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Nitrogen (N) and Water (W) - two resources critical for crop productivity – are

becoming increasingly limited in soils globally. To address this issue, we aim to

uncover the gene regulatory networks (GRNs) that regulate nitrogen use

efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple

for 3.5 billion people. In this study, we infer and validate GRNs that correlate

with rice NUE phenotypes affected by N-by-W availability in the field. We did

this by exploiting RNA-seq and crop phenotype data from 19 rice varieties

grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field

phenotypes, we analyzed these datasets using weighted gene co-expression

network analysis (WGCNA). This identified two network modules ("skyblue" &

"grey60") highly correlated with NUE grain yield (NUEg). Next, we focused on

90 TFs contained in these two NUEg modules and predicted their genome-

wide targets using the N-and/or-W response datasets using a random forest

network inference approach (GENIE3). Next, to validate the GENIE3 TF!target

gene predictions, we performed Precision/Recall Analysis (AUPR) using nine

datasets for three TFs validated in planta. This analysis sets a precision threshold

of 0.31, used to "prune" the GENIE3 network for high-confidence TF!target

gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next,

we ranked these 88 TFs based on their significant influence on NUEg target

genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized

TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We

validated the direct regulated targets of two of these candidate NUEg TFs in a

plant cell-based TF assay called TARGET, for which we also had in planta data

for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs -

OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39
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(LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, and

LOC_Os06g14670 - regulate genes annotated for N and/or W signaling. Our

results show that OsbZIP23 and Oshox22, known regulators of drought

tolerance, also coordinate W-responses with NUEg. This validated network

can aid in developing/breeding rice with improved yield on marginal, low N-

input, drought-prone soils.
KEYWORDS

rice, drought, nitrogen, gene regulatory network, network validation, NUE,
GENIE3, WGCNA
Introduction

Nitrogen (N) and water (W) are essential resources for plant

productivity that are becoming increasingly limited in marginal

soils world-wide (Gibbs and Salmon, 2015; Hsieh et al., 2018).

Moreover, applications of N and W in agriculture are costly

resources to society (Williamson, 2011; Keeler et al., 2016;

D'Odorico et al., 2020). Most studies in major crops like rice,

examine the effects of N and drought separately (Anantha et al.,

2016; Li et al., 2017; Volante et al., 2017; Zhao et al., 2017). More

recently, studies that examine how the interaction between N

and W availability affects rice phenotypes and gene regulation

have been examined (Swift et al., 2019; Araus et al., 2020; Plett

et al., 2020; Sevanthi et al., 2021).

Several studies have shown that genes critical to N-uptake,

sensing and metabolism have been associated with a drought

phenotype. For example, NRT1.1/CHL1/NPF6.3 the a dual-

affinity nitrate transporter (Liu et al., 1999) is expressed in the

guard cells in Arabidopsis. Moreover, nrt1.1/chl1mutant is more

drought tolerant compared to wild-type. The loss of NRT1.1/

CHL1 reduced the stomatal opening and transpiration rates

which contribute to its drought-tolerant phenotype (Guo et al.,

2003). Next, mutants in nitrate reductase in both Arabidopsis

(NIA1 and NIA2) and rice (OsNR1.2) exhibit a drought-tolerant

phenotype with reduced water loss (Lozano-Juste and Leon,

2010; Han et al., 2022). Transcription factors (TFs) are also at the

center of N-by-W response. NLP7 is a master regulator of

nitrogen signaling in Arabidopsis (Alvarez et al., 2020). The

nlp7 mutant shows drought resistant phenotype, similar to

nrt1.1/chl1 (Castaings et al., 2009). Putting these findings

together, it has been hypothesized that NLP7 regulates

NRT1.1/CHL1 expression in guard cells and further controls

stomatal opening and hence drought tolerance. Another TF in

rice, drought and salt tolerance (DST), also bridges between N-

assimilation and stomata movement that provides a path to crop

improvement under marginal soil (lowN-lowW) (Han

et al., 2022).
02
On the genome-wide level, our current manuscript explores

on the gene regulatory networks (GRN) involved in N-by-W

interactions by mining the N-by-W response RNA-seq and

phenotype dataset from field grown rice (Swift et al., 2019). In

our previous Swift et al 2019 study, we used linear models to

discover that N-by-W signaling (N/W, molarity and/or NxW

synergistic interactions) significantly correlate with rice field

phenotypes, compared to genes that respond only to W-dose

or N-moles (Swift et al., 2019). That dataset – which we use in

our current analysis includes transcriptomic and phenotypic

data for 19 rice varieties that vary in their drought and N-

response. These 19 rice varieties were treated in a 2x2 N-by-W

matrix of two N-doses (fertilized vs. without N) and W-doses

(high vs. low water) in field experiments conducted at the

International Rice Research Institute (IRRI) in the Philippines

(Swift et al., 2019) (Figure 1). While our Swift et al., 2019 study

determined the importance of the N-by-W gene responses (e.g.,

N/W and NxW) to phenotypic field outcomes in rice, the goal of

our present study is to determine the GRNs underlying

TF!target gene!phenotype interactions that correlate with

NUE phenotypes in the rice N-by-W field study.

To develop sustainable agricultural solutions to feed a

growing population, in this study we exploit a systems biology

approach to uncover and validate the gene regulatory networks

(GRNs) by which rice (Oryza sativa) plants sense and respond to

the combination of N- and W- availability to promote crop

productivity. To this end, we connected gene-to-NUE

phenotype using weighted gene correlation analysis (WGCNA)

(Langfelder and Horvath, 2008). Next, for the target genes that

correlate with NUE phenotypes, we identified TF-to-target gene

relationships in a gene regulatory network (GRN) using GENIE3

(Huynh-Thu et al., 2010). We then validated the TF-to-target

gene network predictions via precision/recall (AUPR) analysis

using validated TF-target gene data obtained in planta using the

ConnecTF platform (https://rice.connectf.org). Additionally, we

applied the plant cell-based Transient Assay Reporting Genome-

wide Effects of Transcription factors (TARGET) system
frontiersin.org
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(Bargmann et al., 2013; Brooks et al., 2019), which we adapted in

rice to validate the high-confidence TF-to-gene network for the

N-by-W response genes whose expression level correlate

with NUE.

Overall, we identified six TFs that regulate genes involved in

both N and/or W signaling: OsbZIP23 (LOC_Os02g52780),

Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330),

Oshox13 (LOC_Os03g08960 ) , LOC_Os11g38870 ,

LOC_Os06g14670. Two of these TFs are known regulators of
Frontiers in Plant Science 03
drought tolerance - OsbZIP23 and Oshox22 – (Xiang et al., 2008;

Zhang et al., 2012; Dey et al., 2016; Zong et al., 2016). Our present

study shows that these TFs involved in drought responses are also

responsive to N-by-W interactions. Moreover, we show that these

six TFs control N-and/or-W response genes that correlate with

NUEg. This information can now be applied to develop/breed

rice plants with improved yield, on marginal, low N-input,

drought-prone soils and on fields where water and N are

limited due to climate change.
FIGURE 1

Flow-chart for generation of a high-confidence GRN of TF!target gene!NUEg phenotype from rice field data. Gene expression and
phenotype data from field grown rice used to generate the WGCNA modules and GRN were obtained from 19 rice varieties of varying drought
resistance, grown under a 2x2 N-by-W matrix with four combinations of N and W conditions (Low vs High) from Swift et al., 2019 (Swift et al.,
2019)1. Step 1. N-by-W matrix: RNA-seq and field phenotype data: The differentially expressed (DE) rice genes that respond exclusively to either
N:W, W and N were identified using DESeq2 analysis from field gene expression data (Swift et al., 2019). Step 2. WGCNA analysis: network
modules-to-phenotype: The genes/TFs highly correlated with field phenotypes were identified using the field gene expression counts of the
22,436 normalized genes and 10 field phenotypes as inputs into weighted gene co-expression network analysis (WGCNA). Step 3. GENIE3
analysis: TF!target gene predictions: The TF!target gene predictions between 90 TFs highly correlated with the NUE grain yield (NUEg) from
WGCNA analysis (Step 2) and the total 10,815 N-and/or-W response genes from Swift et al., 2019 (Step 1) determined using the network
inference program GENIE3 resulted in ((90 TFs*10,815 DE genes) - 90 TFs) = 973,260 edges or TF!target gene predictions) Step 4. Network
validation (AUPR) and "pruning": Validation data for 3 TFs in the GENIE3 network was located using rice.connectf.org (Brooks et al., 2020), which
consisted of 9 RNA-seq/ChIP-seq in planta datasets. This rice validation data confirmed 5,683 predicted edges for the 3 TFs was used to
calculate the area under the precision/recall curve (AUPR) using automated functions in ConnecTF (Brooks et al., 2020). This AUPR was then
used to select a precision cut-off and "prune" the network for high-confidence edges of the GENIE3 gene regulatory network (GRN), again
using automated functions in ConnecTF. The "pruned" GENIE3 network consists of 8,826 high-confidence edge predictions for 88 TFs and
5,716 genes linked to the NUEg phenotype from WGCNA. Step 5. High-confidence GRN: There are 18/88 TFs in the pruned network that
regulated a significant number of the genes highly correlated with NUEg as identified in the WGCNA modules, for a total of 551 DE N-and/or-W
Response Genes (Step 2).*See Table 1 and Supplementary Figure 3 for TF prioritization results and pipeline.
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TABLE 1 Ranked list of 18 prioritized TFs that correlate with NUEg based on high-confidence edges to N-and/or-W DE genes in WGCNA modules (grey60 and skyblue).

Rank. TF Name Significant overlap of pruned GENIE3 target genes w/ Relevant N and/or W GO terms associated with TF-target
-W DE genes in
skyblue)

TFs with High GS
and MM for NUEg

&/or WUE in
WGCNA

Published TF
Function
(Reference)

ion" NUEg &
WUE

Drought tolerance
(Xiang 2008; Dey
2016; Zong 2016)

se to abscisic acid" NUEg &
WUE

Drought tolerance
(Zhang et al., 2012)

NUEg &
WUE

N-responsive gene
(Obertello 2015;
Yang 2017)

ion" NUEg &
WUE

Unknown/Novel

NUEg &
WUE

Unknown/Novel

ia assimilation cycle" NUEg &
WUE

Unknown/Novel

ound NUEg &
WUE

Unknown/Novel

ound NUEg &
WUE

Drought tolerance
(Jung 2017)

ound NUEg &
WUE

Iron homeostasis
(Wang 2020)

ound NUEg &
WUE

Unknown

ound NUEg &
WUE

Ethylene response
(Hu 2008)

ound NUEg &
WUE

Drought tolerance
(Zhang 2017)

ound NUEg &
WUE

Iron homeostasis/
N-signaling

(Ogo 2007; Ueda
2020)

ound NUEg &
WUE

ABA response
(RoyChoudhury

2008)

ound NUEg &
WUE

Starch biosynthesis
(Fu 2010)
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Materials and methods

Source of N-by-W response data
(transcriptome and phenotype)
for 19 rice varieties

Field phenotypic data collection and conditions for 19 rice

varieties (Indica and Japonica) can be found in Swift et al., 2019

(Swift et al., 2019). The details of the treatments are in Swift

et al., 2019, but as an overview: For the +N treatment, 150 kg/ha

dose of (NH4)2SO4 was applied at 23 days after sowing (DAS).

The -N treatment had no addition of fertilizer. Plants in the -W

condition were covered from rain with a rainout shelter

(intermittent watering was applied to ensure growth), while

plants in the +W condition received rainfall and normal

watering. Water-use-efficiency (WUE) was determined from

leaves with carbon isotope discrimination as outlined in Swift

et al., 2019 (Swift et al., 2019). The nitrogen usage data was

calculated using the Kjeldahl N (KJ N) method which

determined the nitrogen content from 1 gram of leaf samples.

The total KJ N is determined as in (Bremner and Mulvaney,

1982; Bremner, 1996) by converting organic nitrogen forms to

NH4
3+ and then measuring the concentration. To calculate N-

uptake, we used the Kjeldahl N percent (KJ N%) and vegetative

shoot dry weight (SDW) measurements from Swift et al., 2019

collected from leaf samples. We then used the N uptake

measurement to calculate NUEg and NUE biomass (NUEb).

N   uptake   g=m2ð Þ = KJ  N % ∗ SDWg=plantð Þ ∗ plants=m2

NUEg =
Grain   yield   g=m2
N   uptake   g=m2

NUEb =
Biomass   g=m2
N   uptake   g=m2

The field transcriptomic data consisted of 19 rice varieties

(Indica and Japonica) of varying drought tolerant phenotypes,

grown under four N-by-W treatment conditions, with three

replicate leaf samples for RNA-seq for a total of 228 RNA-seq

samples. Expression counts for 228 RNA-seq samples were

normalized with the DESeq2 package (Love et al., 2014). The

TFs and TF families from the N-and/or-W DE gene lists were

identified based on the Plant Transcription Factor Database v4.0

categorization (Jin et al., 2017). See data availability in Swift

et al., 2019 (Swift et al., 2019) for source phenotypes and

transcriptome data.
Potential index (IPO) calculation of NUE
under low vs. high N and W conditions

To compare NUEg among the 19 rice varieties, we calculated

the potential index (IPO) as similar to Ndiaye et al, 2019
T
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(Ndiaye et al., 2019). For the calculation, each variety's NUEg

was compared with the conditional average, using the

formula below.

IPO   =  
Yij  −  Yj    

Yj

The IPO is the potential index of variety i; Yij is the NUEg of

variety i for the condition j where j is HWHN, HWLN, LWHN

or LWLN; Yj is the conditional mean of all 19 varieties under

condition j. The IPO is a relative value that shows the increase or

decrease of a specific variety's NUEg, over the mean values. An

IPO > 0 indicates better NUEg, whereas IPO< 0 indicates worse

NUEg (Figure 2). The NUEg phenotype data was downloaded

from Swift et al, 2019 (Swift et al., 2019).
WGCNA analysis: Gene-to-field
phenotype correlation

The normalized counts files for each treatment and genotype

were averaged as inputs into WGCNA to match the averaged

field phenotypes for each biological replicate. This resulted

in 76 transcriptomic and phenotypic values (19 varieties

and 4 treatments) as inputs into WGCNA. The transcriptome

counts file consists of counts for 22,436 genes in 76 samples.

The R package, WGCNA, was used to perform the weighted

correlation network analysis using step-by-step network

construction and module detection (Langfelder and Horvath,

2008). We selected a MEDissThres of 0.5 to combine
Frontiers in Plant Science 06
modules correlated with each other. We averaged the

absolute value of the NUEg GS, WUE GS, and module

membership (MM) scores for the genes in each module to

select a cut-off value for highly correlated genes. (Figure 3C

and Supplemental Figure 1). Overlapping module gene lists

and N-and/or-W DE gene lists were made with Venny 2.1

web tool (Oliveros, 2015). To determine the Z score and p-

value of the NUEg and WUE genes that overlap with N-and/or-

responsive DE gene lists, we used the Genesect function in

Virtual Plant 1.3 (Katari et al., 2010) (Figures 3B, D and

Supplementary Figure 1).
GENIE3 analysis of GRNs and validation
of TF! target gene predictions by AUPR
and "network pruning"

The GENIE3 package in R (Huynh-Thu et al., 2010) was

used for network inference analysis. The gene expression data

used to make the GENIE3 network consisted of the normalized

counts of 228 RNA-seq samples for 10,815 N-and/or-W DE

genes from Swift et al., 2019 (Swift et al., 2019) (Figure 1 Step 3).

The 90 TFs for GENIE3 were selected from the two WGCNA

modules (grey60 and skyblue) that are highly correlated with

NUEg and are also N-and/or-W responsive (Figure 3D and

Supplementary Data 4). The total unpruned network of 973,260

edges were uploaded to ConnecTF-Rice (rice.connectf.org) for

network pruning and AUPR analysis (Brooks et al., 2020). This

analysis is based on the in planta TF-target gene validation data
A B

FIGURE 2

The NUEg phenotype for 19 rice varieties measured under four N-by-W conditions. We used the Potential index (IPO) (Ndiaye et al., 2019) on 19
rice varieties which differ in their drought resistance to assess the NUEg values under (A) high water and (B) low water conditions with varying
N-doses. (A) DHWHN, high-W/high-N; HWLN, high-W/low N; (B) LWHN, low-W/high N; LWLN, low-W/low-N.
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for OsbZIP23, OsABF1, and OsNAC14 that is housed in the

ConnecTF database (Brooks et al., 2020) (Figure 4 and

Supplementary Figure 2). Gene Ontology (GO) biological

process analysis was conducted using g:Profiler (https://biit.cs.

ut.ee/gprofiler/gost) with settings for only annotated genes and a

significance threshold of 0.05 calculated with Benjamini-

Hochberg FDR (Raudvere et al., 2019) (Table 1). For this

analysis the gene IDs for target genes and genes associated

with GO terms were converted between MSU7 and RAPDB

gene designations. Cytoscape v3.9.1 was used for network

visualization (Paul Shannon et al., 1971) (Figure 5).
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Plasmid construction for TF-perturbation
experiments using TARGET assay in
plant cells

The coding sequences of OsABF1 and OsbZIP23 were

determined as listed in Phytozome 13 (Goodstein et al., 2012)

and were synthesized by GENEWIZ (South Plainfield, NJ)

with the GATEWAY cassette for cloning into the p1107

destination plasmid (Supplementary Figure 4). Entry vectors

were cloned into the p1107 plasmid using the LR Clonase II

reaction according to manufacturer's instructions (Invitrogen).
A B

C D

FIGURE 3

WGCNA modules named "grey60" and "skyblue" are highly correlated with NUEg in field grown rice. (A) Heatmap of the correlation values for
the Module Eigengene (ME) values with field phenotypes from WGCNA. Red and blue colors note positive and negative correlation, respectively,
for the ME for each module of co-expressed genes. Modules significantly associated with traits have a p value< 0.05, denoted by an asterisk*.
(B, D) N-and/or-W DE genes and TFs for N:W, W and N -response genes derived from ANOVA analysis in Swift et al., 2019 (Swift et al., 2019).
Heatmap of the Z-score for each overlap (Z-score ≥ 10). The p-value< 0.001 is denoted with an asterisk*. Z-score and p-values were calculated
using the Genesect function in VirtualPlant 1.3 (Katari et al., 2010). (B) Significance of intersection between the genes in each co-expression
module from WGCNA (Supplementary Data 1) and the N, W, and N:W DE genes, identified using Genesect function in VirtualPlant 1.3. (C)
Scatterplots of the WGCNA Gene Significance (GS) for NUEg, versus the Module Membership (MM) for the grey60 and skyblue modules exhibit
a significant correlation p-value< 0.001 with NUEg. The genes with a GS and MM cut-off scores above the average score for the genes in each
module were selected for further analysis (1,209 grey60 + 282 skyblue genes = 1,491 genes). (D) Significance of gene intersection (using
Genesect) between the union of the genes and TFs with an above-average GS and MM score from the WGCNA grey60 and skyblue modules
(grey60&skyblue) and the N:W, W, or N- responsive DE genes. Union of the genes in grey60 and skyblue modules: N-and/or-W response DE
TFs (29 + 61 = 90 total) used for GENIE3 network analysis and N-and/or-W response DE genes (322 + 777 = 1,099 total) used to prioritize TFs
from the pruned GENIE3 network (Supplementary Data 2).
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The p1107 plasmid for rice TARGET has a pBeaconRFP_GR

(Bargmann et al., 2013) backbone with the following

modification. The 35S promoters were replaced with maize

Ubiquitin promoter subcloned from pTDM-C (Wu et al.,

2016). A biotin ligase recognition peptide (BLRP) was

fused at the N-terminal of the GATEWAY cassette, which is

followed by the GR protein. All junctions were sequenced

and verified for in frame TF-GR fusion proteins. The

plasmid map and sequence (.FASTA) are provided in

Supplemental Data File 1.
Frontiers in Plant Science 08
TARGET temporal TF perturbation
experiment in rice leaf cells and
RNA-sequencing

The rice protocol was adapted from our Arabidopsis

TARGET protocol (Bargmann et al., 2013; Brooks et al., 2019)

with some modifications. Rice seeds (Nipponbare) were

sterilized by 70% ethanol for 3 mins followed by 50%

commercial bleach for 30 min with rotation. The rice seeds

were germinated in the dark for 4 days. The germinated rice
FIGURE 4

Validation of GENIE3 network using rice TF-perturbation datasets in Area Under the Precision Recall (AUPR) curve analysis. 4.1. GENIE3: The
GENIE3 network ranked TF!target gene predictions for 90 N-and/or-W DE TFs (from the grey60 and the skyblue modules, Figure 3D), and
10,815 DE genes - each TF!target gene edge is given a weight. 4.2 The validated TF!target gene data used to "prune" the network predictions
was identified using the rice TF data housed in the ConnecTF database (https://rice.connectf.org) (Brooks et al., 2020) (Supplementary Figure 2).
Data for three TFs, OsbZIP23, OsABF1, and OsNAC14 were then used to validate the predicted GENIE3 edges with a total of 10,941 validated
edges between all three TFs. 4.3. Area Under the Precision-Recall (AUPR) curve was calculated with the rice shoot in planta validation data for
the three TFs. AUPR analysis shows that the ranking for the validated TF!target gene edges of the GENIE3 network (blue line) is significantly
better (p-value<0.001, permutation test), than a set of randomly validated edges (Note: gray dashed lines are for the highest and lowest AUPR
that resulted from random validated edges). A precision cut-off of 0.31 (red dashed line) was selected as the highest precision value before the
curve flattens, and the "pruned" network edges were exported as an automated function in ConnecTF (Brooks et al., 2020). 4.4 The pruned
GENIE3 network consists of 8,826 edges for 88 TFs and 5,716 genes that pass an edge score threshold of 0.0581. Source data of the original
GENIE3 network vs. the high-confidence "pruned" GENIE3 network are supplied as Supplemental Data 4 and 5. Precision and Recall are
calculated as in Brooks et al., 2019, 2020 (Brooks et al., 2019, 2020).
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seeds were transferred to ½ MS plates without sugar for 13 days

in the growth chamber, under 16 h light/8 h dark diurnal cycle,

at temperatures 27 and 25°C respectively and 70% humidity. On

the day of the TARGET experiment, rice shoot tissue was cut

into small (1 mm) pieces and stirred with cell-wall digestion

solution (1.5% cellulase RS, 0.3% macerozyme R10 (Yakult

Honsha), 0.6M mannitol, 10 mM MES (pH 5.7), 1 mM CaCl2,

5 mM b-mercaptoethanol, and 0.1% BSA) in a flask. The flask

was vacuumed infiltrated for 20 minutes and shaken at 50 rpm

in the dark for 4 hours. Rice shoot protoplasts were filtered

through a 40 μm cell strainer (BD Falcon, USA) and spun down

for 5 min at 500 g. The rice shoot protoplasts were then washed

with 10 mLW5 solution (150 mMNaCl, 1M CaCl2, 1M KCl, 200

mM MES pH 5.7) three times, then resuspended in MMG

solution (400 mM D-mannitol, 10 mM MgCl2, 4 mM MES

pH 5.7) to 1.0x106 cells/mL. For protoplast transfection with

vector, 1.0x105 cells were mixed with 40 μg plasmid DNA and

110 μL 40% PEG solution (40% 4000 PEG (Sigma, 81242), 400
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mM D-mannitol, 50 mM CaCl2). The mixture was incubated at

room temperature for 10 minutes. After incubation, the

protoplasts were washed with W5 solution three times and

resuspended in 1 mL WI solution (400 mM D-mannitol, 1M

KCl, 200 mM MES pH 5.7). The transfected protoplasts were

stored in the dark overnight. The next day, transfected

protoplasts were treated with 30 μM cycloheximide (CHX)

for 20 minutes (to block translation of secondary TF2 targets

genes), before a three-hour 10 mM dexamethasone (DEX)

treatment (to induce TF-GR nuclear import). After 3 hours,

TF vector and control empty vector transfected protoplasts

were FACS sorted for RFP signals into 150 μL TRI regent

for RNA extraction (Zymo, R2061) (Supplementary Figure 5).

We used Lexogen QuantSeq 3' mRNA-Seq Library Prep Kit

FWD for Illumina (Lexogen, 015.2x96) for making RNA-Seq

libraries. The libraries were pooled and sequenced on the

Illumina NextSeq 500 platform at NYU-CGSB Genomics

Core facility.
FIGURE 5

High-confidence GRN of rice TFs Targeting N-and/or W response DE genes correlated with NUEg connected to nitrogen and drought GO
terms. This network consists of the TFs from Table 1 that regulate target genes associated with the gene ontology (GO) terms, "nitrate
assimilation" (GO:0042128), "ammonia assimilation cycle" (GO:0019676), "response to water deprivation" (GO:0009414), and "response to
abscisic acid" (GO:0009737). These GO terms were selected based upon the enrichment of these terms in the TF-target genes for each TF
candidate from Table 1 using g:Profiler (Raudvere et al., 2019). The full list of GO terms for each TF is in Supplementary Data 8. To create this
network the 551 total target genes from Table 1 were examined for the genes associated with the selected GO terms. This left 23/551 target
genes and 14/18 TFs from Table 1 that regulate them. For simplicity and significance, we highlight the 6 TFs in red and their target genes
because they regulate genes related to both nitrogen and water, either directly or indirectly. All 6 TFs were also associated highly with NUEg
and WUE (Table 1). Edges for this network include either high-confidence GENIE3 edges, or validated GENIE3 edges for OsbZIP23 and OsABF1
for which we had TARGET data, and in planta data. The total network is in list in Supplemental Data 7.
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RNA-seq analysis of TARGET assay for
validation of TF-target direct
regulated genes

The UMI-incorporated RNA-Seq libraries of TF-transfected

and empty vector control were analyzed following Lexogen's

guidance (https://www.lexogen.com/quantseq-3mrna-

sequencing/). The reads' UMI were extracted from raw fastq

files using `extract` command from UMI-tools v1.1.1 (Smith

et al., 2017). Then the fastq files were trimmed by fastp 0.21.0

(Chen et al., 2018). The clean fastq files were aligned to MSU7

(Kawahara et al., 2013) genome using STAR 2.7.6a (Dobin et al.,

2013). The aligned reads with the identical UMI were

deduplicated using `dedup` command from UMI-tools v1.1.1

(Smith et al., 2017). The gene counts matrix was generated by

featureCounts v2.0.1 (Liao et al., 2014) from the deduplicated

bam files. The TARGET DE genes for OsABF1 and OsbZIP23

were identified using DESeq2 package (Love et al., 2014) by

comparing TF vs Empty Vector with a Benjamin & Hochberg

adjusted p-values< 0.05. Differentially expressed (DE) genes

identified for OsABF1 and OsbZIP23 are listed in

Supplementary Data 9. Overlap between in planta and

TARGET data was conducted with Venny 2.1 (Oliveros, 2015)

and the significance was determined with Genesect in Virtual

Plant 1.3 (Katari et al., 2010). The calculations for precisions,

recall and F-score for the GENIE3 network was the same as in

Brooks et al., 2019 (Brooks et al., 2019) (Supplementary Figure 6).
Results

Phenotypic variation in NUEg in 19 rice
varieties grown in N-by-W matrix
field

The N-by-W response field data set used in our current

study consisted of 19 rice varieties treated in a 2x2 matrix of four

N-and/or-W treatment conditions (Figure 1) (Swift et al., 2019),

comprising: well-watered (HW) with low-or-high N (HWLN,

HWHN) (Figure 2A) vs. Low-W (LW) with low-or-high N

(LWHN, LWLN) (Figure 2B) (For treatment details see

Materials & Methods, and Swift et al., 2019. To refine our

focus to NUEg, we examined how each of the 19 rice varieties

performed for NUEg in the field (Figure 2). To identify the rice

varieties with higher NUEg in the four different N-by-W field

conditions, we adapted the Potential Index (IPO) (Ndiaye et al.,

2019) of NUEg for our N-by-W field dataset (Figure 2). The IPO
for NUEg indicated the relative performance of each of the 19

rice varieties, compared to the conditional average (dotted lines).

Under the well-watered (HW) condition, none of the rice

varieties performed well under both LN and HN conditions

(Figure 2A). For example, IR64 showed the highest NUEg values

under HWLN, but only average NUEg values under HWHN
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conditions (Figure 2A). By contrast, Tainung67 showed the

highest NUEg values under HWHN, but only average NUEg

values under HWLN conditions (Figure 2A). However, under

LW treatments, there was one variety, IR108, that performed

well under both LWLN and LWHN conditions, with the highest

IPO-NUEg compared to the other 18 varieties (Figure 2B). In line

with this finding, the IR108 variety has been released under the

variety name "Sukha dhan 5" to be used in the drought-prone

regions of Nepal (Anantha et al., 2016). The IPO analysis reveals

that this phenotypic dataset covers a range of rice NUEg values.

Therefore, we used this NUEg phenotype data from the 2016

growing season data and the corresponding transcriptome data

of Swift et al 2019, for the ensuing network-to-NUE phenotype

analysis (Figure 1).
Identification of N-and/or-W responsive
DE genes highly correlated with NUEg

To discover the relationships between genes and field

phenotypes including NUEg, we used WGCNA (Langfelder

and Horvath, 2008) (Figure 1, Step 2, and Figure 3). The

WGCNA analysis identified 11 co-expression modules for the

22,436 genes from the rice transcriptome data from the N-by-W

field plot (Figure 1, Step 2, Figure 3A, Data in Supplemental Data

1). The genes in each of the WGCNA co-expression modules

contribute to a Module Eigengene (ME) value based upon their

Module Membership (MM) score. The MM score is the

contribution of the individual gene to the ME value of the

module (Langfelder and Horvath, 2008). We used the ME value

to determine module correlation with each of the rice

phenotypes from the N-by-W field plots (Figure 3A). The ME

score for two WGCNA modules, grey60 (3,050 genes) and

skyblue (744 genes) was significantly and highly correlated

with the NUEg and WUE phenotype data in the N-by-W plot

(Figure 3A). The ME value of the grey60 module was negatively

correlated with NUEg (-0.71), while the ME value of the skyblue

module was positively correlated with NUEg (+0.73)

(Figure 3A). However, each WGCNA module contains subsets

of genes that can be either positively or negatively correlated

with NUEg. In WGCNA, this gene expression-to-phenotype

correlation is called Gene Significance (GS), as shown for the

plot of MM vs. GS in Figure 3C.

To identify which WGCNA modules had a significant

representation of genes responding to N-and/or-W signals, the

genes comprising each module were overlapped with the N-and/

or-W responsive DE genes from Swift et al 2019 (Swift et al.,

2019) (Figure 3B). This analysis uncovered a significant overlap

of the N:W- and W- responsive gene lists with the genes in the

WGCNA modules - grey60 and skyblue - which are each highly

correlated with NUEg and WUE (Figure 3A). This demonstrates

that the genes in the WGCNA modules - grey60 and skyblue -

not only correlate with the NUEg phenotypes from the N-by-W
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matrix field plots but are also enriched in genes responsive to N-

and/or-W signals (Figure 3B). Additionally, the blue and

lightyellow WGCNA modules are enriched in genes that

respond to N-moles, but not to the interaction of N and W.

While the WGCNA modules - blue and lightyellow - do not

correlate significantly with NUEg, each of these modules

correlates significantly with chlorophyll concentration

(Figure 3A), a trait known to be regulated by N and used to

determine N-status and the need for fertilizer in the field

(Fageria et al., 2010).

Next, we performed two analyses that enabled us to

prioritize the N-and/or-W response DE TFs and genes within

each of the two WGCNA modules - grey60 and skyblue - that

are most highly correlated with the NUEg phenotype

(Figures 3C, D). The genes with MM scores closes to -1 or 1

are highly connected to their WGCNA module. In addition,

genes with GS scores that have a high absolute value for a specific

trait are also more biologically significant (Langfelder and

Horvath, 2008). Therefore, to filter genes in each module that

were highly correlated with NUEg, we identified genes with high

absolute values for both their MM and GS scores. To do this, we

first plotted the absolute values of the MM vs. GS scores for each

gene in the WGCNA modules - grey60 and skyblue - which are

highly correlated with NUEg (Figure 3C). Next, we calculated

the average MM and GS scores for the genes in each of these two

modules. This enabled us to set a cut-off and identify genes

whose absolute MM and GS values were great than or equal to

the average of the genes in each module (Figure 3C, upper

right quadrant).

This analysis identified a combined total of 131 TFs and

1,491 genes highly relevant to NUEg in the two WGCNA

modules: grey60 (104 TFs & 1,209 genes) and skyblue (27 TFs

& 282 genes) (Figure 3C). Next, to identify whether genes highly

relevant to NUEg are significantly enriched in N-and/or-W

response gene, we performed a Genesect analysis (Katari et al.,

2010) (Figure 3D). This analysis revealed significant overlaps

between the N:W and W responsive gene lists from Swift et al

2019 (Swift et al., 2019), with the genes highly correlated with

NUEg (131 TFs and 1,491 genes) from the combined grey60 and

skyblue WGCNA modules (Figure 3D). The resulting overlap

consisted of 90 TFs and 1,099 genes that are highly associated

with NUEg and N-and/or-W responsive (Supplementary Data

2). Next, we determined which of these TFs and genes correlated

NUEg were also highly associated with the WUE phenotype. To

do this, we conducted the same analysis pipeline as described

above for NUEg, in which we determine a new GS cut off value

for WUE (Supplementary Figure 1A). This resulted in 79 TFs

and 976 genes that are highly correlated with WUE and are N-

and/or-W responsive (Supplementary Figure 1B, Supplementary

Data 3). We find that 72 (80%) NUEg TFs and 815 (74%) NUEg

genes are also highly correlated with WUE, thus suggesting a

dual role for these genes/TFs in regulating both N and

W responses.
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For further analysis, we prioritized 90 TFs from the GENIE3

analysis that are; i) N-and/or-W responsive and ii) highly

correlated to NUEg from the combined WGCNA modules -

grey60 and skyblue. This analysis resulted in 29 TFs that are N:

W-responsive and 61 TFs that areW-responsive (Figures 3C, D).
Validation of TF!target GRN predictions
in WGCNA modules associated
with NUEg

To predict TF!target gene interactions in GRNs important

for NUEg, we used GENIE3, a random forest network inference

method (Huynh-Thu et al., 2010). This analysis will identify

potential master TF regulators of the NUEg response amongst

the 90 TFs (29 TFs N:W-responsive and 61 TFs W-responsive)

(Figure 3D) that are highly correlated with NUEg (e.g., members

of WGCNA grey60 and skyblue models) (Figures 3A, C). To

identify and rank these 90 TFs from these NUEg modules, we

generated a GRN using 90 potential TF-regulators of 10,815 DE

(N-and/or-W response genes) from the field N-by-W matrix

(Figure 1, Step 1). The output of GENIE3 ranks the TF!target

gene predictions in the order of confidence for each of the 90 TFs

and the 10,815 DE genes N-and/or-W responsive (Figure 4). In

total, the resulting GENIE3 inferred network ranks numerical

confidence scores for each TF and target gene, excluding self-

regulation of the TF ((90 TF x 10,815 genes) - 90 TFs) = 973,260

TF-target edges (Figure 4 and Supplemental Data 4).

Our next goal was to validate the TF-target gene interactions

in our predicted GRN, using TF-target gene data validated in

planta. To this end, we used experimentally validated TF-target

gene interactions from TF perturbation data in rice, housed in

the ConnecTF platform (https://rice.connectf.org) (Brooks et al.,

2020) (Figure 4 and Supplementary Figure 2). The ConnecTF

database includes published rice RNA-seq and ChIP-seq data

available as of June 2020. To validate the GRN, we uploaded the

TF!target gene interactions predicted by the GENIE3 network

into ConnecTF and filtered for validated TF-regulation (RNA-

seq) and TF-binding (ChIP-seq) data from rice in planta

datasets (Figure 4 and Supplementary Figure 2, Supplementary

Data 4). We focused our analysis on validated TF-target gene

datasets from rice leaf tissue, given that the source RNA-seq data

used to make the GENIE3 network was from rice leaves

(Supplementary Figure 2).

Our query of the ConnecTF rice TF database identified

experimental TF-target gene validation datasets for three TFs

in rice leaf tissue from our GENIE3 network (Figure 4 and

Supplemental Figure 2). The three validated rice TFs are

OsABF1 (Zhang et al., 2017), OsbZIP23 (Zong et al., 2016),

and OsNAC14 (Shim et al., 2018). These three validated rice TFs

include a total of nine datasets with 10,941 validated target genes

from TF-regulation and/or TF-binding data (Figure 4 and

Supplementary Figure 2). We then used this in planta data as
frontiersin.org

https://rice.connectf.org
https://doi.org/10.3389/fpls.2022.1006044
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shanks et al. 10.3389/fpls.2022.1006044
"gold-standard" data to validate the TF!target gene predictions

from our GENIE3 network using Area Under the Precision

Recall (AUPR) curve analysis, which is an automated function in

the ConnecTF platform (Figure 4). The results show that the

AUPR for the TF!target gene predictions (edges) in the rice

GENIE3 network were significantly higher than the random TF-

target gene edges (P-value<0.001, permutation test) (Figure 4).

Given the AUPR curve, we were able to select a precision

threshold of 0.31 (e.g., TF!target gene edge score ≥ 0.0581).

This cut-off score is equivalent to the TF!target gene

predictions being accurate 1/3 of the time and this level of

accuracy is comparable to other similar network validation

AUPR studies (Varala et al., 2018; Brooks et al., 2019). The

GENIE3 network was then pruned for only the high-confidence

TF!target gene predictions using this precision cut-off score.

This network pruning for precision, resulted in a GRN

containing 8,826 high confidence edges connecting 88 TFs and

5,716 target N-and/or-W response DE genes (Figure 4 and

Supplementary Data 5).
Prioritization of master TFs that regulate
NUEg in response to N-and
/or-W signaling

Our next goal was to prioritize candidate N-and/or-W

response TFs with a significant influence on NUEg from the

pruned GENIE3 network. To this end, we overlapped the pruned

high confidence TF!target edges for the 88 TFs in the GENIE3

network with the 1,099 genes from the two WGCNA modules

that are highly correlated with NUEg - grey60 & skyblue - N-

and/or-W DE genes = 322 N:W response genes + 777 W-

response genes) (Supplementary Figure 3). We calculated the

significance of the overlapping TF!target genes with the 1,099

NUEg genes. To prioritize the 88 TFs, we ranked them by the Z-

score for the overlap (Supplementary Data 6). We found 18 TFs

whose high confidence TF!targets gene edges had the highest

significant overlap (P-value<0.001, Z score ≥ 10) with the 1,099

genes in the NUEg WGCNA modules – grey60 and skyblue

(Table 1). This analysis links 18 TFs! 551 N-and/or-W

response target genes!NUEg. Among the 18 TFs, OsbZIP23

is predicted to regulate the most of the NUEg correlated genes,

compared to the other 17 TFs (Table 1). Additionally, we find

that 16/18 TFs (all except EIL4 and IDEF4) are also highly

corelated with WUE (Table 1 and Supplemental Data 3).

Of these 18 TFs, multiple TFs have published functions in

drought tolerance including, OsABF1 (Zhang et al., 2017),

OsbZIP23 (Xiang et al., 2008; Dey et al., 2016; Zong et al.,

2016), Oshox22 (Zhang et al., 2012), and OsERF48 (Jung et al.,

2017). Of note, OsABF1, OsbZIP23, and Oshox22 are N:W-

responsive genes based on the N-and/or-W response DE gene

lists from Swift et al 2019 (Supplemental Data 6), suggesting

their new function in regulating N:W responses, in addition to
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drought (Table 1). Published functions for other candidate TFs

in the 18 TF list include, N-signaling (LOB39) (Obertello et al.,

2015; Yang et al . , 2017) , ABA signal ing (OSBZ8)

(RoyChoudhury et al., 2008), ethylene signaling (OsERF1) (Hu

et al., 2008), iron homeostasis (IDEF2, OsIRO3, and OsIRO2)

(Ogo et al., 2007, 2008; Masuda et al., 2019; Wang et al., 2020),

starch biosynthesis (RSR1) (Fu and Xue, 2010), and grain yield

(OsSPL9) (Hu et al., 2021) (Table 1). OsIRO2 was also found to

regulate NUE in a N-response gene network in rice (Ueda

et al., 2020).
Gene ontology for target genes for
prioritized TFs

To further determine the mechanism of the prioritized TFs

in regulating NUEg, we performed Gene Ontology (GO) analysis

on the NUEg target genes from Table 1 regulated by each TF

using g:Profiler (Table 1 and Supplemental Data 7) (Raudvere

et al., 2019). For each TF, we focused on the relevant biological

process GO terms related to water and nitrogen signaling. We

found that the targe t genes of the TFs , LOB39 ,

LOC_Os11g38870, and LOC_Os06g14670, were enriched for

GO terms related to nitrogen including, "nitrate assimilation,"

and "ammonia assimilation cycle" (Table 1). Further, we found

that the target genes of the TFs, OsbZIP23, Oshox22, Oshox13,

LOC_Os06g14670, were enriched for GO terms related to

drought including, "response to water deprivation," and

"response to abscisic acid" (Table 1). LOC_Os06g14670 was

the only TF enriched for nitrogen and drought-related GO

terms. We did not identify any GO enrichment for the TF-

target genes of OsERF48, OsIRO3, LOC_Os03g08470, OSBZ8,

RSR1 and IDEF2. However, we did identify some other GO

terms of interest for the remaining TFs including, "sulfur

compound metabolic process" for EIL4, "cell communication"

ERF65, "response to temperature stimulus" for OsABF1,

"phosphorus metabolic process" for OsERF1, "iron ion

homeostasis" for OsIRO2, and "zinc ion homeostasis" for

OsSPL9 (Supplemental Data 8). While these enriched GO

terms suggest the relevance of these TFs in other cell

processes, we focus on the TFs that regulate the target genes

associated with the nitrogen and water related GO terms.
High-confidence GRN of TFs that target
nitrogen and drought-related genes

To identify the TFs that regulate both nitrogen and water

response from our list of prioritized TFs, we took the subset of

the GENIE3 network that includes 18 TFs! 551 N-and/or-W

response target genes associated with NUEg, and identified the

target genes from this list of 551 that were part of the GO terms

"nitrate assimilation", "ammonia assimilation cycle", "response to
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water deprivation," and "response to abscisic acid"

(Supplemental Data 7). This resulted in a list of 23 target

genes regulated by 14 TFs (Supplemental Data 7). We found

six TFs that regulated both nitrogen and water related target

genes either directly (OsbZIP23, LOB39, LOC_Os11g38870,

LOC_Os06g14670, and Oshox13) or indirectly (Oshox22 via

regulation of OsbZIP23) (Figure 5). While OsABF1 did not

regulate genes related to nitrogen, it is included in the network

visualization because it is annotated for the water-related GO

terms and is regulated by OsbZIP23 and Oshox22 (Figure 5).

The target genes involved in nitrate and ammonia

assimilation that are regulated by the TFs in our high-

confidence GRN include validated regulators of NUE,

glutamate synthetase 1 (OsGOGAT), and nitrite reductase

(OsNiR) (Lee et al., 2020; Yu et al., 2021) (Figure 5). We also

find regulation of the putatively expressed nitrate reductase 1

(NIA1) gene, which is necessary for nitrate assimilation

(Subudhi et al., 2020). The TFs, OsbZIP23, LOB39 and

LOC_Os11g38870 regulate nitrate assimilation genes, while

OsbZIP23, Oshox13, and LOC_Os06g14670 regulate the

ammonia assimilation gene. OsbZIP23 is the only TF that

regulates genes in both nitrate and ammonia assimilation

genes (Figure 5).

Furthermore, each TF regulates genes involved in water

deprivation and/or ABA signaling (Figure 5). These genes

include the TFs OsbZIP46 and OsbZIP72, which are known

positive regulators of drought tolerance and function in

coordination with OsbZIP23 and OsABF1, two other

prioritized TFs in our network (Lu et al., 2009; Chang et al.,

2017; Zhang et al., 2017; Song et al., 2020). We also find

regulation of the rice aquaporins, OsPIP1;1, OsPIP1;2, and

PIP2A that facilitate water transport (Sakurai et al., 2005; Xu

et al., 2019). In addition, there are genes that regulate multiple

components involved in the ABA signaling pathway including,

the ABA drought receptors, OsPYL1, OsPYL6 (Li et al., 2015;

Santosh Kumar et al., 2021a), the clade A type 2C protein

phosphatases, OsPP2C51, OsPP2C30 (Zong et al., 2016;

Santosh Kumar et al., 2021a), and the ABA-activated protein

kinase, SAPK6 (Chang et al., 2017). Overall, this result

demonstrates that a subset of our prioritized candidate TFs

regulates both nitrogen and water genes.
Network validation with in vivo
TARGET assay

To further validate the nitrogen and drought-related edges in

our high-confidence GRN (Figure 5), we performed in vivo

Transient Assay Reporting Genome-wide Effects of Transcription

factors (TARGET) assays to identify the direct TF-target genes for

these TFs. We selected OsbZIP23 and OsABF1 for TARGET assays

because we could compare the accuracy of our TARGET results

with the available in planta data for these TFs in ConnecTF (Brooks
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et al., 2020). The TARGET TF-perturbation assay in isolated plant

cells has been previously used to identify direct TF!regulated

target genes in Arabidopsis (Bargmann et al., 2013; Varala et al.,

2018; Brooks et al., 2019). In this paper, we adapt the vectors and

the TARGET temporal TF-perturbation assay to rice shoot cells

(Supplementary Figure 4).

The TARGET TF-perturbation assay identifies the direct

TF! regulated target gene interactions because; i) there is

timed nuclear entry of the TF, and ii) translation of regulated

secondary (TF2) transcription factors is blocked by

cycloheximide treatment. TF-regulated DE genes are identified

by comparison to an empty vector control. The TARGET assay

identifies direct TF!target genes as follows: i) the TF is fused to

the glucocorticoid receptor (GR) protein that when expressed in

the plant cells, ii) the TF-GR fusion is retained in the cytoplasm

by HSP90 binding, iii) upon dexamethasone (DEX) treatment,

the GR binding is released and the TF is imported into the

nucleus where it can regulate expression (Bargmann et al., 2013;

Brooks et al., 2019) (Supplementary Figure 5). iv) Additionally,

cycloheximide + DEX treatment inhibits translation of mRNA

for TF2s. Therefore only the target genes of the over-expressed

TF are identified, when compared to the empty vector control

(Brooks et al., 2019).

Based on our TARGET assay, OsbZIP23 directly regulates

3,095 target genes, while OsABF1 directly regulates 2,151 target

genes in rice shoot protoplasts (Supplementary Figure 6 and

Supplemental Data 9). To determine the accuracy of our

TARGET results, we took the overlap between the TARGET

results and the in planta binding and expression data for each

TF from ConnecTF (Zong et al., 2016; Zhang et al., 2017; Brooks

et al., 2020). We found a significant overlap between the TARGET

and in plantaDE genes (Supplemental Figure 6A). This significant

overlap suggests that the plant cell-based TF-target data can

accurately identify in planta TF-regulated genes. Additionally,

we find the TARGET data is as accurate, if not even better, than

the in planta data at validating the predicted TF!target genes in

the GENIE3 network, with a higher F-score and similar precision

and recall values (Supplementary Figure 6B).

Given that the TARGET data was accurate in identifying

OsbZIP23 and OsABF1 target genes, we used the TARGET and

in planta data to validate the nitrogen and drought-related edges

in our high-confidence GRN (Figure 5). We confirm with

TARGET that OsbZIP23 directly regulates genes involved in

nitrogen and drought responses including, NIA1 involved in nitrate

assimilation (Subudhi et al., 2020), ABCG4 involved in abiotic stress

responses (Matsuda et al., 2012), and the rice aquaporin, OsPIP1;2, that

improves yield in rice (Xu et al., 2019). Additionally, we confirm with

OsbZIP23 TARGET and in planta data that OsbZIP23 regulates

drought associated genes OsDhn1 and OsPP2C30 (Lee et al., 2013;

Santosh Kumar et al., 2021b). Furthermore, we confirm the role

of OsABF1 in regulating drought signaling, as it regulates the

drought-associated gene OsPP2C51 in both TARGET and in planta

datasets (Figure 5) (Zong et al., 2016).
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Overall, our TARGET results show that the high-confidence

edges inferred in our GENIE3 network accurately predict

TF!target genes, thus further confirming the role of

OsbZIP23 in regulating both NUEg and WUE. In addition, we

find a new function for OsbZIP23 in mediating NUEg

phenotypes, as previous studies show its role in drought

responses (Xiang et al., 2008; Dey et al., 2016; Zong et al.,

2016). Thus, our combined network inference and validation

approach reveals new TFs in regulating NUEg (Table 1).
Discussion

In this study, we sought to identify GRNs that control NUEg

in response to two key interacting components that regulate rice

productivity: N and W. By exploiting transcriptomic and

phenotypic data collected from 19 rice varieties grown in a

2x2 N-by-W matrix in the field (Swift et al., 2019), we identified

and validated the role GRNs comprised of N-and/or-W response

genes for their role in TF!target gene! NUEg phenotype

relationships. The TF to N-by-W response gene information

now encoded in this high-confidence GRN correlated to NUEg,

can now be applied to develop/breed rice plants with improved

yield marginal, low N-input, drought-prone soils – which are

increasing in the face of climate change.
High-confidence GRN identifying master
regulators of NUEg responsive to
N-and/or-W signals

We were able to link the TF!target gene!NUEg

phenotype using a combination of four approaches (i)

WGCNA-based gene-to-trait co-expression network

(Langfelder and Horvath, 2008), (ii) GENIE3, a random forest

machine learning approach to GRN inference for predicting TF-

target interactions (Huynh-Thu et al., 2010), (iii) Experimental

validation of GRN predictions and Network "pruning" by AUPR

(Varala et al., 2018; Brooks et al., 2019), and (iv) Network

validation using TARGET, an approach which uses plant cells

to identify direct TF!target gene interactions (Bargmann et al.,

2013; Brooks et al., 2019). Using this pipeline (Figure 1), the

WGCNA approach identified two network modules that were

highly correlated to NUEg called "grey" and "skyblue". Next, we

constructed a GRN for the genes in this module, based on their

N-and/or-W response DE genes. Finally, we used experimental

data for TF-target genes validated in planta (Zong et al., 2016;

Zhang et al., 2017; Shim et al., 2018) as well as ones we generated

in rice leaf cells for this study. These validated rice TF datasets

were used to conduct precision/recall analysis of our GRN.

This enabled us to set a precision cut-off score to prune the

network for high confidence TF-target predictions for all TFs in

the GRN.
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Overall, our GRN analysis and validation identified

OsbZIP23 and Oshox22 as top candidate master regulators of

NUEg in response to N and W signaling. These two TFs are

network hubs, as they regulate the largest number of DE genes

(N-and/or-W responsive) that are highly correlated with NUEg

in the grey60 and skyblue WGCNA modules (Table 1 and

Supplemental Data 6). Further validating their known role in

drought, these two TFs have published functions in regulating

drought tolerance through the plant hormone abscisic acid

(ABA) signaling responses (Xiang et al., 2008; Zhang et al.,

2012, 2017; Park et al., 2015) (Table 1). Our current study, now

links these two well-known drought TFs to regulation by N-and/

or-W signaling and NUEg. Our results are also in line with

previous studies that show OsbZIP23 activity to be dependent

upon phosphorylation by SAPK2 (Zong et al., 2016), an osmotic

stress/ABA-activated protein kinase, which promotes nitrate

uptake and assimilation under drought stress (Lou et al., 2020).

In addition to the TF hubs (OsbZIP23 and Oshox22), we

identify four TFs with novel functions NUEg and WUE gene

regulation in our GRN. We identified four TFs (LOB39,

Oshox13, LOC_Os11g38870, and LOC_Os06g14670), that

regulate genes involved in both N and/or W responses using

GO analysis of their predicted TARGET genes in the high-

confidence GRN (Table 1 and Figure 5). Unlike OsbZIP23 and

Oshox22, the TFs Oshox13, LOC_Os11g38870, and

LOC_Os06g14670TFs had until now unknown functions in

both nitrogen and drought regulation (Table 1). LOB39

expression is regulated by nitrogen, however it was previously

not known to be involved in drought (Obertello et al., 2015).

OsbZIP23, LOB39 and LOC_Os11g38870 regulate nitrate

assimilation genes NIA1 and OsNiR, which is a known to

promote nitrogen assimilation and NUE in coordination with

OsNLP4 (Figure 5) (Yu et al., 2021). Furthermore, OsbZIP23,

Oshox13 and LOC_Os06g14670 regulate the ammonia

assimilation gene OsGOGAT1, which improves NUE in low N

conditions in coordination with the ammonium transporter

OsAMT1;2 (Lee et al., 2020). While it is known that rice

prefers ammonia uptake compared to nitrate (Sasakawa and

Yamamoto, 1978; Hachiya and Sakakibara, 2017), we find the

TFs in this network regulate both pathways, with OsbZIP23

regulating genes involved in both.

We also examined the mechanism of transcriptional

regulation between these master TFs in the NUEg GRN by

validating TF!target gene interactions using TARGET, a plant

cell-based assay that identifies direct TF!TARGET gene

interactions (Bargmann et al., 2013; Varala et al., 2018; Brooks

et al., 2019). We find that Oshox22 regulates nitrogen and water

responses indirectly via candidate TFs OsbZIP23, and OsABF1

(Figure 5). We then validate the TF!target gene interactions for

OsbZIP23 and OsABF1 TFs with the TARGET assay. We

confirm that OsbZIP23 regulates both nitrogen and drought

response genes, and OsABF1 regulated drought response genes,

with TARGET and in planta data.
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Overall, these finding supports previous studies that show

the regulation of these two essential signals N-and-W are linked

(Swift et al., 2019; Araus et al., 2020; Plett et al., 2020). Our work

presents a path of how ABA/drought induced signaling regulates

both N and W responses which ultimately affect crop

phenotypes, such as NUEg, the trait of focus in our study.
Validation of GRNs in rice using
ConnecTF as a platform to validate and
prune for high-confidence networks

In our study, we demonstrate the usefulness of ConnecTF as

a platform - now applied to rice - to integrate published TF-

binding and TF-expression datasets to identify and validate

target genes in GRNs (Brooks et al., 2020) (Figure 4 and

Supplementary Figure 2). While some GRN studies use an

arbitrary cut-off value for network pruning as in other

network studies (Ueda et al., 2020), we show how TF-

perturbation data can be used as a "gold-standard" for GRN

validation and "network pruning", using automated AUPR

functions in ConnecTF (Brooks et al., 2020) (Figure 4). We

performed Precision/Recall analysis of the GRN for NUEg –

using the TF-target gene validation sets for rice housed in the

ConnecTF database. This enabled us to empirically select a

TF!target precision cut-off value of 0.31 from the AUPR

curve. This AUPR cut-off represents that approximately 1/3 of

our GENIE3 network predictions are validated (Figure 4). This

precision cut-off is comparable to what we find in other network

studies in Arabidopsis that use AUPR analysis (Varala et al.,

2018; Brooks et al., 2019). Overall, the automated AUPR

function in ConnecTF provides an accurate, and facile means

to validate GRN predictions in any rice GRN that researchers

can load onto the site. Importantly, these cut-off values for

TF!target gene validated edges established a cut-off score that

can be applied to all TF!target gene edges in the network –

including TFs which have not been validated. This enables the

generation of a high-confidence network for all TFs in the GRN.
bZIP family TFs as regulators of N and
W signaling

In our high-confidence GRN we identify nine bZIP TFs as

regulators in our "pruned" network (Supplementary Data 6).

Members of the bZIP family of TFs are known to regulate

drought stress responses in multiple crops species in addition to

rice, including Glycine max, Zea mays and Hordeum vulgare

(Joshi et al., 2016). Additionally, bZIP family TFs regulate ABA

hormone responses, which play a crucial role in regulating the

drought response in plants in general (Joshi et al., 2016; Zong

et al., 2016; Zhang et al., 2017; Araus et al., 2020). In our high-

confidence GRN studies that focus on genes correlated with
Frontiers in Plant Science 15
NUEg, we find that bZIP TFs regulate N-signaling as well as

drought responses in rice. In line with our finding, previous

studies examining N-responses in rice, identified bZIP

transcription factors that regulate NUE (Ueda et al., 2020).

We identified three bZIP family members - OsABF1,

OsbZIP23, and OSBZ8 - as top-regulators of N-and/or-W

signaling in regulating NUEg (Table 1). Additionally, we find

regulation of two other bZIP TFs, OsbZIP72 and OsbZIP46, in

our NUEg GRN regulated by Oshox22 and OsbZIP23,

respectively (Figure 5). This finding is significant, as

OsbZIP23, OsbZIP46, OsbZIP72 are part of the same

subgroup-III of bZIP TFs and are known to be coordinated in

their regulation of ABA signaling and drought responses (Lu

et al., 2009; Hossain et al., 2010; Song et al., 2020). Additionally,

ObZIP46 improves drought tolerance in coordination with the

ABA-activated protein kinase, SAPK6, which is another target

gene in our NUEg GRN (Figure 5) (Chang et al., 2017). Overall,

our NUEg GRN results link bZIP TFs in rice as mediating N-

and/or-W response genes that control NUEg. We validate the

TF!target genes predictions in our high-confidence GRN for

NUEg for two bZIP TFs, OsbZIP23 and OsABF1, using the

TARGET assay.
Functional validation of TFs in rice:
TARGET assay to identify direct
TF!target gene interactions in rice cells

The TARGET system allows researchers to identify the

validated TF-target gene interactions for any TF of interest

using a rapid plant cell based temporal TF perturbation assay

(Bargmann et al., 2013; Brooks et al., 2019). The key to this assay

is the inducible TF nuclear localization and its ability to identify

direct TF-target genes based on RNA-seq data (Bargmann et al.,

2013). Previously, the TARGET assay has been used to identify

direct TF!target gene interactions in Arabidopsis root or shoot

cells (Bargmann et al., 2013; Varala et al., 2018; Brooks et al.,

2019). In this study we establish the TARGET system in rice leaf

protoplasts (see Methods). We then used the rice TARGET assay

to identify the direct regulated target genes of the rice TFs

OsbZIP23 and OsABF1 (Supplementary Data 9). Our analysis

shows that the TF target genes identified in rice leaf protoplasts

using TARGET, are comparable and show a significant overlap

with genes identified in planta (Supplementary Figure 6A).

Additionally, in this study, we demonstrate that the accuracy

of rice TARGET data is comparable to in planta data at

validating network predictions (Supplementary Figure 6B).

This finding suggests that rice TARGET data can be used to

validate GRN predictions in rice, as was shown in Arabidopsis

(Varala et al., 2018; Brooks et al., 2019; Brooks et al.,2020;

Cirrone et al., 2020). In our study, we validated that OsbZIP23

regulates both nitrogen and water-related genes including, NIA1

which is involved in nitrate assimilation (Subudhi et al., 2020),
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OsDhn1 which is induced by drought (Lee et al., 2013),

OsPIP1;2 which is an aquaporin that improves yield (Xu et al.,

2019), ABCG4 which is involved in abiotic stress responses

(Matsuda et al., 2012), and OsPP2C30 which a core regulator in

the ABA signaling pathway (Zong et al., 2016). Overall, our

study supports that the TARGET assay is a fast and reliable

approach to identify the direct TF!target genes in rice,

bypassing the time-consuming process of developing

transgenic rice. Importantly, the rapid rice TARGET TF-

perturbation assay, can be used to prioritize rice TFs for more

laborious studies in planta.
Our network approach is transferrable to
any phenotype in any organisms

The method we applied in this study relies on two inputs: a

transcriptome-wide gene expression table and collected

phenotypes from the same samples. With the reduced cost of

RNA-Seq, especially with the 3′ RNA-sequencing (Weih, 2014;

Groen et al., 2020; Weng and Juenger, 2022), it is much more

feasible for researchers to obtain transcriptome expression data

from many samples. Moreover, the software we used are all

open-source and publicly available. This includes WGCNA

(Langfelder and Horvath, 2008) for gene-to-phenotype

correlation, GENIE3 (Huynh-Thu et al., 2010) for GRN

inference and ConnecTF (Brooks et al., 2020) for network

pruning. Putting these together, our network approach is not

limited in rice research, but can be applied to any organism for

any phenotype or trait.
Conclusions

By using a combination of WGCNA and GENIE3 network

methods, we present a gene regulatory network that links

TF!target gene!NUEg phenotype to determine the

mechanism of N-and/or-W signaling to the regulation of

NUEg (Figure 1). We also show how to use TF-validation

datasets from rice to validate inferred networks using

ConnecTF (https://rice.connectf.org) (Brooks et al., 2020). In

addition, we apply the cell-based TARGET temporal TF-

perturbation system to rice to identify direct TF!target

genes interactions and validate inferred gene networks.

Overall, we identify a new role for OsbZIP23 and Oshox22 as

regulators of the N-and/or-W signaling and regulation of

NUEg, in addition to ABA/drought signaling. More broadly,

we have identified 18 prioritized TFs and their targets that

correlate with NUEg, and results from this network approach

can potentially be used to optimize rice varieties to thrive in

marginal low-N/arid soils, which are increasing in the face of

global climate change.
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