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Wheat crops are highly sensitive to high temperatures during their

reproductive and grain-filling phases. We hypothesized that potassium could

increase thermotolerance in wheat during grain filling by protecting cellular

organelles, particularly chlorophyll, from heat injury. Two wheat genotypes,

Ujala-16 (relatively heat tolerant) and Anaj-17 (relatively susceptible) were

grown in pots and were submitted to 4 and 8 days of heat stress under

polythene sheets 1 week after anthesis. One day before the onset of heat

stress, 2% potassium (K) as K2SO4 was sprayed on all the plants. Flag leaves

from both genotypes were collected after 4 and 8 days of heat stress.

Leaf physiology changes were measured to quantify heat damage and to

understand the K-induced recovery mechanism. The crop was harvested

125 days after sowing, and grain yield data were collected. Increasing

duration of heat stress significantly impaired leaf physiology and grain yield

of both studied wheat genotypes. Compared with control (under optimum

temperature), 4 and 8 days heat-stressed plants produced 11 and 19% lesser

grain yield per spike (averaged across genotypes and in the second years

of study), respectively. Likewise, 4- and 8-days heat-stressed plants had 15

and 37% (averaged across genotypes and in the second years of study)

lower flag leaf photosynthesis, respectively, compared with control plants.

Across the genotypes, 8-days heat caused significantly more grain yield loss

in Anaj-17 during the second year than in Ujala-16. Foliar K significantly

restored leaf chlorophyll, Pn, Fv/Fm by reducing cellular membrane damage

in the heat-stressed plants. This physiological recovery and activation of the

plant defensive system by K under high-temperature stress protected the

growth and grain development. For example, K−treated plants produced 19%

higher 1,000 grain weight in 8 days of heat stress (across genotypes and in
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the second years of study) compared with water-treated plants under the

hot environment of the respective thermal regime. Our study suggests that

wheat performance under terminal heat stress can be improved through the

exogenous application of K.

KEYWORDS

wheat, potassium, foliar spray, grain filling, post-anthesis, heat stress, thermo-
tolerance

Introduction

Global climate change and shifts in weather patterns have
significantly increased the frequency of heat events during
reproductive growth phases of wheat crops in many parts of the
world (Ullah et al., 2020; Collins et al., 2022). Short episodes of
heat during the early to mid-grain filling phase of wheat severely
affect cell biochemistry, physiology, and overall grain yields
(Ullah and Chenu, 2019; Shenoda et al., 2021). Yearly variations
in grain yield recorded in many wheat-growing countries are
associated with the rapid changes in temperature during grain
filling (Djanaguiraman et al., 2020). For wheat crop, 21–23◦C
is considered the optimum temperature during grain filling
(Porter and Gawith, 1999), and grain yield is reduced by 6% for
each 1◦C rise above this optimum temperature (Asseng et al.,
2015). During the last 100 years, the global mean air temperature
has increased by 0.8◦C, and a further 2–4◦C increase is projected
for 2050 (IPCC, 2014). Numerous workers have reported that
high temperature during grain filling reduces grain number and
weight in wheat (El Sabagh et al., 2019; Ullah et al., 2019).
Even a brief episode of heat (1 day) during early grain setting
significantly diminishes wheat grain yield (Talukder et al., 2014).

Depending on severity and duration, post-anthesis heat
stress limits carbohydrate formation and translocation toward
developing grains (Sharkey, 2005). The reduction in growth
and yield under a hot environment is associated with
impaired physiological plant functioning. For example, high
temperature in field crops disturbs the balance between
reactive oxygen species (ROS) and the plant defensive system
(Sarwar et al., 2017, 2018, 2019, 2021). Heat-induced cell
membrane leakage during grain filling indicates oxidative
damage to cellular organelles in wheat crops (Dias et al.,
2010). Damage to leaf chlorophyll under hot environments
results in poor photosynthesis (Pn), stomatal conductance
(Gs), and chlorophyll fluorescence (Fv/Fm), and it inhibits the
physiological functioning of wheat crops (Feng et al., 2014).
Similarly, high temperature during grain-filling accelerates flag
leaf senescence by 25% (Talukder et al., 2014; Djanaguiraman
et al., 2020), although wheat genotypes with superior leaf
greenness could sustain grain yield hot heat stress (Ullah et al.,
2019; Mirosavljević et al., 2021). Similarly, genotypes with a

capacity to sustain total soluble sugars (TSS), antioxidants, Pn,
Gs are more adapted to heat stress (Sun et al., 2014; Nagar et al.,
2015; Bala and Sikder, 2017).

Several approaches have been used for improving heat stress
tolerance in crops, i.e., by developing heat-tolerant genotypes
(Mondal et al., 2016), adjusting sowing dates (Saeed et al.,
2017), and applying compatible solutes (Siddique et al., 2018),
signaling molecules (Sarwar et al., 2021) growth regulators (Hu
et al., 2016), and nutrients (Waraich et al., 2012; Sarwar et al.,
2019). Foliar application of nutrients is one of the critical
cultural practices for mitigating the adverse effects of heat
stress on field crops (Raghunath et al., 2021). High temperature
reduces nutrient uptake, and their utilization and partitioning in
crops (Matías et al., 2021). Exogenous application of potassium
increases leaf chlorophyll contents at grain filling of wheat. At
the same time, higher leaf potassium in wheat and cotton crops
under high-temperature stress also increases leaf chlorophyll
contents (Zahoor et al., 2017).

Potassium, which is relatively immobile in soil, moves slowly
by diffusion (Barber, 1984), and at grain filling of wheat, the K
requirement is not met in calcarious soils even when the soil
contains an adequate amount of potassium (Jifon and Lester,
2009). Despite the fact that K is relatively immobile in soil,
it moves slowly through diffusion in the soil profile (Gäth
et al., 1989), and even more slowly in soils with low cation
exchange capacity (Wells et al., 1982). Under any abiotic stress,
the plant expends its energy (ATP) to save its life (by producing
compatible solutes and HSP), resulting in fewer ATPs available
for roots to activate K+ uptake (Lester et al., 2005). When
potassium uptake decreases, there is a deficiency within the root
and leaf cells, and the concentration of reactive oxygen species
in the cells increases (Shin and Schachtman, 2004). The Ca++

and K+ channels are affected by increased ROS production, and
increased Ca++ concentration pushes potassium out of the cell
(Pei et al., 2000). Foliar spray of K activates the defense system
in heat-stressed wheat plants, protecting membranes from
oxidative damage and strengthening physiological functioning
(Shahid et al., 2020). For example, K foliar spray improved leaf
Pn and carbon assimilation of heat-stressed wheat (Hassanein
et al., 2013; Dhyani et al., 2016; Chaurasiya et al., 2018) by
protecting chlorophyll contents and the membrane stability
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from oxidative damage (Rahman et al., 2014; Lv et al., 2017).
Similarly, wheat genotypes sprayed with K at 70–80 days after
sowing (DAS) exhibited significantly superior stay-green traits
and produced higher grain yield under heat stress (Rahman
et al., 2014).

Despite the positive impact of K on heat-stressed wheat,
limited literature is available on how K protects developing
wheat grains from short- and long-term heat spells. In this
study, we quantified the impact of short and long episodes
of heat on wheat on wheat grains and explored the specific
role of K on grain yield formation. We hypothesized that
(1) short and long-duration heat spells after anthesis impair
plant physiology and reduce grain yield, and (2) potassium
could increase thermotolerance in wheat during grain filling
by protecting cellular organelles, particularly chlorophyll, from
heat injury. The specific objectives of this study were: (1) to
quantify the impact of short and long heat spells on wheat
crops under controlled conditions, (2) to develop a technique
to analyze heat damage, and (3) to explore the potential of K for
alleviating wheat crop from heat damage.

Materials and methods

The pot experiment was conducted in the wirehouse of
the University of Agriculture, Faisalabad, Pakistan, during the
Rabi season, 2018–2019, to observe the effects of heat durations
and K on wheat genotypes 1 week after anthesis. The mean
maximum temperature under polythene sheet for 4 and 8 days
of heat stress, 1 week after anthesis, in 2019 was 29 and 28◦C,
respectively, while in 2020, the mean maximum temperature
was 32 and 33◦C for 4 and 8 days of heat stress, respectively,
1 week after anthesis (Supplementary Table 1). By making small
holes in polythene sheets, relative humidity was kept between 70
and 80%. Water was applied to heat stress and ambient/natural
environment pots on daily basis by measuring pan evaporation
in order to maintain 100% field capacity in both heat stress
and ambient/ natural environment pots. Figure 1 depicts the
weather conditions throughout the crop growing season during
both years of study. The site is located at latitude 31◦-26′ N,
longitude 73◦-06′ E, and altitude = 184.4 m. In this study, we
used two wheat genotypes, Ujala-16 (relatively heat tolerant) and
Anaj-17 (relatively susceptible). These genotypes were screened
in a preliminary experiment based on relative cell injury,
net photosynthetic rate, stomatal conductance, chlorophyll
fluorescence, and seed yield (data not shown). The heat tolerant
genotypes showed less cell injury, more photosynthetic rate,
stomatal conductance chlorophyll fluorescence, and seed yield
over the heat susceptible genotypes (data not shown). Both
genotypes are commercially cultivated in wheat-growing areas
of Pakistan. The seeds were collected from Wheat Research
Institute, Ayub Agricultural Research Institute, Faisalabad,
Pakistan. Soil was analyzed before the sowing of crop and

had the properties as: organic matter 1.20 ± 0.025%; pH
8.2 ± 0.2, electrical conductivity (Ec-dS/m) 0.54 ± 0.013;
available potassium 210 ± 5.9 ppm; available phosphorous
24.2 ± 0.6 ppm; available zinc 1.35 ± 0.035 ppm and available
boron 0.7 ± 0.017 ppm. Each pot was filled with 18 kg soil
with a peat and silt ratio of 3:1. Fifteen seeds were planted
in each earthen pot (35 cm × 25 cm, length × width having
14.7 L capacity), which were thinned to 10 seedlings per pot
after 1 week of germination and each pot received 2.24 g of urea
(containing 46% nitrogen). Half of the nitrogen was applied at
sowing, and the other half was applied 20 days after sowing. The
pots were regularly watered to avoid heat drought complex.

Imposition of heat stress and
potassium

Seven days after anthesis, one set of plants (16 pots) was
exposed to heat stress for 4 days, and the other set (16 pots)
was subjected to heat stress for 8 days using a pierce polythene
sheet (Saleem et al., 2018). The control set (16 pots) was kept
in an ambient environment. Polythene sheet temperature was
recorded daily using a digital multimeter (Digital Multimeter-
50,302) during heat imposition. The polythene sheet and the
ambient temperatures are given in Table 1. Potassium (2%)
was sprayed on half of the pots of each set 1 day before the
start of the heat stress treatment. Potassium solution was mixed
with a surfactant Tween-80 at 0.1% v/v (1 ml/L) and was
applied early in the morning. In each pot, 80 ml of water was
sprayed at 8 ml/s. Elemental sulfur was also sprayed in control
pots of each set to account for the additional effects of sulfur.
Polythene sheets were removed immediately after 4 and 8 days,
and the data were collected for physiological and biochemical
attributes. The experimental treatments were arranged under a
completely randomized design (CRD) with split arrangements.
There were four replications for each treatment with heat stress
as the main factor while genotypes and foliar spray of K as
sub-factors.

Leaf biochemical attributes
For biochemical analysis, three flag leaves were collected

from each pot at the termination of heat stress treatment, i.e.,
4 and 8 days. A composite sample was prepared from the
leaves of each pot. A 0.5 g leaf sample was taken from the
composite sample for the extraction of enzymes and reactive
oxygen species. Superoxide dismutase (SOD) activity (U mg−1

protein) was measured by inhibiting nitro blue tetrazolium.
A reaction mixture of 100 µl enzyme extract was used in an
ELISA plate, and absorbance was recorded at 560 nm with an
ELISA plate reader (Giannopolitis and Ries, 1977). Guaiacol
oxidation procedure was used to quantify the leaf peroxidase
(POD) activity (U mg−1 protein), and reaction mixtures along
with 150 µl enzyme extract were taken in an ELISA plate, and
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FIGURE 1

Weather conditions during crop growth period (A) 2018–2019 (B) 2019–2020.

TABLE 1 Effect of optimal and stressful conditions of pots, potassium (K) spray and cultivars on superoxide dismutase (SOD U mg−1 protein),
peroxidase (POD U mg−1 protein), catalase (CAT U mg−1 protein), and total soluble sugars (TSS mg/g of DW) of wheat flag leaves under 4 and
8 days of heat stress 1 week after anthesis.

Thermal
regimes

Foliar spray
of

potassium

Cultivars SOD POD CAT TSS

2019 2020 2019 2020 2019 2020 2019 2020

Ambient
temperature

Water spray Ujala-16 71± 1.6 b 74± 1.81 a 34± 0.83 b 39± 0.92 c 80± 1.9 b 88± 2.1 b 22± 0.52 b 26± 0.57 b

Anaj-17 66± 1.52 c 69± 1.71 ab 29± 0.68 c 32± 0.78 d 78± 1.9 bc 80± 1.9 b 20± 0.48 b 22± 0.53 c

K (2%) Ujala-16 77± 1.90 a 80± 1.9 a 40± 1.01 a 69± 1.72 a 90± 2.2 a 100± 2.4 a 26± 0.58 a 32± 0.66 a

Anaj-17 70± 1.59 b 76± 1.85 a 33± 0.80 b 62± 1.42 b 82± 2.1 b 86± 2.1 b 25± 0.60 a 25± 0.61 b

2–3◦C± 2 rise
in temperature
for 4 days

Water spray Ujala-16 83± 2.0 b 88± 2.0 c 50± 1.2 b 65± 1.61 c 88± 2.3 b 112± 2.7 c 25± 0.61 b 34± 0.82 c

Anaj-17 72± 1.65 d 78± 1.90 d 35± 0.84 d 56± 1.41 d 82± 2.0 c 103± 2.6 d 22± 0.59 c 27± 0.69 d

K (2%) Ujala-16 91± 2.30 a 166± 4.12 a 65± 1.62 a 120± 3.01 a 100± 2.5 a 171± 4.2 a 32± 0.68 a 61± 1.47 a

Anaj-17 77± 1.88 c 150± 3.70 b 43± 1.10 c 110± 2.61 b 88± 2.2 b 159± 3.9 b 26± 0.61 b 52± 2.30 b

2–3◦C± 2 rise
in temperature
for 8 days

Water spray Ujala-16 89± 2.1 b 95± 2.32 c 59± 1.42 b 65± 1.60 c 100± 2.6 b 120± 3.1 c 31± 0.67 b 42± 1.02 c

Anaj-17 76± 1.88 d 84± 2.11 d 43± 1.11 d 61± 1.41 d 88± 2.1 d 106± 2.7 d 25± 0.60 c 33± 0.79 d

K (2%) Ujala-16 100± 2.4 a 172± 4.20 b 79± 2.1 a 135± 3.32 a 115± 2.9 a 245± 6.1 a 40± 1.01 a 73± 1.61 a

Anaj-17 83± 2.3 c 191± 4.71 a 53± 1.29 c 120± 3.10 b 95± 2.4 c 230± 5.9 b 30± 0.72 b 60± 1.45 b

HSD 3.10 6.60 2.42 3.84 3.51 8.63 1.27 1.67

Ujala-16 = Relatively heat tolerant, Anaj-17 = Relatively heat susceptible. Values are the means of four replications (n = 4)± SE and variants possessing the same letters are not statistically
significant at P < 0.01. HSD, honestly significant difference.

enzyme quantity was measured at 470 nm (Liu et al., 2009).
Hydrogen peroxide reactant was used to quantify the catalase
(CAT) activity (U mg−1 protein) using (Liu et al., 2009)
protocol. A reaction mixture containing 150 µl enzyme extract
was used in an ELISA plate reader, and the absorbance was taken
at 240 nm. The anthrone method measured total soluble sugars
(TSS) (Yemm and Willis, 1954). Dry leaf tissues (0.5 g) were
mixed with 5 ml of 95% ethanol. Alcoholic extract was preserved
in the refrigerator, and 1/10th was mixed with 3 ml anthrone.
The samples were placed in a boiling water bath for 10 min.

Total soluble sugars were measured at 625 nm. Soluble sugars
were quantified using glucose standard and measured as mg g−1

of DW of leaves. Leaf malondialdehyde (MDA) contents were
measured according to the procedure described by Cakmak and
Horst (1991). A 0.5 g leaf sample was homogenized with 3 ml
of 0.1% (w/v) trichloroacetic acid (TCA), and the supernatant
was extracted. A total of 3 ml of 20% TCA solution and
0.5% thiobarbituric acid were added to 0.5 ml of supernatant.
A mixture, leaf extract, and a blank was added to an ELIZA plate,
and the absorbance was measured at 532 and 600 nm.
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Relative cell injury
Three flag leaves from each pot were collected at 12:00

p.m. after the termination of 4 and 8 days of heat stress
and were averaged. A 10-mm diameter two leaf disks were
obtained from both sides of flag leaves. Both leaf discs
were washed 3-4 times with double distilled water and
poured into test tubes having deionized water. One set
of test tubes was treated in the water bath at 50◦C for
1 h, while the other set of test tubes was maintained
at room temperature at 25◦C for an hour. The initial
electrical conductivity (EC) was measured from both heat-
treated and control test tubes at room temperature with an
electrical conductivity meter (Model, Jenway 4510, Japan).
After taking the initial EC, both test tubes were autoclaved
(Model, HAU-85, Hirayam instruments, Tokyo, Japan) for
10 min at 0.1 MPa pressure. The final EC of both test
tubes was determined at room temperature. Relative cell
injury (RCI) was determined according to Sullivan (1972).

RCI% = 1−
1−

(
T1
T2

)
1−

(
C1
C2

) × 100 (1)

Where, C1 and C2 are the initial and final EC of control test
tubes and T1 and T2 are the initial and final EC readings of heat-
treated test tubes.

Photosynthetic parameters
Flag leaf gas exchange components and chlorophyll

fluorescence (Fv/Fm) from three plants of each pot were
measured immediately after removal 4 and 8 days heat
stress in both experiments at 10:00 to 12:00 h and were
averaged. An infrared gas analyzer (LCi Analyzer having
Broad Head, Part Number LCi-002/B with Serial Number
32455) was used to determine the net photosynthetic rate
(Pn, µ mol m−2 s−1) and stomatal conductance (Gs mol
m−2 s−1) at three different developmental phases of the
of wheat crop. These gas exchange characteristics were
measured from flag leaves. Thylakoid membrane stability was
assessed by measuring Fv/Fm using a Multi-mode chlorophyll
fluorometer (OptiScience, UK with Serial Number 0729501)
after 20 min dark adaptation of leaves. Maximum Fv/Fm
was calculated as an indicator of plant stress (Prasad et al.,
2008).

Three flag leaves from each pot and five flag leaves
from each plot of both experiments were collected before
sunset after removing heat stress to determine chlorophyll
a/b contents. A total of 0.5 g sub-sample from each pot
and plot leaves was taken and soaked overnight in 80%
acetone. A blank with 80% acetone and leaves extracts of
1.5 µl were taken in an ELISA plate, and the absorbance
was recorded at 645 and 663 nm wavelength in an ELISA
plate reader for chlorophyll a and b contents (Arnon,
1949).

Flag leaf senescence and yield observations
Three flag leaves from each pot were tagged to measure

the leaf senescence, yield per spike, and grain weight per
spike at the end of 4- and 8-days of heat stress. Flag leaf
senescence of selected plants was measured 1 day before and
7 days after heat stress. The senescence percentage of selected
leaves was measured with a measuring scale, and the values
were averaged. The crop was harvested 125 days after sowing,
and the number of grains per spike (NGPS), grain weight per
spike (GWPS-gram), seed yield per spike, seed weight per spike
and 1,000 grain weight were recorded from the selected plants
and were averaged.

Statistical analysis
A three-way analysis of variance was used to assess the

effect of heat levels × foliar spray of K × genotypes under
ambient and polythene sheet environments. Data at P ≤ 0.05
were analyzed statistically using Fisher’s analysis of variance
technique (Steel and Torrie, 1960). Tukey’s honestly significant
difference (Tukey’s HSD) test was employed to compare the
means at 1% using STATISTIX 10.1 software (Gomez and
Gomez, 1984). Before running the combined ANOVA, a
separate ANOVA was run for each factor. Graphs were drawn
using MS Excel-2016, and the correlation matrix and the PCA
analysis were performed in XL-STAT software.

Results

Grain yield and yield components
under heat stress of polythene sheets

The wheat crop responded variably to the studied years. At
4 and 8 days of heat stress, 1 week after anthesis, the mean
maximum temperature under polythene sheets was 29 and 28◦C
in 2019, while the temperature was 32 and 33◦C in 2020. The
mean maximum temperatures (both 4 and 8 days) in 2019
showed mild/non-significant effects on yield components, i.e.,
grain weight per spike, grain numbers per spike and 1,000
grain weight in both wheat genotypes. However, in 2020, the
4 hot days had a relatively lesser impact on yield components,
but the 8 hot days (33◦C ± 2) significantly reduced the grain
yield components in both genotypes. In the second year of the
study, for example, grain weight per spike, grain number per
spike and 1,000 grain weight were reduced by 15, 11, and 14%,
respectively, in 4 days of heat stress, and the decrease in three
yield attributes was 34, 19, and 37% in 8 days of heat stress
over the ambient/natural plants of respective thermal regimes
(Figures 2, 3A,B).

Ujala-16 Heat-sensitive genotype (Anaj-17) and heat
tolerant genotype (Ujala-16) produced 16% and 9% fewer
grains per spike (NGPS), respectively, in 4 days of heat stress,
while 26 and 15% fewer NGPS, respectively, in response to 8
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FIGURE 2

Impact of optimal, 4 and 8 days of heat stress (1 week after anthesis), potassium (K) spray and cultivars (heat × K × cultivars P < 0.01) on 1,000
grain weight (A) 2019 (B) 2020 and grain weight per spike (C) 2019 (D) 2020 of wheat. Values are the means of four replications (n = 4) ± SE and
variants possessing the same letters are not statistically significant at P < 0.01.
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FIGURE 3

Impact of optimal, 4 and 8 days of heat stress (1 week after anthesis), potassium (K) spray and cultivars (heat × K × cultivars P < 0.01) on number
of grains per spike (A) 2019 (B) 2020 and flag leaf senescence (C) 2019 (D) 2020 of wheat. Values are the means of four replications (n = 4) ± SE
and variants possessing the same letters are not statistically significant at P < 0.01.

hot days in the second year when compared with plants of
ambient environments (Figures 3A,B). Similarly, in the second
year, 1,000 grain weight of heat tolerant and heat susceptible
genotypes was reduced by 30 and 41% in response to 8 hot days,
respectively (Figures 2A,B). However, both genotypes produced
a similar grain yield under ambient conditions in both study
years.

Flag leaf senescence was increased in 4 and 8 days of heat
stress in both genotypes in the second year of study, but Anaj-17
showed relatively more damage than Ujala-16 (Figures 3C,D).

For example, 39 and 29% higher flag leaf senescence was
observed in Anaj-17 and Ujala-16, respectively, in 8 days of heat
stress over the ambient environment. Similarly, 4 days and 8 hot
days resulted in 12 and 35% more flag leaf senescence (average
across genotypes and the second year) than ambient plants.

Across genotypes, foliar K (2%) spray more effectively
increased the grain yield and leaf greenness of the heat tolerant
than of heat susceptible genotype under high-temperature
stress; however, K had no effect in both genotypes under
ambient environment (Figures 2, 3). Anaj-17Ujala-16Foliar

Frontiers in Plant Science 06 frontiersin.org

https://doi.org/10.3389/fpls.2022.100577{3}
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-1005773 October 12, 2022 Time: 14:14 # 7

Sarwar et al. 10.3389/fpls.2022.1005773

spray of K increased 1,000 grain weight of Anaj-17 and Ujala-
16 by 11 and 12% in the second years of study, respectively,
under 8 days of heat stress, while 6 and 8% increase was observed
in both genotypes under 4 days of heat stress over the non-K
treated plants of the respective thermal regime (Figures 2A,B).
Foliar spray of K also significantly reduced flag leaf senescence
by 14 and 16% in Ujala-16 under 4 and 8 days of heat stress over
Anaj-17 (during the second year) (Figures 3C,D). However,
the effect was not significant under an ambient environment.
Overall, wheat genotypes experienced 13% (averaged across
genotypes) more grain losses in response to 8 days of heat stress
over 4 days. 1,000 grain weight losses were 30% more in 8 than
in 4 hot days (Figures 2A,B). Across the genotypes, 8 days of
heat stress caused 34% more flag leaf senescence than 4 hot days.
Overall, foliar spray of K (2%) increased 7 and 9% NGPS; 7 and
12% 1,000 grain weight and reduced flag leaf senescence by 8%
and 10% across the genotypes under 4 and 8 days of heat stress,
respectively.

Leaf physiological functions in
response to heat stress under
polythene sheets

Across the genotypes and in the second year of study, Pn,
Gs and Fv/Fm were reduced by 14, 10, and 11% in 4 days heat-
stressed plants (32◦C ± 2), while 24, 21, and 22% reduction

were observed in 8 days heat-stressed plants (33◦C ± 2)
compared with plants of the ambient environment. Similarly,
under high-temperature stress, leaf chlorophyll contents and leaf
physiology were reduced more in heat susceptible genotypes
than heat tolerant genotypes. During the first year of study,
leaf physiological functions were not reduced prominently by
4 days (29◦C ± 2 averaged across) and 8 days of heat stress
(28◦C ± 2 averaged across) when compared with the ambient
environment. Exogenous application of K significantly restored
the leaf physiological traits (Pn, Gs, Fv/Fm and chl a) of heat
stressed plants across the 4 and 8 days of heat stress in the second
year of study, with a relatively more recovery in heat tolerant
genotype and under 8 days of heat stress (Ujala-16) (Tables 2, 3).
Across the genotypes, Pn, Gs, Fv/Fm and Chl a contents of
K-treated leaves were increased by 14, 10, 11, and 10% in 8 days
of heat-stressed plants compared with their non-K treated leaves
under respective heat environments (Tables 2, 3).

Both 4 and 8 days of post-anthesis heat significantly
increased lipid peroxidation (MDA) and relative cell injury
(RCI) in both genotypes, but the more considerable damage was
observed in 8 days of heat stress in Anaj-17 (heat susceptible
genotype) during the second year of study. While during the
first year of study, the effect of 4 and 8 days of heat stress was
not observed as prominent on MDA and RCI. Foliar spray of K
significantly reduced the MDA and RCI contents of both wheat
genotypes under both 4 and 8 days of heat stress (Table 2).
For example, K−treated plants had 34 and 23% lower MDA

TABLE 2 Effect of optimal and stressful conditions of pots, potassium (K) spray, and cultivars on malondialdehyde (MDA nmol g−1 FW), relative cell
injury (RCI%), net photosynthetic rate (Pn µmol m−2 s−1), and stomatal conductance (Gs m mol m−2 s−1) of wheat flag leaves under 4 and 8 days of
heat stress 1 week after anthesis.

Thermal
regimes

Foliar spray
of

potassium

Cultivars MDA RCI Pn Gs

2019 2020 2019 2020 2019 2020 2019 2020

Ambient
temperature

Water spray Ujala-16 0.55± 0.012 a 0.61± 0.014 b 43± 1.10 c 48± 1.18 b 30± 0.69 b 29± 0.69 b 0.91± 0.020 a 0.92± 0.020 a

Anaj-17 0.57± 0.013 a 0.81± 0.018 a 50± 1.21 a 54± 1.31 a 30± 0.68 b 29± 0.68 b 0.92± 0.019 a 0.91± 0.021 a

K (2%) Ujala-16 0.50± 0.011 c 0.42± 0.011 c 35± 0.50 d 40± 1.07 c 31± 0.71 a 30± 0.69 a 0.93± 0.021 a 0.91± 0.019 a

Anaj-17 0.54± 0.013 ab 0.63± 0.015 b 45± 1.14 b 50± 1.21 b 31± 0.70 a 30± 0.70 a 0.92± 0.022 a 0.91± 0.018 a

2–3◦C± 2 rise
in temperature
for 4 days

Water spray Ujala-16 0.59± 0.014 c 1.05± 0.026 b 46± 1.21 c 65± 1.59 b 29± 0.68 b 25± 0.58 b 0.86± 0.016 b 0.81± 0.019 c

Anaj-17 0.63± 0.012 a 1.41± 0.034 a 56± 1.38 a 88± 2.19 a 29± 0.69 b 24± 0.57 c 0.84± 0.021 b 0.77± 0.017 d

K (2%) Ujala-16 0.56± 0.013 d 0.75± 0.017 d 40± 0.97 d 52± 1.23 c 30± 0.70 a 28± 0.65 a 0.90± 0.019 a 0.88± 0.017 a

Anaj-17 0.60± 0.014 b 0.87± 0.021 c 51± 1.22 b 66± 1.61 b 29± 0.68 b 25± 0.59 b 0.88± 0.018 a 0.83± 0.020 b

2–3◦C± 2 rise
in temperature
for 8 days

Water spray Ujala-16 0.61± 0.015 c 1.40± 0.035 b 50± 1.20 a 82± 1.98 b 27± 0.66 b 22± 0.52 b 0.88± 0.017 a 0.73± 0.018 b

Anaj-17 0.67± 0.017 a 1.69± 0.041 a 49± 1.19 a 92± 2.27 a 26± 0.60 b 20± 0.49 c 0.85± 0.022 b 0.64± 0.015 d

K (2%) Ujala-16 0.56± 0.013 d 0.85± 0.021 d 45± 1.12 c 57± 1.39 c 29± 0.67 a 26± 0.53 a 0.90± 0.020 a 0.81± 0.021 a

Anaj-17 0.64± 0.016/ b 0.92± 0.023 c 47± 1.17 b 61± 1.51 c 28± 0.66 a 22± 0.51 b 0.86± 0.015 ab 0.70± 0.016 c

HSD 0.024 0.055 1.88 2.80 0.94 0.97 0.027 0.029

Ujala-16 = Relatively heat tolerant, Anaj-17 = Relatively heat susceptible. Values are the means of four replications (n = 4)± SE and variants possessing the same letters are not statistically
significant at P < 0.01. HSD, honestly significant difference.
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TABLE 3 Effect of optimal and stressful conditions of pots, potassium spray and cultivars on chlorophyll fluorescence (Fv/Fm) and chlorophyll
contents (Chl a, b mg g−1 FW) of wheat flag leaves under 4 and 8 days of heat stress 1 week after anthesis.

Thermal
regimes

Foliar spray of
potassium (K)

Cultivars Fv/Fm Chl a Chl b

2019 2020 2019 2020 2019 2020

Ambient
temperature

Water spray Ujala-16 0.94± 0.024 a 0.93± 0.022 a 1.75± 0.040 a 1.79± 0.043 a 0.23± 0.0049 a 0.27± 0.0054 c

Anaj-17 0.92± 0.021 ab 0.90± 0.020 ab 1.73± 0.039 a 1.76± 0.042 a 0.24± 0.0050 a 0.25± 0.0052 d

K (2%) Ujala-16 0.95± 0.023 a 0.94± 0.023 a 1.77± 0.042 a 1.80± 0.044 a 0.22± 0.004 ab 0.31± 0.0074 a

Anaj-17 0.96± 0.025 a 0.91± 0.021 ab 1.73± 0.041 a 1.78± 0.041 a 0.21± 0.0051 b 0.29± 0.0072 b

2–3◦C± 2 rise
in temperature
for 4 days

Water spray Ujala-16 0.87± 0.019 a 0.80± 0.018 c 1.71± 0.040 a 1.59± 0.037 c 0.26± 0.0064 b 0.31± 0.0073 c

Anaj-17 0.84± 0.018 ab 0.76± 0.017 d 1.67± 0.039 ab 1.53± 0.035 d 0.29± 0.0071 a 0.37± 0.0078 a

K (2%) Ujala-16 0.88± 0.020 a 0.87± 0.021 a 1.74± 0.042 a 1.69± 0.039 a 0.24± 0.0062 c 0.28± 0.007 d

Anaj-17 0.86± 0.018 a 0.81± 0.016 b 1.69± 0.038 ab 1.63± 0.037 b 0.25± 0.0063 c 0.34± 0.008 b

2–3◦C± 2 rise
in temperature
for 8 days

Water spray Ujala-16 0.83± 0.020 b 0.72± 0.015 c 1.65± 0.037 a 1.47± 0.032 c 0.31± 0.0076 a 0.45± 0.010 c

Anaj-17 0.81± 0.017 b 0.64± 0.014 d 1.61± 0.038 ab 1.39± 0.030 d 0.34± 0.078 b 0.55± 0.013 a

K (2%) Ujala-16 0.87± 0.020 a 0.78± 0.018 a 1.70± 0.042 a 1.61± 0.037 a 0.27± 0.0065 c 0.36± 0.009 d

Anaj-17 0.82± 0.018 b 0.73± 0.016 b 1.64± 0.034 ab 1.51± 0.036 b 0.30± 0.0077 d 0.47± 0.011 b

HSD 0.034 0.030 0.055 0.058 0.011 0.018

Ujala-16 = Relatively heat tolerant, Anaj-17 = Relatively heat susceptible. Values are the means of four replications (n = 4)± SE and variants possessing the same letters are not statistically
significant at P < 0.01. HSD, honestly significant difference.

and RCI, respectively, under 4 days of heat stress, and 40
and 32% under 8 days of heat stress, respectively, compared
with their respective non-K plants (averaged across genotypes
and second year of study). Across the genotypes and years of
study, K was relatively more effective in reducing MDA and
RCI contents of Ujala-16 than of Anaj-17 under both 4 and
8 days of heat stress. Antioxidant enzymes (SOD, POD, CAT)
and total soluble sugars (TSS) were increased by 61, 76, 54,
and 66% (averaged across genotypes and second years of study)
in 4 days of heat stress and 81, 89, 97, and 98% increase
were observed in 8 days of heat stress, compared with plants
of ambient environment of both stress regimes (Table 1). In
general, a significantly more increase in antioxidant enzymes
and total soluble sugars was measured in Ujala-16 than in
Anaj-17 in both years of study. Antioxidant enzyme activities
(SOD, POD, CAT) and total soluble sugars (TSS) were further
stimulated in response to the foliar spray of K under both
temperature regimes and across the genotypes. Further up-
regulation was observed in Ujala-16 under both 4 and 8 days
of heat stress. Averaged across the genotypes in second year
of study, K-treated leaves had 1.02 folds, 1.03 folds, 1.10 folds
and 0.77 folds higher SOD, POD, CAT and TSS contents,
respectively, under 8 hot days compared with their respective
water-treated leaves (Table 1). The correlation matrix shows
that the number of grains per spike, grain weight per spike,
1,000 grain weight, leaf physiological traits and total soluble
sugars were positively correlated with each other but negatively

correlated with stress indicators, i.e., MDA, RCI, and flag leaf
senescence (Table 4).

Principal component analysis
Principal component analysis (PCA) was performed to

estimate the relative effects of flag leaf senescence, MDA and RCI
on grain yield, grain weight and TSS of heat-stressed wheat. PCA
loading matrix shows a strong negative correlation of flag leaf
senescence, MDA and RCI with NGPS, GWPS and 1,000 grains
weight during post-anthesis heat stress. Malondialdehyde,
relative cell injury and flag leaf senescence had a strong
and positive relationship with each other, while 1,000 grain
weight, Pn, GWPS, NGPS, and TSS had a strong and positive
correlation. Flag leaf senescence fell in the negative quadrant of
PCA, indicating this trait contributed to reducing the grain yield
of wheat genotypes (Figure 4A). The first principle component
analysis (PC 1) covered maximum variation (95.3%), followed
by the second principal component (PC 2) which covered 2.8%
of the total variation. The W, X, Y, and Z dots in the PAC matrix
show the ambient environment while A, B, C, and D show 8 days
heat stress and 1, 2, 3, and 4 dots show 4 days of heat stress.
The W, X, Y, and Z dots are scattered closely and away from the
vertical line representing the close and positive performance of
studied parameters under an ambient environment. The A, B, C,
and D dots are scattered close to the vertical line indicating that
the studied parameter are not closely related and senescence has
strong and negative relation with the studied parameters. The 1,
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TABLE 4 Correlation matrix of malodialdehyde (MDA), relative cell injury (RCI), total soluble sugars (TSS), net photosynthetic rate (Pn), flag leaf
senescence (FLS), number of grains per spike (NGPS), grain weight per spike (GWPS), and 1,000 grain weight (1,000 GW).

Variables MDA RCI TSS Pn FLS NGPS GWPS 1,000 GW

MDA 1 0.9805 –0.8349 –0.9577 0.9254 –0.9395 –0.9153 –0.9582

RCI 0.9805 1 –0.8619 –0.9631 0.9347 –0.9429 –0.9188 –0.9349

TSS –0.8349 –0.8619 1 0.9092 –0.9268 0.9581 0.9462 0.9079

Pn –0.9577 –0.9631 0.9092 1 –0.9699 0.9841 0.9832 0.9840

FLS 0.9254 0.9347 –0.9268 –0.9699 1 –0.9755 –0.9680 –0.9591

NGPS –0.9395 –0.9429 0.9581 0.9841 –0.9755 1 0.9923 0.9832

GWPS –0.9153 –0.9188 0.9462 0.9832 –0.9680 0.9923 1 0.9774

1,000 GW –0.9582 –0.9349 0.9079 0.9840 –0.9591 0.9832 0.9774 1

2, 3, and 4 dots of 4 days of heat stress are located away from
the vertical line, indicating the close and positive performance
of studied parameters than the 8 days of heat stress (Figure 4B).
The maximum variation of PC 1 shows that there is a strong and
negative correlation of flag leaf senescence with NGPS, GWPS
and 1,000 grain weight.

Summary of results is depicted schematically in Figures 5, 6
shows a pictorial view of wheat plants under optimal, 4 and 8
days of heat stress conditions, as well as the effects of potassium
under 4 and 8 days of heat stress conditions.

Discussions

Impact of heat stress on yield and yield
attributes

Post-anthesis initial grains development and grain filling
in wheat crops are highly sensitive to short and long-duration
heat spells in most parts of the world (Farooq et al., 2011;
Amanullah and Fahad, 2018; Poudel et al., 2020). One of the
main objectives of this study was to quantify the grain yield
and weight loss in wheat 1 week after anthesis in response
to 4 and 8 days of heat stress. In the current study, reduced
grain yield and flag leaf senescence were strongly correlated
to post-flowering (1 week after anthesis) heat 32–33◦C. This
period conoids the initial phase of grains development in wheat
crops, which is highly sensitive to abiotic stresses (Stone and
Nicolas, 1995). Short-term (3–4 days) heat stress (35–40◦C) after
anthesis significantly reduces yield (23%) and yield attributes
in wheat (Stone and Nicholas, 1994; Wardlaw and Wrigley,
1994). Post anthesis high temperature (>31◦C) diminishes the
grain filling period in wheat (Wardlaw and Moncur, 1995).
High temperature (31/20◦C) during grain filling reduces grain
weight in wheat (Dias and Lidon, 2009). Post-anthesis heat
could stimulate flag leaf senescence, aborts initial small grains
and affects the grain filling process, which directly reduces
the final grain yield in wheat (Talukder et al., 2014). At post-
anthesis in wheat, flag leaf senescence starts, while short and

long-duration heat spells at this stage trigger the production
of stress hormones (Hasanuzzaman et al., 2013), which restrict
the translocation of carbohydrates toward developing grains
(Feng et al., 2014). For example, heat stress in developing
wheat kernels affects the starch synthase and reduces starch
accumulation by 65% (Barnabás et al., 2008; Zahra et al., 2021).
Heat stress in wheat 3–7 days after anthesis reduces grain
numbers per spike and 1,000 grain weight, possibly due to
abortion of young grains and an increase in photorespiration
(Mohammadi et al., 2004; Marcela et al., 2017). In the current
study, compared with control (ambient), the plants exposed to
4 and 8 hot days in the second year produced 11 and 19% fewer
grains per spike, respectively (averaged across the genotypes).
Similarly, 1,000 grain weight was also reduced by 14 and 37%
in response to 4 and 8 hot days of heat stress, respectively. This
loss in grain yield could be attributed to heat-induced ethylene
production, decreased photosystem efficiency, and increased
oxidative stress, which increased flag leaf senescence (Hays et al.,
2007; Narayanan, 2018; Atif et al., 2021). The initial phase of
grain formation in wheat is most sensitive to heat, and a heat
shock during this period could abort grains (Fan et al., 2018).
Bergkamp et al. (2018) documented that post-anthesis heat
stress shortens the grain filling duration and restricts resource
allocation toward developing grains. Post-anthesis heat spells
in wheat damaged the leaf physiology and grain weight more
in heat sensitive genotype than heat tolerant genotype (Dhyani
et al., 2013; Mirosavljević et al., 2021). The better performance
of heat tolerant genotype under short and long duration heat
spells of present study could be associated with better cell bio-
chemistry, membrane stability, sustained of leaf physiology and
grain yield (Rehman et al., 2016; Yadav et al., 2018; Rajametov
et al., 2021).

Post-anthesis heat in wheat affects photosynthesis,
chlorophyll contents, and thylakoid membranes, triggering
leaf senescence (Blum, 1998). In this study, significantly Pn,
Fv/Fm were reduced by 15 and 16% in 4 days, while 37 and
36% reduction were observed in 8 days of heat stress (across
the genotypes and first year of study). A short episode of
heat (3 days of heat stress) at grain filling can reduce Pn and
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FIGURE 4

Principle component analysis (PCA) (A,B): monoplot and biplot correlation of malondialdehyde (MDA) relative cell injury (RCI), net
photosynthetic rate (Pn), flag leaf senescence, 1,000 grain weight (1,000 GW), grain weight per spike (GWPS) and number of grains per spike
(NGPS) under optimal, 4 and 8 days of heat stress 1 week after anthesis of polythene sheet (averaged across both years of study).

Fv/Fm of wheat crops by 69.9 and 41.16%, as suggested by
Feng et al. (2014). Accumulation and translocation of water-
soluble carbohydrates toward developing grains contribute
to grain size during grain filling (Talukder et al., 2013), and
translocation of water-soluble carbohydrates in wheat is highly
sensitive to heat stress (Fan et al., 2018). Post-anthesis oxidative
injury can significantly impair carbohydrate translocation to
developing wheat grains (Yin et al., 2008). Although stem
soluble carbohydrates were increased by 54% in the current
study (across the heat spells and genotypes), this increase was
not sufficient to sustain the source-sink relationship (Ovenden
et al., 2017), potentially due to the inactivation of key enzymes
regulating carbohydrate translocation from stem to grains
(Zhao et al., 2008).

In this study, high temperature at post-anthesis significantly
accelerated the oxidative stress, as evidenced by increased MDA
(63% in the second year of study across the genotypes) of 8 days
of heat-stressed leaves. Although the heat-stressed plants in
this study upregulated enzymatic antioxidants, the increase was
insufficient to maintain a balance between the plant defensive
system and oxidative stress, leading to an increase in membrane
damage (Sarwar et al., 2021). The high-temperature stress
induces membrane damage in wheat and cotton due to higher
lipid peroxidation of membranes (Savicka and Škute, 2010).
The superior performance of the tolerant genotype (Ujala-16)
in this study is associated with its capacity to sustain membrane
stability and cell physiology. For example, the heat-tolerant
genotype of this study produced 23% more grain yield than
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FIGURE 5

Flow diagram for the effects of post-anthesis heat stress on wheat crop and the role of foliar spray of potassium for inducing thermotolerance
in wheat.

the heat susceptible genotype. This provides evidence that to
combat high-temperature stress in wheat at post-anthesis, the
development of heat-tolerant genotypes based on membrane
stability, leaf physiology, and cell biochemistry could be a
suitable technique, supports of initial hypothesis and objectives.
Farheen et al. (2021) documented that heat tolerant genotypes in
wheat produce higher seed yield under high-temperature stress.

K protects wheat crops from heat
damage by restraining leaf physiology

Potassium is an important plant nutrient and has a role
in heat stress in maintaining photosynthesis, translocation of
water-soluble carbohydrates and stimulating the plant defensive
system (Hasanuzzaman et al., 2018). Exogenous application
of K and higher leaf concentration of K improve heat stress
and salt stress tolerance in maize and wheat under field and
controlled conditions (Abbasi et al., 2014; Shahid et al., 2019).
We found good support for our hypothesis that foliar spray
of K alleviated the adverse effects of heat stress on wheat
grain yield. Importantly, exogenous application of K increased
grain numbers per spike (12%), 1,000 grain weight (19%)
and also reduced flag leaf senescence (27%) in heat-stressed
plants of wheat under 8 days of heat in the second years of

study (across the genotype). The increase in grain numbers
could be associated with restricted ethylene production, which
reduced the abscission of peduncles and abortion of newly
developed grains in spikelets (Ruan et al., 2012; Ali et al., 2017).
Exogenous application of K in wheat at post-anthesis could
improve the stay green character associated with synthesizing
cytokinin and carbohydrates (Luo et al., 2019). Applying K in
wheat under abiotic stress has increased the stay green character
by reducing oxidative stress (Beaton and Sekhon, 1985). The
increase in grain number and grain yield in wheat due to
exogenous application of K is associated with high membrane
stability, photosynthetic efficiency, carbohydrates accumulation
and translocation toward developing grains (Jan et al., 2017).
Potassium application to post-anthesis stressed wheat increases
grain yield and weight by 35 and 48% could be due to the
higher photosynthetic efficiency of wheat leaves (Aown et al.,
2012). The increase in grain yield in wheat by exogenous
application of K under drought stress has been associated with
the activation of photosynthetic enzymes, maintenance of water
relations, and translocation of metabolites toward developing
grains (Lv et al., 2017). This implies that the foliar spray of K
before the onset of stress would help increase heat tolerance in
wheat.

The current study suggested that heat tolerant genotype
response is relatively stronger to K application than heat
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FIGURE 6

Pictorial view of wheat crop under (A) ambient environment post anthesis (B) 4 days and (C) 8 days heat stress (D) foliar spray of potassium in
post anthesis 4 days, and (E) 8 days heat stress.

susceptible genotype. Exogenous application of K improves
further thermotolerance in heat tolerant genotype than heat
susceptible genotype due to increased membrane stability,
stimulation of antioxidants and plant defensive genes in heat
tolerant genotype (Kumar et al., 2012; Rani et al., 2013; Fahad
et al., 2014). Approximately 16 and 22% more grains per plant
and 1,000 grain weight were observed due to K application in
heat tolerant genotype than heat susceptible genotype in 8 days
of heat stress in the second year of study. Our results suggested
that K applied during heat stress (4 or 8 days) sustained leaf
photosynthesis and significantly protected the cell membrane
from damage (RCI and MDA contents). For example, Pn, Gs,
Fv/Fm, and Chl a of K−treated leaves were increased by 22, 23,
25, and 20% increase was observed in 8 days of heat stress in
the second year of study compared with water-treated leaves of
respective hot environments (averaged across the genotypes).
In our study, the recovery in net photosynthetic rate and
efficiency of heat-stressed wheat under K application could be
associated with an increased accumulation of osmoprotectants
(Marschner, 1995) and protected membranes from oxidative
stress (Fahad et al., 2013; Lv et al., 2017; Al-Zahrani et al.,
2022). Exogenous application of K stimulates the production
of antioxidants and improves chlorophyll contents and the
photosynthetic rate in leaves of cotton and flower plants (Egilla
et al., 2001; Zahoor et al., 2017). In heat tolerant genotype, K
improved thermotolerance by strengthening the leaf physiology
and membrane stability (Xu et al., 2011). This implies that

exogenous application of K in heat tolerant wheat genotypes
could further improve leaf physiology and membrane stability,
representing a good indicator of heat tolerance (Dias and Lidon,
2010; Shahid et al., 2019) and supports our initial hypothesis and
objectives.

Total water-soluble sugars (TSS) and enzymatic
antioxidants (SOD, POD, and CAT) were increased by 54,
85, 90, and 78%, respectively, in the current study over
the water-treated plants of 8 days of heat stress (across the
genotypes and in the second year of study). This increase in
TSS and enzymatic antioxidants under high-temperature stress
in wheat could be associated with carbohydrates synthesis,
their accumulation and the stimulation of the defensive system
(Fahad et al., 2017; Khan et al., 2020). The total soluble sugars
and antioxidants have been found to increase under heat stress
in wheat by exogenous application of potassium (Hong-Bo
et al., 2006). The results of this study imply that K may be a
potential plant stimulator under abiotic stresses, particularly
under heat stress. The results of this study can be generalized
to other crops after the detailed studies on the role of K under
various abiotic stresses.

Conclusion

Post-anthesis short duration heat (4 days) showed a mild
effect, although the sustained heat (8 days) severely affected leaf
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physiology, plant defensive system, and grain yield of both wheat
genotypes, with significantly more damage to heat susceptible
genotype. Further, 8 days of post-anthesis heat caused more
damage to grain weight than numbers. Foliar application of K in
this study induced thermotolerance and strengthened the plant
physiology and defensive system of both genotypes. The most
pronounced effect of K on plant physiology and grain yield was
observed in heat tolerant genotype under 8 hot days. Our study
suggests that wheat crops can be protected from post-anthesis
heat injury through foliar application of K before a heat spell.
Although, further field experiments are needed to confirm the
efficacy of K with short and long-duration heat spells.
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