., Boulder, CO, 
USA), which has a spectral resolution of 3 nm in the range of 
350–1,000 nm and 10 nm in the range of 1,000–2,500 nm. All 
canopy spectral measurements were carried out at a height of 
about 1.3 m above the ground, and 10 measurements were taken 
at each sample point. A BaSO4 calibration panel was used before 

FIGURE 1

Methodological framework.
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each measurement to correct for changes in illumination 
conditions, and the average was used as the final canopy spectrum. 
According to the rules for monitoring and forecasting wheat head 
blight suggested by the National Plant Protection Department of 
China (Chinese Standard: GB/T 15796–2011), the diseased ear 
ratio (DER) in each plot can be expressed by the ratio of diseased 
ears to the total investigated ears. The wheat planting density in 
the study area was relatively uniform. Then, we randomly selected 
50 wheat plants at every sample point and recorded the number 
of diseased wheat plants by visual interpretation. DER was divided 
into five classes: 0.1% < DER ≤ 10% (Class 1), 10% < DER ≤ 20% 
(Class 2), 20% < DER ≤ 30% (Class 3), 30% < DER ≤ 40% (Class 4), 
and DER > 40% (Class 5). Actually, wheat fields with more than 
30% infected wheat are severely damaged, and those with less than 
10% are mildly damaged. Therefore, we reclassified DER into three 
grades: mild infection (0.1% < DER ≤ 10%), moderate infection 
(10% < DER ≤ 30%), and severe infection (DER > 30%) for 
subsequent analysis.

Data processing and analysis

Data quality assessment of UAV
UAV hyperspectral images are obtained by fusing and splicing 

a panchromatic image and hyperspectral cube image. UAV is 
prone to the impact of objective factors such as shaking in flight. 
Therefore, it is necessary to evaluate the image quality before 
identifying wheat FHB in the field. ASD spectrometers are widely 
used in agricultural remote sensing monitoring, and their spectral 
information is often used as an important basis for monitoring 

crop pests and diseases (Cao et al., 2013; Ashourloo et al., 2014; 
Zheng et al., 2018; Huang et al., 2019a; Ma et al., 2020). In this 
study, we used ASD spectral data as a criterion to evaluate the 
quality of UAV images (Bareth et al., 2015; Gao et al., 2016; Chen 
et  al., 2018). First, we  extracted and averaged the spectral 
reflectance of all pixels in the sample points to obtain the UAV 
spectral information in the same region as the ASD measurement. 
Second, we analyzed the spectral variations between the two data 
sets by resampling the ASD canopy spectrum and determining the 
differences in the waveforms. Finally, we calculated the correlation 
between the resampled ASD spectrum and the UAV spectrum in 
the 450–950 nm range. If there is a strong correlation between the 
data measured by the two sensors and the same spectral curve, 
then the UAV data are considered reliable.

Optimal feature selection for wheat FHB 
detection

The UAV hyperspectral images captured in this study contain 
125 spectral bands, from visible to near infrared, which reflect the 
internal physiological and biochemical changes of wheat after 
pathogen infection (Li et al., 2014). In addition, wheat presents 
different spatial distributions as FHB severity increases, as 
indicated by the texture and color features of an image. Here, 
we detected FHB of the wheat field by extracting key features from 
images captured on May 3 and 8. The wheat was at the same 
growth stage on both dates; therefore, any feature changes between 
the two dates were mainly due to disease development rather than 
the wheat growth. It should be noted that the extracted features 
are not only spectral features but also include image features 
(texture and color features). Moreover, the extracted features may 

FIGURE 2

Location of the experiment site and field investigation samples. The star in the left map represents the location of the experiment site, and the 
right map is the experiment field photographed by the UAV, where red marks the location of the field investigation point.
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contain invalid information and thus be  insensitive to wheat 
FHB. A random forest (RF) algorithm was adopted to further 
reduce data redundancy and develop efficient models.

The spectral features for each plot were extracted from 
hyperspectral images using the region of interest (ROI) tool in 
ENVI 5.3 software. The feature extraction method is the same as 
that used in data quality assessment of UAV. We extracted and 
averaged the spectral reflectance of all pixels contained in the 
sample point as the final spectral value of each sample point. The 
texture features were extracted by the gray level co-occurrence 
matrix (GLCM) method (Zhang et al., 2017). The GLCM method 
is a classical statistical analysis technique that describes texture by 
studying the spatial correlation characteristics of the gray level 
(Guo et al., 2020). The mean, variance, homogeneity, contrast, 
dissimilarity, entropy, second moment, and correlation were 
extracted for FHB detection analysis. Table 1 describes the texture 
features. Before texture feature extraction, the principal 
component analysis (PCA) method was used to reduce the 
dimensionality of the hyperspectral images and generate principal 
component images containing only three bands. The first three 
bands contain most of the information (the cumulative variance 
exceeds 97%); thus, the texture features were extracted from the 
gray images corresponding to the three bands. The extraction of 

texture features was completed with ENVI 5.3 software, and the 
specific process occurred in four steps (Fu et al., 2022): (1) select 
the gray images in “Texture Input File” dialog, (2) select the 
necessary texture features in the check box, (3) set the processing 
window size to 3 × 3 (the smallest window size guarantees the 
highest resolution), and (4) set the output path and calculate the 
texture values. A total of 24 texture features were calculated.

For the color features selection, we calculated color indices 
through band combinations to indicate different aspects of wheat 
infection (Li et al., 2019; Huang et al., 2020; Ge et al., 2021). Color 
feature is the most widely used visual feature in image retrieval; it 
is usually related to the object or scene contained in the image; at 
the same time, color feature is less dependent on the size, 
orientation, and perspective of the image itself, making it highly 
robust (Huang et  al., 2020). During the mild infection stage, 
several wheat plants were withered and yellowed in the field. As 
the infection worsened, the damaged area gradually increased 
(Figure 3). Chromatic aberration can be used to distinguish the 
severity of FHB. In this study, three wavelengths (694, 542, and 
482 nm) of the hyperspectral images were used to synthesize RGB 
images and extract color features. The extracted color features 
mainly included Excess Blue Vegetation Index (ExB), Excess 
Green Vegetation Index (ExG), Excess Red Vegetation Index 
(ExR), Green Leaf Algorithm (GLA), Kawashima Index (IKAW), 
Modified Green Red Vegetation Index (MGRVI), Normalized 
Green-Red Difference Index (NGRDI), Red Green Blue Vegetation 
Index (RGBVI), Visible Atmospherically Resistant Index (VARI), 
and Woebbecke Index (WI). Details of the 10 color features 
mentioned in this paper are shown in Table 2.

Rational selection of the important features in wheat FHB 
detection is the most critical step in image analysis. RF consists of 
multiple decision trees, which can calculate the importance of 
individual feature variables. The feature evaluation method is 
called “embedding,” which integrates the features of the filter and 
wrapper methods (Pal and Foody, 2010). We  evaluated the 
importance of features by calculating the contribution rate of each 
feature in the random forest, as measured by the Gini index (Deng 

TABLE 1 The texture feature used in the study and descriptions.

Texture feature Abbreviation Content

Mean mea Average of grey levels

Variance var Change in greyscale

Homogeneity hom Local homogeneity, as opposed to 

contrast

Contrast con Clarity of texture

Dissimilarity dis Similarity of the pixels

Entropy ent Diversity of the pixels

Second Moment sem Uniformity in greyscale

Correlation cor Ductility of grey value

FIGURE 3

Different incidences of wheat in the field: mild infection (left), moderate infection (center), and severe infection (right).
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and Runger, 2013). To reduce the random error generated during 
the operation of the random forest algorithm, an average of 20 
algorithms was set as the final importance score of each feature. 
Analysis of variance (ANOVA) was used to further test the ability 
of selected features to separate mild, moderate, and severe 
disease samples.

Classification model construction and 
evaluation

Using MATLAB R2016b (MathWorks, Natick, MA, USA), 
three algorithms, support vector machine (SVM), RF, and a back 
propagation neural network (BPNN) were the basis for the 
detection models of wheat FHB.

SVM is a supervised learning algorithm that realizes the best 
generalization ability and prevents overfitting by trying to find a 
compromise between the minimum calibration set error and the 
maximum edge error; it is one of the most powerful classifiers 
(Faris et al., 2017). SVM is expected to find an optimal hyperplane 
to divide the samples and ultimately create a convex quadratic 
programming problem that only provides global minima 
(avoiding local minima). When the variables cannot be separated 
linearly, SVM can use the kernel function to project variables into 
higher-dimensional feature space, which makes linear division 
easier (Xia et  al., 2016). Compared with other classifiers that 
require a large number of samples, SVM can find the optimal 
solution on the basis of existing samples, so it has better 
applicability to limited samples, lower computational complexity, 
and less training time. The kernel function, kernel parameter size, 
and penalty parameter are important factors affecting the 
performance of the SVM model. We  chose the radial basis 
function as the kernel function and used the grid optimization 
method to search for the best parameters to obtain better 
model accuracy.

The RF algorithm, proposed by Breiman (2001), is a popular 
ensemble learning algorithm in classification, prediction, and 
feature selection (Breiman, 2001). When using the RF algorithm 
for classification, the final label of the input sample is determined 
by voting for each decision tree in the random forest (Guo et al., 

2011; Zhu et al., 2022b). Random resampling and node random 
splitting techniques are used to train the RF model (Gislason et al., 
2006). RF is advantageous in remote sensing image processing 
(Rodriguez-Galiano et al., 2012): (1) RF is less computationally 
intensive than other tree ensemble methods (such as Boosting) 
and less prone to overfitting; (2) RF has a strong ability to resist 
noise and outliers, can tolerate a certain amount of data loss, and 
has good robustness to noise and outliers; (3) RF can analyze 
complex classification features and measure the importance of 
variables; (4) RF supports high dimensional data and generates an 
internal unbiased estimate of generalization error (“out of bag” 
error). In this study, the number of model decision trees was set 
to 200, and other parameters were kept as the default.

BPNN is one of the most widely used network models in 
remote sensing (Yang et al., 2011). It is a multi-layer feedforward 
neural network based on error backpropagation algorithm 
training, usually including an input layer, hidden layer, and output 
layer. When a set of information is inputted, the network can 
achieve the target accuracy through continuous repeated training 
and adjustment so as to produce satisfactory results. The algorithm 
continuously collects the errors generated by the model during the 
training period, returns these errors as output values through back 
propagation, and then continuously adjusts the weight of each 
neuron according to the error value. Finally, the best classification 
by the model is achieved.

A total of 100 samples with mild, moderate, and severe disease 
progression were randomly divided into the calibration set and 
prediction set (4:1 ratio). The calibration set was used for model 
construction, and the prediction set was preliminarily used to 
evaluate the capabilities of the model classification. To further 
evaluate the accuracy and prevent the model from overfitting, the 
validation set was used to verify the generalization ability of the 
model. We  employed a five-fold cross-validation method to 
equally divide the dataset into five parts, each of which was an 
independent validation set. The accuracy of each validation set 
was evaluated, and the average was used as the final model 
validation accuracy. The calibration accuracy, prediction accuracy, 
and validation accuracy demonstrated the model’s ability to detect 
wheat FHB in our study. Using ArcGIS 10.6 software to map the 
damage of wheat FHB, and calculate the ratio of the number of 

TABLE 2 The color feature used in the study and descriptions.

Color feature (abbreviation) Full name Formula Reference

ExB Excess Blue Vegetation Index 1.4B-G Li et al. (2019)

ExG Excess Green Vegetation Index 2G-R-B Woebbecke et al. (1995)

ExR Excess Red Vegetation Index 1.4R-G Meyer and Neto (2008)

GLA Green Leaf Algorithm (2G-R-B)/(2G + R + B) Louhaichi et al. (2001)

IKAW Kawashima Index (R-B)/(R + B) Kawashima and Nakatani (1998)

MGRVI Modified Green Red Vegetation Index (G2-R2)/(G2 + R2) Tucker (1979)

NGRDI Normalized Green-Red Difference Index (G-R)/(G + R) Tucker (1979)

RGBVI Red Green Blue Vegetation Index (G2-B × R)/(G2 + B × R) Bendig et al. (2015)

VARI Visible Atmospherically Resistant Index (G-R)/(G + R-B) Gitelson et al. (2002)

WI Woebbecke Index (G-B)/(R-G) Woebbecke et al. (1995)
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infected pixels to the number of healthy pixels to statistics the 
proportion of wheat areas with different infection grades.

Results

UAV data quality verification based on 
canopy data

Figure 4A shows the original mean spectrum of canopy wheat 
measured by the ASD spectrometer and extracted from the UAV 
images over 450–950 nm. From the perspective of waveform 
similarity, the variations of the two spectra in the visible to near-
infrared region (450–850 nm) are consistent, with significant 
peaks (near 550 nm) and troughs (near 680 nm). However, the 
spectrum measured by the ASD spectrometer is lower than the 
spectrum extracted by the UAV images overall. Above 850 nm, the 
spectral reflectance of the UAV images gradually decreases, and 
the spectral curve shows a significant downward trend compared 
with that of ASD, while the ASD spectral curve has little 
fluctuation. Figure  4B shows the correlation between UAV 
spectrum and ASD spectrum in the range of 450–950 nm. The two 
spectra are highly correlated, with R2 above 0.97, which indicates 
that the image quality of UAV is trustworthy. The correlation 
between the UAV spectrum and ASD spectrum within 
450–850 nm was further analyzed: R2 reached 0.99 (Figure 4C). 
Thus, the band greater than 850 nm greatly influences the UAV 
images. Therefore, the last 100 bands of the UAV images were 
excluded from post-processing.

Optimal spectral and image features

The RF algorithm was used to evaluate the importance of each 
feature in the FHB detection models to filter out redundant 
features. Figure 5 depicts the importance distribution of spectral 
and image features. The greater the weight, the more important 
the corresponding features. According to sequential backward 
elimination, all features with weights greater than 0.2 were selected 
to detect wheat samples with mild, moderate, and severe infection; 
the result was five spectral features, three texture features, and two 
color features (Table  3). The weights of the selected spectral 
features were much higher than remaining spectral features 
(Figure  5A). One selected spectral feature was located in the 
visible region, three were located in the red edge region, and one 
was located in the near-infrared region. For the image features, 
three texture features and two color features were selected to 
illustrate the distributions of disease and the degree of infection in 
wheat; the maximum weight of selected image features reached 
0.39. Table 4 demonstrates the separation ability of these selected 
features to detect mild, moderate, and severe samples by 
ANOVA. In general, the selected features show different mean and 
standard deviation values among multi-class samples. There were 
significant differences among the mild, moderate, and severe 

samples of all features, and the significance level reached 0.95. 
Therefore, the selected features have strong separation ability to 
detect infected samples in this study.

Model construction

The purpose of our study is to effectively identify field FHB 
based on the fusion of spectral and image features of UAV images 
to be able to control the development of field diseases in a timely 

A

B

C

FIGURE 4

Curve comparison and correlation of UAV and ASD spectra. 
(A) Curves of ASD and UAV spectra. (B) Correlation between the 
two types of curves at 450–950 nm. (C) Correlation between the 
two types of curves at 450–850 nm.
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TABLE 4 Statistical characteristics of feature values of the mild, 
moderate, and severe disease samples.

Feature Sample 
category

Mean of 
feature

Std. 
deviation

P-Value 
(ANOVA)

band1 Mild 0.059 0.013 0.002

Moderate 0.063 0.014

Severe 0.076 0.011

band2 Mild 0.054 0.017 0.035

Moderate 0.057 0.019

Severe 0.071 0.016

band3 Mild 0.155 0.041 0.001

Moderate 0.168 0.039

Severe 0.209 0.030

band4 Mild 0.312 0.070 0.000

Moderate 0.345 0.065

Severe 0.418 0.054

band5 Mild 0.374 0.084 0.000

Moderate 0.411 0.079

Severe 0.496 0.062

mea1 Mild 21.88 3.383 0.038

Moderate 21.32 4.067

Severe 18.56 2.238

mea3 Mild 37.03 11.207 0.003

Moderate 32.66 10.748

Severe 24.12 6.161

hom3 Mild 0.78 0.112 0.019

Moderate 0.80 0.083

Severe 0.76 0.100

MGRVI Mild −0.32 0.037 0.031

Moderate −0.35 0.059

Severe −0.40 0.046

NGRDI Mild −0.16 0.024 0.030

Moderate −0.18 0.032

Severe −0.21 0.027

manner. Therefore, the classification models were developed by 
combining different feature fusion with SVM, RF, and BPNN for 
the analysis of wheat FHB detection. The calibration accuracy and 
prediction accuracy of the models are shown in Table  5. The 
precisions of models constructed based on different feature 

variables are significantly different. The integration of spectral, 
texture, and color features seems to achieve the best accuracy. 
When spectral features were used as model inputs, the RF model 
performed best with a prediction accuracy of 70%, followed by 
BPNN and SVM with prediction accuracies of 65 and 60%, 
respectively. When considering the integration of spectral and 
texture features, the accuracy of the three classification models 

A

B

C

FIGURE 5

The importance distributions of various features based on the RF 
algorithm. (A-C) represent the weights of spectral features, 
texture features, and color features, respectively.

TABLE 3 The features selected by importance ranking.

Type Variable number Selected Features

Spectral features 5 band1(518 nm), 

band2(666 nm), 

band3(706 nm), 

band4(742 nm) and 

band5(846 nm)

Texture features 3 mean1, mean3 and hom3

Color features 2 MGRVI and NGRDI
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was improved by 10%, and the RF model achieved the highest 
accuracy at 80%. When spectral, texture, and color features were 
integrated as input variables, the prediction accuracy of the RF 
model was further improved to 85%. The prediction accuracy of 
the SVM model remained unchanged, but the prediction accuracy 
of the BPNN model was also improved by 5%. The calibration 
accuracy of the model also shows the same trend as the prediction 
accuracy. Among all models, the calibration accuracy of the RF 
model reached 100%. With the addition of image features, the 
calibration accuracy of the model continued to improve. The 
above results indicate that the fusion of spectral and image features 
can improve the performance of the model through texture and 
color features in terms of identifying wheat FHB. The five-fold 
cross-validation method was used to further verify the model to 
prove its universality. The validation results are shown in Table 5. 
The results show that the highest validation accuracy was 83%, 
which is reflected in the integration of spectral feature, texture 
feature, color feature, and RF algorithm. The above results show 
that the spectral and image feature fusion combined with the RF 
algorithm can benefit the rapid detection and accurate analysis of 
a wheat field with mild, moderate, and severe infection.

To understand the spatial distribution of FHB-infected wheat 
in the study area, models based on different feature integrations 
and the optimal RF algorithm were adapted to map the damage of 
wheat FHB on May 3 and 8, 2019. The results are shown in 
Figure 6. From the mapping results, the wheat infection degree 
increased over time. Although the infection had spread over the 
entire farmland on May 3, the wheat in the field showed mild and 
moderate infection, and severe infection was almost zero 
(sporadic distribution). However, on May 8, almost all wheat in 
the study area showed moderate or severe infection, indicating 
that a large outbreak rapidly occurred. Table 6 summarizes the 
proportions of wheat area with mild infection, moderate infection, 
and severe infection corresponding to each figure in Figure 6. 
Moderate infection impacted more than 75% of the wheat on May 
8, and the severe infection impacted more than 10%. The addition 
of image features improved the model in terms of detecting 
severely infected wheat. The proportion of severely infected wheat 
on May 8 in Figure 6B (18.12%) and Figure 6C (18.85%) is higher 
than that in Figure 6A (11.73%); these results are mainly reflected 

in the presence of some severe infection along the edge of the plot. 
This severe infection phenomenon is consistent with our field 
survey results.

Discussion

In the present work, the detailed information contained in 
UAV hyperspectral images were fully exploited to help identify 
wheat FHB in the field. FHB can change the pigment, water 
content, and cell structure of wheat, as well as the structure, shape, 
and color of the wheat canopy. Therefore, we fused the spectral 
features that represent internal physiological changes with the 
image features that represent the spatial information of wheat to 
effectively detect wheat FHB.

Before analyzing the UAV images, we  first evaluated the 
quality of the UAV hyperspectral images, which is a critical step 
to ensure that the UAV images accurate identify FHB. We evaluated 
the quality of the UAV images by comparing and analyzing the 
data obtained from an ASD spectrometer. The spectral curves of 
the wheat sample points extracted from the UAV images share a 
common trend with those of the ASD spectral: a peak and a 
trough in the VIS–NIR region. However, the values of the ASD 
spectra were lower than the spectral values obtained from the 
UAV images, which is likely due to the influence of the 
bidirectional reflectance distribution function (BRDF) caused by 
the difference in the geometrical positions of the sun-target-
sensors of the two data sets. Some studies have proven that BRDF 
has a significant impact on UAV hyperspectral data (Burkart et al., 
2015). Above 850 nm, the UAV spectral curve shows a downward 
trend compared with the ASD spectral curve, while the ASD 
spectral curve has little variation, which is consistent with other 
scholars’ observations (Gao et al., 2016; Chen et al., 2018). The 
sensor may have too much noise at the detection boundary. 
Furthermore, it need cloud-free conditions on the measurement 
day, so there is a long time interval between the UAV flight and 
ASD information collection, as well as changes in light conditions. 
According to Figure 4, the spectral reflectance of sample points 
obtained by different sensors is significantly correlated within 
450–850 nm (R2 of 0.99). ASD hyperspectral data are an extensive 

TABLE 5 Model classification accuracy based on different features and algorithms.

Feature Classification algorithm Calibration accuracy (%) Prediction accuracy (%) Validation accuracy (%)

Spectral RF 100 70 70

SVM 63 60 59

BPNN 78 65 72

Spectral + texture RF 100 80 79

SVM 70 70 60

BPNN 76 75 76

Spectral + texture + color RF 100 85 83

SVM 74 70 63

BPNN 84 80 83

Bold values indicate the optimal algorithm and highest accuracy.
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remote sensing identification method for crop pests and diseases 
(Cao et al., 2013; Shi et al., 2018; Guo et al., 2020). This spectrum 
has been used to accurately identify field wheat FHB (Huang et al., 
2019a,b; Ma et al., 2020). The high correlation between UAV and 
ASD spectra further proves the reliability of UAV images.

Next, we extracted the band features, texture features, and 
color features contained in the hyperspectral images. Table 3 
shows the details of the extracted features. The band features 

we extracted are mainly located in the green edge, red edge, 
and near-infrared region. The green edge is mainly related to 
the content of wheat pigments (including carotenoids and 
chlorophyll) (Al Masri et al., 2017; Zhang Z. P. et al., 2020b), 
and the position of the red edge is sensitive to the movement 
of the red edge caused by the change of chlorophyll 
concentrations (Zhang Z. P. et  al., 2020a). Near-infrared 
wavelengths are primarily related to wheat moisture content, 

A

B

C

FIGURE 6

Damage maps for May 3 (left) and May 8 (right) based on different feature combinations and the RF algorithm. (A) Spectral features. (B) Spectral 
and texture features. (C) Spectral, texture, and color features.
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as FHB-infected wheat is accompanied by a temporary increase 
in transpiration and tissue desiccation (Bauriegel et al., 2011a). 
The VIS–NIR bands in hyperspectral images are proposed to 
overcome visual symptom disassociations with DON 
contamination. Because the DON concentration of wheat is at 
a low level in the early stages and the typical symptoms of 
Fusarium damage cannot be  detected visually, the spectral 
features are more conducive to observing the early symptoms 
of wheat infection (Femenias et al., 2020; Zhang et al., 2021). 
The GLCM-based texture feature extraction method was based 
on Fu et al. (2022). The GLCM method describes the texture by 
studying the spatial correlation characteristics of the gray levels 
(Haralick and Shanmugam, 1973). In fact, texture information 
can help distinguish the spatial information independent of 
tone to identify objects or regions of interest in an image, but 
it is not recommended to use it by itself due to the poor 
performance of texture parameters (Sarker and Nichol, 2011). 
Previously, auxiliary texture information was effectively 
combined with spectral information to significantly improve 
the accuracy of wheat GPC estimation (Fu et  al., 2022). 
Therefore, in this study, we  attempted to fuse texture and 
spectral features to improve the detection accuracy of field 
FHB. The results demonstrate that texture features can serve as 
complementary information to increase the dimensionality of 
UAV hyperspectral image data (Table  5). In addition, 
we calculated some color features by band combinations to 
indicate different aspects of wheat infection. While texture 
features may add additional information to FHB estimation, 
crop infection is more directly related to color information 
rather than the spatial arrangement of colors (Li et al., 2019). 
What’s more, since color images highlight specific vegetation 
greenness and are considered to be less sensitive to changes in 
light conditions, color features extracted from RGB images 
have the potential to provide crop growth and nutritional 
status, immediately providing researchers and farmers with a 
realistic and intuitive visualization of crop growth status (Du 
and Noguchi, 2017; Ge et al., 2021). At present, some scholars 
use color features to estimate the nitrogen density of winter 
wheat leaves (Rorie et al., 2011), estimate the leaf area index of 
rice (Li et al., 2019), monitor the growth status of wheat (Du 
and Noguchi, 2017), and accurately detect wheat FHB at the 
spikes scale (Huang et al., 2020). However, the effect of FHB 

detection of field wheat based on color features has not been 
explored yet. Therefore, in this study, we further supplemented 
color features in the input models based on spectral and texture 
features to identify wheat FHB. Actually, color features in UAV 
digital images are usually based on RGB cameras because UAV 
systems with RGB cameras are inexpensive, compact, and 
convenient. In the future, a UAV system suitable for FHB 
monitoring in the field should be considered. The RGB bands 
in this study are a basis for future RGB cameras, avoiding the 
complexity of hyperspectral data processing.

Table 5 shows the model classification results of field wheat 
with different degrees of infection according to different input 
variables. The addition of texture and color features can further 
improve the accuracy of the model compared to methods that 
use spectral features to detect wheat FHB. As seen in Table 6, 
the improvement of accuracy is mainly manifested in the 
difference in the model’s detection of mild, moderate, and 
severe disease samples. In the early stage of wheat FHB 
infection (May 3), 57.16% and 42.76% of the field wheat with 
mild and moderate infection, respectively, could be identified 
by the model using spectral features. With the addition of 
texture features and color features, the proportion of mildly 
infected wheat in the field identified by the model gradually 
decreased, and the proportion of moderately infected wheat 
increased. In the late stage of wheat FHB infection (May 8), the 
model indicated that the proportions of mildly and moderately 
infected wheat gradually decreased with the addition of image 
features, and the severely infected area gradually increased. 
That is to say, before the image features are added, the model 
always misses the wheat with more severe disease. In fact, as 
the wheat infection spread, the dry and white areas of the 
wheat ears became larger until the wheat died (Huang et al., 
2020). The addition of image features can enable the model to 
capture this process. When the information contained in the 
model increases, the detection of samples with severe disease 
improves, which is consistent with the results in our study.

The research shows that the fusion of spectral and image 
features can distinguish the disease incidence of wheat in the 
field; this method can help future precision agriculture and large 
area wheat FHB monitoring. However, current research still 
exists limitations. In addition to considering spectral features, 
texture features, and color features, some vegetation features, 
such as Structure Insensitive Pigment Index (SIPI), Anthocyanin 
Reflectance Index (ARI), Normalized Difference Vegetation 
Index (NDVI), and Plant Senescence Reflection Index (PSRI), are 
often used to reflect plant disease stress status (Xiao et al., 2021). 
Hence, the effectiveness of the vegetation features in wheat FHB 
detection based on UAV hyperspectral images is worth 
considering. Additionally, only three machine learning 
algorithms (RF, BPNN, and SVM) were used in this study. The 
generalization ability of the models in the temporal and spatial 
dimensions must be verified. Further consideration can be given 
to combining data augmentation and deep learning methods to 
develop more stable and independent models, as well as reduce 

TABLE 6 The percentages of mildly, moderately, and severely infected 
wheat corresponding to the damage maps.

Feature Data Mild 
(%)

Moderate 
(%)

Severe 
(%)

Sum 
(%)

Spectral May 3 57.16 42.76 0.08 100

May 8 5.72 82.55 11.73 100

Spectral + texture May 3 55.45 44.45 0.10 100

May 8 5.67 76.21 18.12 100

Spectral + texture + color May 3 53.82 46.11 0.08 100

May 8 5.26 75.88 18.85 100
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the uncertainty of model applicability in other regions. Scale has 
become a popular topic in remote sensing research, and the 
information contained in a single pixel under different resolutions 
will change significantly. Appropriate spatial resolution images 
for agricultural monitoring are needed (Na et al., 2016). Our 
study only used two images with a spatial resolution of 4 cm to 
detect FHB, which is relatively simple. Various spatial resolution 
images are worth considering in the future. Finally, the 
occurrence of wheat FHB is related to the time of infection 
(Alisaac et  al., 2020) and meteorological factors, such as 
temperature and humidity. In the future, we will aim to consider 
wheat infection time and meteorological factors to explore early 
FHB detection methods and effectively prevent and control FHB 
occurrence and outbreak. The influence of wheat varieties and the 
development of various pests and diseases on the spread of wheat 
FHB cannot be ignored. More researches are needed to investigate 
the influence of varieties and multiple infections on the model 
performance in the future.

Conclusion

In this study, the quantitative detection of wheat with mild, 
moderate, and severe FHB infection in the field was achieved by 
fusing spectral and image features extracted from the UAV 
hyperspectral images. After obtaining the hyperspectral images, 
we first evaluated the quality of the images and identified the data 
in the 450–850 nm band for subsequent analysis by comparing 
waveform similarity and correlation with ASD hyperspectral 
data. Then, we  extracted the spectral features that reflect the 
physiological and biochemical changes within the host, as well as 
the texture and color features that characterize the spatial changes 
of wheat. The RF algorithm was used to further eliminate 
redundant features and improve the operating efficiency of the 
model. Finally, FHB quantitative detection models, based on 
different combinations of spectral features, texture features, and 
color features were formulated by combining BPNN, SVM, and 
RF algorithms. We  evaluated the classification results of the 
different models, and the FHB-related wheat damage was mapped 
using the best algorithm. The results show that the spectral 
features can potentially determine the damage level of FHB, but 
the performance of the models is not satisfactory. The fusion of 
spectral features and texture features can improve the model 
detection level, but the maximum prediction accuracy of the 
models was only 80%. The model based on the fusion of spectral, 
texture, and color features was best, and the prediction accuracy 
of the RF algorithm reached 85%. The damage map illustrates 
that wheat FHB developed very rapidly over a short time, causing 
destruction of the crop. This study builds upon previous models 
in terms of feature types, monitoring methods, and monitoring 
areas and provides a new methodology for FHB detection in the 
field by deeply mining features in UAV images and combining 
multiple spectral advantages.
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