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Thinopyrum intermedium (JJJsJsStSt, 2n = 6x = 42), a member of tertiary

gene pool of hexaploid wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42),

provides several beneficial genes for wheat improvement. In this study,

line CH51 was developed from the BC1F8 progeny of a partial wheat-Th.

intermedium amphiploid TAI8335 (2n = 56) and wheat cultivar (cv.) Jintai

170. Somatic metaphase chromosome counting showed that CH51 had stable

42 chromosomes. Genomic in situ hybridization (GISH) analysis showed that

CH51 had 40 wheat chromosomes and two Th. intermedium chromosomes

involving translocation between Js- and St-genome chromosomes. Non-

denaturing fluorescence in situ hybridization (ND-FISH) analysis revealed

that CH51 lacked a pair of wheat chromosome 6B. Wheat 55K SNP array

analysis verified that chromosome 6B had the highest percentage of missing

SNP loci in both CH51 and Chinese Spring (CS) nullisomic 6B-tetrasomic

6D (CS-N6BT6D) and had the highest percentage of polymorphic SNP loci

between CH51 and cv. Jintai 170. We identified that CH51 was a wheat-

Th. intermedium T6StS.6JsL (6B) disomic substitution line. Disease resistance

assessment showed that CH51 exhibited high levels of resistance to the

prevalent Chinese leaf rust and stripe rust races in the field. Therefore, the

newly developed line CH51 can be utilized as a potential germplasm in wheat

disease resistance breeding.
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Introduction

Hexaploid wheat (Triticum aestivum L., AABBDD,
2n = 6x = 42) is one of the most essential cereal crops around
the world and provides the major food source for 30% of the
global population [International Wheat Genome Sequencing
Consortium [IWGSC], 2014]. Wheat diseases such as rusts,
powdery mildew, and Fusarium head blight (FHB), however,
have always been major threats to wheat production in almost
all the wheat growing countries. Stripe rust, caused by Puccinia
striiformisWestend. f. sp. tritici (Pst), may cause losses up to 70%
and even higher (Roelfs et al., 1992; Wellings, 2011). Leaf rust,
caused by P. triticina Eriks (Pt), is another devastating foliar
disease, and can also cause severe yield reduction (McIntosh
et al., 1995). Developing resistant cultivars is regarded as the
most economical and effective means to control diseases.
Nevertheless, because of a limited number of effective resistance
genes in cultivated wheat and constantly evolving new virulent
pathotypes capable of overcoming existing resistance genes in
the pathogens, there is an urgent requirement to explore and
utilize new resistant resources.

Thinopyrum intermedium (Host) Barkworth and D.R.
Dewey (JJJsJsStSt, 2n = 6x = 42), a perennial wild relative
of hexaploid wheat, possesses many resistance genes, such as
those that are resistant to stem rust, stripe rust, leaf rust, and
powdery mildew pathogens (Li and Wang, 2009). Due to its high
crossability with hexaploid wheat, several resistance genes have
been incorporated into wheat (Li et al., 2019a). Up to now, a total
of 81 leaf rust (Xu et al., 2022) and 83 stripe rust resistance genes
(Li et al., 2020) have been officially named in wheat, respectively,
but only Lr38 (Friebe et al., 1993) and Yr50 (Liu et al., 2013) were
reported from Th. intermedium. Therefore, it is of great value to
explore new Th. intermedium genetic resources for broadening
its application in wheat biotic resistance breeding.

Substitution lines between wheat and wild relatives are
regarded as the optimal bridging materials for transferring
beneficial genes from wild species to cultivated wheat (Liu
and Wang, 2005). Compared with addition lines, substitution
lines are cytogenetically more stable (Li et al., 2019b) and
preferable to produce wheat-alien translocation lines by crossing
with the high pairing ph1b mutant (Zhang et al., 2017).
Chang et al. (2010) reported that wheat-Th. intermedium
partial amphiploid TAI8335 was highly resistant to leaf
rust, stem rust, stripe rust, and powdery mildew. Later,
a wheat-Th. intermedium disomic substitution line CH51
was selected from the BC1F8 progeny of TAI8335 and
common wheat cultivar (cv.) Jintai 170. In this study, we
used chromosome counting, genomic in situ hybridization
(GISH), non-denaturing fluorescence in situ hybridization
(ND-FISH), wheat 55K SNP array, and disease responses
to: (1) identify the chromosome composition of CH51; (2)
confirm the homoeologous relationship of Th. intermedium
chromosomes in CH51; and (3) evaluate the responses of the

newly developed line CH51 to stripe rust, leaf rust, FHB,
and powdery mildew.

Materials and methods

Plant materials

The materials used in this study included common wheat
Chinese Spring (CS), Jinchun 5, Jinmai 33, Jintai 170, Mingxian
169, Nanda 2419, Taichung 29, Sumai 3, Alondra’s, CS
nullisomic-tetrasomic lines (CS-N6AT6D, CS-N6BT6D, and
CS-N6DT6B), Th. intermedium (unknown origin), a partial
wheat-Th. intermedium amphiploid TAI8335 (2n = 8x = 56),
and its derived line CH51. TAI8335 was developed from BC1F8

progenies of the cross of Jinchun 5/Th. intermedium//Jinmai
33 (Chang et al., 2010). CH51 was selected from BC1F8

progenies of the cross of Jintai 170/TAI8335//Jintai 170. CS
and Taichung 29 were kindly provided by Dr. Zujun Yang,
University of Electronic Science and Technology of China,
Chengdu, Sichuan, China. Sumai 3 and Alondra’s were kindly
provided by Dr. Xiue Wang, Nanjing Agricultural University,
Nanjing, Jiangsu, China. All materials are maintained at
Shanxi Province Key Laboratory of Crop Genetics and Gene
Improvement, College of Agronomy, Shanxi Agricultural
University, Taiyuan, Shanxi, China.

Genomic in situ hybridization analysis

Mitotic metaphase chromosomes of CH51 were analyzed
by GISH according to the protocols in Zhang et al. (2001).
Mitotic metaphase chromosomes were obtained from root tips
and were spread according to the procedures in Lang et al.
(2018). Total genomic DNA from Pseudorogneria spicata was
used as a probe and labeled with fluorescein-12-dUTP (yellow-
green fluorescence) (Enzo Life Sciences Inc., Farmingdale, NY,
United States) using nick translation method. Sheared genomic
DNA from CS was used as blocking DNA. Chromosomes
were counterstained with propidium iodide (PI), and fluoresced
red. GISH images were captured with an epifluorescence Zeiss
Axioplan 2 microscope equipped with a SPOT 2.1 CCD camera
(Diagnostic Instruments, Sterling Heights, MI, United States).

Non-denaturing fluorescence in situ
hybridization analysis

Mitotic metaphase chromosomes of CH51 were further
analyzed by ND-FISH according to the procedure of Fu
et al. (2015). The oligonucleotide probes Oligo-pSc119.2 and
Oligo-pTa535 were used to identify wheat chromosomes
according to the description by Tang et al. (2014). Probe
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Oligo-pSc119.2 was 5’-end labeled with 6-carboxyfluorescein
(6-FAM) generating green signals, and probe Oligo-pTa535
were labeled with 6-carboxytetramethylrhodamine (TAMRA)
generating red signals (Shanghai Invitrogen Biotechnology Co.,
Ltd., Shanghai, China). Chromosomes were counterstained with
4’,6-diamidino-2-phenylindole (DAPI) in Vectashield mounting
medium (Vector Laboratories, Burlingame, CA, United States).
FISH images were captured with an Olympus BX-51 microscope
equipped with a DP-70 CCD camera (Shinjuku, Tokyo, Japan).

Wheat 55K SNP array analysis

Total genomic DNA of CH51, Jintai 170, CS-N6AT6D, CS-
N6BT6D, and CS-N6DT6B were extracted using the CTAB
method (Chen et al., 2004), and were genotyped on the
wheat 55K SNP genotyping arrays (China Golden Marker
Biotechnology Company, Beijing, China). There are 53,007
microchip probes per chip, including many diploid markers.
Based on CS reference genome sequence IWGSC_RefSeq_v1.0,1

a total of 49,060 SNP marker loci had precise physical
location information, evenly covering the entire wheat genome.
Percentages of the same, polymorphic, or missing SNP loci
in each chromosome in CH51, Jintai 170, CS-N6AT6D, CS-
N6BT6D, and CS-N6DT6B were obtained by calculating the
rate of the same, polymorphic, or missing SNP genotype loci
number in total number of SNP loci. Microsoft Excel 2019
(Microsoft, Redmond, WA, United States) was used for data
analysis and graphing.

Disease response evaluation

During the two wheat-growing seasons in 2018–2020, all
materials were sown in a randomized complete block design
with three replicates for evaluating their responses to stripe rust,
leaf rust, powdery mildew, and Fusarium head blight (FHB)
at the heading stage. Fifteen seeds of each line were sown
in 1.5 m rows, spaced 0.25 m apart. Stripe rust was tested
at Xindu Experiment Station, Sichuan Academy of Sciences,
Chengdu, Sichuan, China. Leaf rust, powdery mildew, and FHB
were tested at the Experimental Farm of Shanxi Agricultural
University, Jinzhong, Shanxi, China.

Stripe rust responses of Jinchun 5, Jinmai 33, Jintai 170, Th.
intermedium, TAI8335, CH51, and Taichung 29 were inoculated
with a mixture of Pst races CYR32, CYR33, and CYR34 (1:1:1
ratio) provided by the Institute of Plant Protection, Gansu
Academy of Agricultural Sciences, Lanzhou, Gansu, China.
Artificial inoculations were carried out by dusting spores onto
the leaves. Wheat cv. Taichung 29 was used as the susceptible
control. When spores were fully developed on Taichung 29,

1 http://wheat-urgi.versailles.inra.fr/Seq-Repository/

infection types (ITs) were recorded based on a 0–4 scale, where
0, 0; 1, 2, 3, and 4 indicated immune, highly resistant, resistant,
moderately resistant, moderately susceptible, and susceptible,
respectively (McIntosh et al., 1995).

Leaf rust reactions of all tested materials were recorded after
being inoculated with a mixture of prevalent Pt races TRT, TRJ,
and KHJ (1:1:1 ratio), which were collected from wheat-growing
areas in northern China (Sheng et al., 2022). Inoculation method
was according to Sheng et al. (2022). Wheat cv. Nanda 2419 was
used as the susceptible control. ITs were recorded as 0–4 scale
according to McIntosh et al. (1995).

Powdery mildew responses of all tested materials were
evaluated after being inoculated with Blumeria graminis f.
sp. tritici (Bgt) race E09 provided by the Institute of Plant
Protection, Chinese Academy of Agricultural Sciences, Beijing,
China. Inoculations were carried out as described by Xiang
et al. (1994). When conidia were spread across the susceptible
control Mingxian 169, ITs were recorded on a 0–9 scale, where
0, 0; 1–2, 3–4, 5–6, and 7–9 indicated immune, near immune,
highly resistant, moderately resistant, moderately susceptible,
and highly susceptible, respectively (Sheng and Duan, 1991).

Fusarium head blight (FHB) reactions of all tested materials
were recorded after being inoculated with Fusarium pathotype
F0609 provided by Dr. Xiue Wang, Nanjing Agricultural
University, Nanjing, Jiangsu, China. Plants were inoculated as
described by Bai et al. (1999) and Zhang et al. (2020) when
a spike was just beginning to flower. Sumai 3 was used as
the resistant control, and Alondra’s was used as the susceptible
control. Disease severity was recorded 27 days post inoculation
according to a 0–4 scale, where 0, 1, 2, 3, and 4 indicated
immune, resistant, moderately resistant, moderately susceptible,
and susceptible, respectively (Zhang et al., 2020).

Results

Cytological characterization of CH51
using genomic in situ hybridization and
fluorescence in situ hybridization
analyses

Wheat-Th. intermedium derived line CH51 was
selected from the BC1F8 progeny of the cross of Jintai
170/TAI8335//Jintai 170. A total of 30 CH51 seeds were
germinated for chromosome counting. The result showed that
the somatic metaphase chromosome number of all 30 seeds are
2n = 42, confirming its cytogenetic stability.

Genomic in situ hybridization (GISH) analysis using Ps.
spicata genomic DNA as a probe showed that CH51 had 40
wheat chromosomes and two Th. intermedium chromosomes
displaying stronger hybridization signals along the entire
short arm and at the telomeric region of the long arm
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(Figure 1A). According to Chen et al. (1999), GISH using
the diploid progenitor Ps. spicata as a probe could label the
entire length of St-genome chromosomes, the pericentromeric
and telomeric regions of Js-genome chromosomes, and the
telomeres of J-genome chromosomes, indicating that the
Thinopyrum chromosome in CH51 involved translocation
between Js- and St-genome chromosomes. Sequential ND-FISH
with probes Oligo-pSc119.2 and Oligo-pTa535 revealed that
CH51 had 40 wheat chromosomes and a pair of unknown
chromosomes, which substitute for the wheat chromosome 6B
(Figure 1B). Therefore, we concluded that CH51 is a wheat-Th.
intermedium T?StS.?JsL (6B) disomic substitution line.

Wheat 55K SNP array analysis

Based on the reference genome sequence of CS, a total of
49,060 SNP loci having precise physical location information
were used in the wheat SNP array analysis. Among them, a total
of 46,380 and 48,288 valid SNP loci were identified in CH51
and Jintai 170, respectively (Table 1). A total of 41,186 SNP
loci were common between CH51 and Jintai 170. As shown
in Figure 2, chromosome 6B shared the minimum percentage
of the same SNP loci (9.58%) between CH51 and Jintai 170,
whereas other chromosomes shared much higher percentages
of the same SNP loci ranging from 63.89% (on 6D) to 98.40%
(on 4B). A total of 7,403 SNP loci were polymorphic between
CH51 and Jintai 170. As shown in Figure 2, chromosome 6B
had the highest percentage of polymorphic SNP loci (88.18%)
between CH51 and Jintai 170, whereas other chromosomes had

lower percentages of polymorphic SNP loci ranging from 1.05%
(on 7B) to 35.94% (on 6D). In addition, a total of 471 SNP loci
(0.96%) were simultaneously missing in both CH51 and Jintai
170, which could not be used in the statistical analysis (Table 1).
The result indicated that wheat chromosome 6B in CH51 was
substituted by a pair of homoeologous group-6 chromosome
from Th. intermedium.

To verify whether wheat chromosome 6B was absent in
CH51, CS-N6BT6D, CS-N6AT6D, and CS-N6DT6B were also
included in genotyping with wheat 55K SNP genotyping arrays.
As shown in Supplementary Table 1, chromosome 6B in CH51
had the highest percentage of missing SNP loci of 62.82%,
whereas other chromosomes had much lower percentages,
ranging from 0.86% (4B) to 6.77% (6D). For CS-N6BT6D,
because it lacks the wheat chromosome 6B, we speculated that
it should have a highest percentage of missing SNP loci on
chromosome 6B, which was confirmed by SNP array analysis
that chromosome 6B in CS-N6BT6D had the highest percentage
(66.98%) of missing SNP loci (Supplementary Table 1).
Combined with FISH-GISH results, it was demonstrated that
CH51 was a wheat-Th. intermedium T6StS.6JsL (6B) disomic
substitution line.

Assessment of responses to leaf rust,
stripe rust, powdery mildew, and
Fusarium head blight

At the heading stage, responses to stripe rust, leaf rust,
powdery mildew, and FHB were recorded in Table 2. For stripe

FIGURE 1

Genomic in situ hybridization (GISH) and Non-denaturing fluorescence in situ hybridization (ND-FISH) analyses of mitotic metaphase
chromosomes of CH51. (A) Pseudorogneria spicata total genomic DNA was used as a probe (yellow-green) in GISH analysis. Chromosomes
were counterstained with propidium iodide (PI) and fluoresced red. (B) Probes Oligo-pSc119.2-1 (green) and Oligo-pTa535-1 (red) were used in
ND-FISH analysis. Chromosomes were counterstained with 4’,6-diamidino-2-phenylindole (DAPI) and fluoresced blue. Arrows (A, B) point to
the alien translocation chromosomes. Bars, 10 µm.
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TABLE 1 SNP genotyping data obtained using wheat 55K SNP arrays for CH51 and wheat parent Jintai 170.

CH51 vs. Jintai 170

Chromosome No. of
markers

No. of valid
markers in

CH51

No. of valid markers
in Jintai 170

No. of same
markers

Percentage of
same markers

No. of polymorphic
markers

Percentage of
polymorphic
markers

No. of simultaneous
missing markers

Percentage of
simultaneous missing

markers

1A 2625 2581 2587 2543 96.88% 57 2.17% 25 0.95%

1B 2595 2556 2562 1728 66.59% 859 33.10% 8 0.31%

1D 2138 2107 2108 1999 93.50% 129 6.03% 10 0.47%

2A 2622 2585 2599 2394 91.30% 219 8.35% 9 0.35%

2B 2600 2486 2499 2467 94.88% 42 1.62% 91 3.50%

2D 2247 2173 2177 2115 94.13% 72 3.20% 60 2.67%

3A 2174 2130 2140 1878 86.38% 284 13.07% 12 0.55%

3B 2595 2547 2559 1974 76.07% 598 23.04% 23 0.89%

3D 1693 1600 1679 1495 88.30% 194 11.46% 4 0.24%

4A 2592 2569 2567 2460 94.91% 123 4.75% 9 0.34%

4B 2556 2534 2541 2515 98.40% 32 1.25% 9 0.35%

4D 1420 1403 1410 1350 95.07% 65 4.58% 5 0.35%

5A 2611 2580 2587 2193 83.99% 409 15.66% 9 0.35%

5B 2586 2543 2548 2519 97.41% 38 1.47% 29 1.12%

5D 1737 1716 1717 1483 85.38% 242 13.93% 12 0.69%

6A 2623 2519 2573 2279 86.89% 324 12.35% 20 0.76%

6B 2547 947 2478 244 9.58% 2246 88.18% 57 2.24%

6D 1728 1681 1690 1104 63.89% 621 35.94% 3 0.17%

7A 2579 2530 2533 2280 88.41% 266 10.31% 33 1.28%

7B 2487 2444 2441 2425 97.51% 26 1.05% 36 1.44%

7D 2305 2149 2293 1741 75.53% 557 24.16% 7 0.31%

Total 49060 46380 48288 41186 83.95% 7403 15.09% 471 0.96%
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FIGURE 2

Wheat 55K SNP array analysis. Orange and blue colors indicate the percentages of the same and polymorphic SNP loci in each chromosome in
the total number of SNP loci between CH51 and wheat parent Jintai 170, respectively.

rust (Figure 3A) and leaf rust (Figure 3B), the susceptible
control Taichung 29 and Nanda 2419, wheat parents Jinchun
5, Jinmai 33 and Jintai 170 were susceptible (IT 3+ or 4),
whereas Th. intermedium and TAI8335 were immune or highly
resistant (IT 0 or 0;), and CH51 was highly resistant or resistant
(IT ;1=). For powdery mildew (Supplementary Figure 1A),
the susceptible control Mingxian 169, wheat parents Jinchun 5,
Jinmai 33 and Jintai 170, and CH51 were highly susceptible (IT
9), whereas Th. intermedium and TAI8335 were immune (IT 0).
For FHB (Supplementary Figure 1B), the susceptible control
Alondra’s, wheat parents Jinchun 5, Jinmai 33 and Jintai 170, and
CH51 were highly susceptible (IT 3+ or 4), whereas TAI8335
was moderately resistant (IT 2), and the resistant control Sumai
3 was highly resistant (IT 1). Therefore, we concluded that
the translocation chromosome T6StS.6JsL in CH51 might carry
genes for resistance to stripe rust and leaf rust in the field, but
not resistance genes to powdery mildew and FHB.

Discussion

The homoeologous group-6 chromosomes of wild relatives
of common wheat carry many desirable genes, such as higher
micronutrient contents in grain and resistance to stripe rust,
leaf rust, and powdery mildew. For example, Ardalani et al.
(2016) reported that wheat-Th. bessarabicum substitution line

TABLE 2 Responses of tested materials to stripe rust (Pst), leaf rust
(Pt), powdery mildew (Bgt), and FHB at the heading stage.

Materials Pst Pt Bgt FHB

CYR32 + CYR33
+ CYR34

TRT +

TRJ+KHJ
E09 F0609

Thinopyrum
intermedium

0 0 0 –

TAI8335 0; 0 0 2

CH51 ;1 ;1= 9 3+

Jinchun 5 4 3+ 9 4

Jinmai 33 4 4 9 4

Jintai 170 4 4 9 4

Mingxian
169

– – 9 –

Nanda 2419 – 4 – –

Taichung 29 4 – – –

Sumai 3 – – – 1

Alondra’s – – – 4

“–”, not tested.

DS6Eb (6D) and translocation line T6EbS.6DL had higher iron
and zinc contents than the recipient wheat cv. “Roushan”
and demonstrated that the gene(s) conferring high Fe and Zn
contents was located on the short arm of Th. bessarabicum
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FIGURE 3

Stripe rust and leaf rust responses of tested materials at the heading stage. (A) A mixture of stripe rust races CYR32, CYR33, and CYR34 (1:1:1
ratio) were inoculated on (from left to right): Thinopyrum intermedium, TAI8335, CH51, Jinchun 5, Jinmai 33, Jintai 170, Taichung 29. (B) A
mixture of leaf rust races TRT, TRJ, and KHJ (1:1:1 ratio) were inoculated on (from left to right): Th. intermedium, TAI8335, CH51, Jinchun 5,
Jinmai 33, Jintai 170, Nanda 2419.

chromosome 6Eb. Song et al. (2016) revealed that the bin of
fraction length (FL) 0.81–1.00 of the long arm of Agropyron
cristatum chromosome 6P carried leaf rust resistance gene(s).
The powdery mildew resistance gene Pm21 derived from
Haynaldia villosa is located on 6VS and encodes a CC-NBS-
LRR (NLR) protein (He et al., 2018; Xing et al., 2018). Li et al.
(2020) mapped a new stripe rust resistance gene Yr83 to the bin
of FL 0.73–1.00 of the long arm of Secale cereale chromosome
6R. Recently, Zhang et al. (2021) isolated stem rust resistance
genes Sr26 and Sr61 from Th. ponticum chromosomes 6Ae#1
and 6Ae#3, respectively, which encode unrelated NLR genes
and remain effective against all known Pgt races, including the
widely virulent Pgt race Ug99 (TTKSK). In the present study,
we identified a wheat-Th. intermedium T6StS.6JsL (6B) disomic
substitution line CH51, which exhibited high levels of resistance
to the prevalent Chinese leaf rust and stripe rust races in the
field (Figure 3).

After transferring alien chromosomes into wheat, it is
important to efficiently track alien chromosome(s) in wheat-
alien introgression lines. GISH is regarded as a powerful and
reliable technique for determining the genomic origin, size
of introgressed fragments and breakpoint positions of the
introgressions (Li et al., 2020). In this study, we used GISH
analysis with Ps. spicata genomic DNA as a probe and showed
that CH51 carried a pair of Th. intermedium Js-/St-genome
translocation chromosomes (Figure 1A). In addition, FISH
is an efficient tool for the identification of wheat and alien
chromosomes in wheat-alien introgression lines (Tang et al.,
2014). We used FISH analysis to show that CH51 lacked a pair
of wheat chromosome 6B but had a pair of Th. intermedium
chromosomes (Figure 1B). A combination of GISH and FISH
indicated that CH51 is a wheat-Th. intermedium T6StS.6JsL (6B)
disomic substitution line.

With the rapid development of sequencing technologies,
SNP array analysis is becoming increasingly popular in high-
throughput genotyping wheat and wild relatives because of
its high-density loci and reasonable cost (Winfield et al.,
2016). Recently, SNP arrays also play a vital role in detecting

the homoeologous relationships between wheat and alien
chromosomes in wheat-alien introgression lines (Li et al., 2019b;
Wang et al., 2020, 2022). In this study, results from the
wheat 55K SNP array showed that chromosome 6B had the
highest percentage of polymorphic SNP loci between CH51
and wheat parent Jintai 170 (Figure 2 and Table 1) and also
had the highest percentage (62.82%) of missing SNP loci in
CH51 (Supplementary Table 1). Combining with the cytology
result, we concluded that CH51 is a wheat-Th. intermedium
T6StS.6JsL (6B) disomic substitution line. In addition, SNP
array results also verified that the tested materials, CS-N6BT6D,
CS-N6AT6D, and CS-N6DT6B, used in the current study are
correct, which correspond to the highest percentage of missing
SNP loci of 62.82% (6B), 67.82% (6A), 76.50% (6D), respectively
(Supplementary Table 1).

In this study, TAI8335 exhibited high levels of resistance
to stripe rust, leaf rust, powdery mildew, and FHB in the
field. Our results showed that the translocation chromosome
T6StS.6JsL in CH51 carried resistance genes for stripe rust
and leaf rust (Figure 3), but not for powdery mildew and
FHB (Supplementary Figure 1). Therefore, the other six Th.
intermedium chromosomes in TAI8335 should carry powdery
mildew and FHB resistance genes and might also carry
additional stripe rust and leaf rust resistance genes. For the
future research, we will (1) backcross CH51 with the high
pairing CS ph1b mutant to develop small segmental 6StS
or 6JsL translocation lines for reducing the potential linkage
drag and mapping the two genes; and (2) backcross TAI8335
with common wheat for transferring powdery mildew and
FHB resistance genes and/or other stripe rust and leaf rust
resistance genes.

Conclusion

A wheat-Th. intermedium T6StS.6JsL (6B) disomic
substitution line CH51 was developed from the BC1F8 progeny
of a partial wheat-Th. intermedium amphiploid TAI8335 and
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common wheat cv. Jintai 170. The chromosome composition
of CH51 is 14A + 12B + 14D + 2T6StS.6JsL. CH51 exhibited
high levels of resistance to the prevalent Chinese leaf rust and
stripe rust races in the field. Therefore, the newly developed line
CH51 can be utilized as a potential germplasm in wheat disease
resistance breeding.
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SUPPLEMENTARY FIGURE 1

Powdery mildew and Fusarium head blight (FHB) responses of tested
materials at the heading stage. (A) Powdery mildew race E09 was
inoculated on (from left to right): Th. intermedium, TAI8335, CH51,
Jinchun 5, Jinmai 33, Jintai 170, Mingxian 169. (B) Fusarium pathogen
F0609 was inoculated on (from left to right): Sumai 3, Jinchun 5, Jinmai
33, TAI8335, Jintai 170, CH51, Alondra’s.
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