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Prediction approach of larch
wood density from visible–
near-infrared spectroscopy
based on parameter calibrating
and transfer learning

Zheyu Zhang1, Yaoxiang Li1* and Ying Li2

1College of Engineering and Technology, Northeast Forestry University, Harbin, China, 2College of
Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, China
Wood density, as a key indicator to measure wood properties, is of weighty

significance in enhancing wood utilization and modifying wood properties in

sustainable forest management. Visible–near-infrared (Vis-NIR) spectroscopy

provides a feasible and efficient solution for obtaining wood density by the

advantages of its efficiency and non-destructiveness. However, the spectral

responses are different in wood products with different moisture content

conditions, and changes in external factors may cause the regression model

to fail. Although some calibration transfer methods and convolutional neural

network (CNN)-based deep transfer learning methods have been proposed,

the generalization ability and prediction accuracy of the models still need to be

improved. For the prediction problem of Vis-NIR wood density in different

moisture contents, a deep transfer learning hybrid method with automatic

calibration capability (Resnet1D-SVR-TrAdaBoost.R2) was proposed in this

study. The disadvantage of overfitting was avoided when CNN processes

small sample data, which considered the complex exterior factors in actual

production to enhance feature extraction and migration between samples.

Density prediction of the method was performed on a larch dataset with

different moisture content conditions, and the hybrid method was found to

achieve the best prediction results under the calibration samples with different

target domain calibration samples and moisture contents, and the

performance of models was better than that of the traditional calibration

transfer and migration learning methods. In particular, the hybrid model has

achieved an improvement of about 0.1 in both R2 and root mean square error

(RMSE) values compared to the support vector regression model transferred by

piecewise direct standardization method (SVR+PDS), which has the best

performance among traditional calibration methods. To further ascertain the

generalizability of the hybrid model, the model was validated with samples

collected from mixed moisture contents as the target domain. Various

experiments demonstrated that the Resnet1D-SVR-TrAdaBoost.R2 model

could predict larch wood density with a high generalization ability and
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accuracy effectively but was computation consuming. It showed the

potential to be extended to predict other metrics of wood.
KEYWORDS

visible and near-infrared spectroscopy, calibration transfer, transfer learning,
larch, wood density
1 Introduction

Wood density is an important physical property to test the

mechanical properties of wood (Li et al., 2019), and it is also an

important indicator to identify the quality of wood (Thomas et al.,

2009). From the perspective of forestry, wood density can be used

to predict the physical and mechanical properties of wood, such as

hygroexpansion, hardness, and strength (Missanjo and

Matsumura, 2016). Accurate prediction and evaluation of wood

properties can provide the theoretical and scientific bases for

many aspects such as material improvement, plantation

cultivation, improvement of the comprehensive utilization rate

of wood, and restoration and maintenance of wood-frame

buildings (Fukatsu et al., 2013; Francis et al., 2017; Alade et al.,

2022). Therefore, rapid and accurate acquisition of wood density

is of great significance to modern forestry production. Traditional

wood density detection methods include the drainage method,

weighing method, and mechanical force-based density detection

method (Alves et al., 2020). However, the processes of the above

methods are complicated and time-consuming, which are not

conducive to the density testing of large quantities of wood in

practice. Visible–near-infrared (Vis-NIR) spectroscopy records

the combination vibrations of hydrogen-containing groups at

the molecular level of samples (Benedet et al., 2020), which can

be combined with chemometric techniques for rapid, non-

destructive qualitative and quantitative analyses of wood

properties (Chen and Li, 2020). It provides an efficient and

feasible solution for the real-time determination of wood

density. However, many obstacles still exist in the practical

estimation of wood density by spectral non-destructive testing

(NDT) methods, such as high collinearity of spectral data,

oversensitivity of spectra to instruments and environments, and

poor predictive performance of the models. Overcoming these

obstacles has also become a research priority in chemometrics.

In recent years, deep learning (DL) methods have been

favored by many researchers in the field of spectroscopy,

mainly because DL has obvious advantages in solving high-

dimensional spectral data as a deep non-linear network mapping

structure model (Cai et al., 2022). There are hundreds or

thousands of characteristic wavelengths in a spectrum, and

spectral features can be excavated and learned from superficial

to in-depth and layer-by-layer by DL, which is similar to
02
imitating the thinking mode of the brain (Ghosh et al., 2019).

Multi-layer neural networks, as a common form of DL, can

realize end-to-end non-linear mapping of spectral data; thereby,

abstract features in spectra are simplified, and complex

classification and regression problems in spectra are realized

(Sommers et al., 2020).

In the field of agriculture and forestry, the application of

spectroscopy has become a research boom combined with DL

gradually (Chen et al., 2016; Kawamura et al., 2021; Qiao et al.,

2021). In the detection and adjustment of forest resources, we

can grasp the dynamic pattern of forest resources in time while

macro-regulating the state of economic management.

Distinguishing tree species with different economic values has

great potential by combining airborne hyperspectral remote

sensing technology with DL. Trier et al. (Trier et al., 2018)

employed convolutional neural network (CNN) to classify the

Vis-NIR spectral channels of the main tree species in the

Norwegian forest, resulting in good classification rates. Mayra

et al. (Mayra et al., 2021) proposed 3D-CNN combined with

hyperspectral remote sensing to identify a variety of major tree

species in Finland accurately. Identifying the quality of

agroforestry economic products rapidly can improve the

quality of the products, by assisting manufacturers in adjusting

their cultivation programs in a timely manner, during the

cultivation process (Assadzadeh et al., 2020). The flaw

detection, pesticide detection, and species identification of

agricultural and forestry products can promote the rapid

development of the entire production chain (Jin et al., 2018;

Feng et al., 2019; Zhang et al., 2020a).

However, the optical measurement signal is disturbed by the

type of instrument, detection principle, and detection

environment (temperature, humidity, noise, etc.) greatly,

leading to large deviations in results and poor model

applicability, making it difficult for spectroscopic techniques to

be widely used. Calibration transfer is one of the effective

methods to solve this technical problem (Qin and Gong,

2016). The generalization ability of the model can be

improved by calibration transfer from two perspectives. One is

exploring the linear relationship between master and slave

models to improve the adaptability of the models themselves;

the other is correcting different data domains through statistical

methods or chemometric methods to eliminate the deviations
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between different data domains as much as possible. In the first

perspective, slope/bias correction (SBC) (Bouveresse et al., 1994)

is typical. In the second perspective, various methods such as

piecewise direct standardization (PDS) (Wang et al., 1991),

spectral space transformation (SST) (Du et al., 2011), and

canonical correlation analysis (CCA) (Fan et al., 2008) are

applied widely. Many investigations have indicated that the

generalization ability of the model is improved and the

discrepancies between different data fields are ameliorated by

applying the above methods, but the results are uneven, and

most of them are not ideal. Most calibration transfer methods

are limited by data dimension and sample size and cannot deal

with related issues flexibly.

In the field of DL, researchers have discovered a concept

similar to calibration transfer called transfer learning (TL) (Sun

et al., 2019). Analogously, the master model in the calibration

transfer corresponds to the source domain in TL, and the slave

model in the calibration transfer corresponds to the target

domain in TL. The core of TL is to find the similarity between

known and unknown domains and apply the knowledge and

laws to the unknown domain learned in the known domain

(Larsen and Clemmensen, 2020). The theory of global sharing of

model parameters in DL is consistent with TL, and the

shortcomings of “dimensional disaster” in high-dimensional

data can be solved by deep neural networks (Johnstone and

Titterington, 2009), so deep transfer learning has developed

rapidly in the field of spectroscopy. In agriculture and forestry,

applications of transfer learning include the following: first, the

most common application was the identification of tree species,

including the rapid identification of economical woods (Li et al.,

2022), pests, and quality defects (Chen et al., 2020; Ahmad et al.,

2021; Alencastre-Miranda et al., 2021). Second, TL was used for

forest and farmland management and ecosystem status

assessment (Astola et al., 2021; Jin et al., 2021). Third, TL is

used for the prediction of the properties of wood and agricultural

products (Singh et al., 2021).

In CNN-based transfer learning, using a pretrained network

to initialize the network parameters of any layer and

constraining the parameter changes with a smaller learning

rate (fine-tuning) (Shin et al., 2016) and fine-tuning only the

weights of the final fully connected layer of the network (feature

extractor) (Gao and Mosalam, 2018) are two common

application scenarios. In particular, the classifier can be

modified or added after the pretrained network during feature

extraction to make it a feature extractor for the target domain (Li

et al., 2020a).

In the CNN extraction of neck features, each convolution

kernel is acted as a filter to perform convolution operations, and

the weights of features are reassigned according to the layer-by-

layer recognition of the convolution kernels, thereby increasing

the separability of linearly inseparable datasets (Mei et al., 2017).

The activation function of CNN (such as Softmax and ReLU)

performs macro-control on the feature weights (Roy et al., 2020).
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In this process, the samples with the Intersection-over-Union

(IoU) greater than 0.5 are marked as positive samples by CNN

and vice versa as negative samples (Cai and Vasconcelos, 2021).

Usually, CNNs require a large number of samples, and

correspondingly, the prediction accuracy of small sample data

(e.g., spectral data) significantly declines. Support vector

machine (SVM) is different from the principle of CNN, which

maps non-linear features into high-dimensional space to achieve

classification (increasing IoU). Some studies have proved that

using SVM as the classifier of CNN (CNN-SVM) can improve

the prediction ability of CNN for small sample datasets (Niu and

Suen, 2012). For regression problems, a support vector

regression machine (SVR) is used as a regressor of CNN

(Zhou et al., 2021).

Although the risk of overfitting CNNmodels can be reduced by

CNN-SVM, in the TL domain, CNN-SVM also lacks the ability to

adjust the sample weights in the source and target domains

dynamically when the two vary greatly. At the same time, CNN-

SVM cannot update the hyperplane division rules in time, which

lacks flexibility in the face of unpredictable external disturbances in

actual production. In summary, this study took larch wood density

as the research object and aimed to propose a parameter-calibrated

transfer learning method to predict wood density under different

moisture contents. The deep Resnet network is used for the first

time to construct a Vis-NIR spectral model, and SVR is used as a

regressor for the network to accommodate spectral datasets with

small sample sizes. At the same time, the algorithm attempts to

achieve automatic calibration of sample parameters depending on

whether the contribution values of their weights are positive or

negative during the iterative process. The hybridmodel validates the

feasibility and potential of deep migration learning strategy in

quantitative spectral analysis and explores the application of

machine learning in the direction of wood non-destructive testing.

This paper is organized as follows. Section 2 details the larch

air-density measurements and spectra under different moisture

content conditions used in this study and the proposed

Resnet1D-SVR-TrAdaBoost.R2 hybrid model; the prediction

results of different calibration transfer and transfer learning

methods, the validation of the target domain correction

sample size, and the performance of different moisture content

correction transfer models are presented in Section 3; the

maximum iteration number of iterations on model

performance and the application of hybrid models in forestry

are discussed in Section 4; the results of the study are

summarized in Section 5.
2 Methods and materials

2.1 Description of proposed models

The model proposed in our paper is Resnet1D-SVR-

TrAdaBoost.R2, which consists of two parts chiefly: one is the
frontiersin.org
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Resnet-SVR used for building the transfer model, and the other

is the TrAdaBoost.R2 used for parameter calibrating.

The core principle of CNN is to learn the mapping

relationship between input and output (Aslam et al., 2021). It

avoids explicit feature extraction and learns implicitly from the

mapping relationship in the data when used as a feature

extractor. As a kind of one-dimensional (1D) input data, Vis-

NIR spectral data have the disadvantages of high collinearity and

spectral peak overlap (Li et al., 2020a), so increasing the network

depth is beneficial to extract more effective spectral features.

Meanwhile, to avoid the problem of network degradation,

Resnet is chosen as the feature extractor. The residual building

block is a shortcut connection and a key part of Resnet, which

helps to avoid the gradient explosion/vanishing problem during

the back-propagation of errors, thereby improving the

robustness of deep network models (Wen et al., 2020).

A deep 1D Resnet model is constructed in this study to

process the Vis-NIR spectral 1D data, which includes an input

layer, and four residual building blocks; after being flatten, the

features are followed by four fully connected (FC) layers with

sizes of 512, 128, 64, and 32 and an output layer (Figure 1). Each

residual building block consists of two basic blocks, each of

which consists of two convolutional layers (Conv), a batch

normalizations layer (BN), and a shortcut. The size of the

convolution kernel is 3, and the number of convolution

channels is set as 64, 128, 256, and 512 in ascending order.

The activation function of each layer except the output layer is

set as the rectified linear element function (ReLU), and the

activation function of the output layer is set as a linear function

(Linear) to make the network a regression model. Adam

optimizer is used for training by the proposed model (Bera

and Shrivastava, 2020). In order to speed up the convergence of

training data and reduce the amplitude of training vibrations,

the batch size is determined to be 5. The mean square error
Frontiers in Plant Science 04
(MSE) is used as the loss function of Resnet, and then, the

coefficient of determination (R2) and the mean absolute error

(MAE) are selected as the evaluation metrics of the model. In

addition, the ReduceLROnPlateau function and EarlyStopping

function provided by Keras are introduced to avoid the model

falling into the local optimum.

According to the nature of convolution and pooling

computation, it can eliminate the influence of the spectral

feature drift part on the selected feature vector and reduce the

risk of overfitting. The fully connected layer of CNN can be

considered as a linear classifier operator for the features extracted

by the previous convolutional layer (Zhang et al., 2020b). The

values output via the Flatten layer already contain features of the

spectrum, and it is feasible to consider these output features as

inputs to other regression methods for analysis (Li et al., 2020a).

Since the high prediction accuracy of the CNN model is based on

large sample size, in spectral analysis problems, the number of

wavelength variables often far exceeds the number of samples.

Therefore, the hybrid Resnet-SVR model is proposed to improve

the learning ability for small samples and solve the tough problem

of the application of spectral quantitative analysis in

traditional DL.

In the basic process of Resnet-SVR, there are two main steps:

first, the preprocessed spectral dataset is fed input to the proposed

Resnet model for pretraining, and second, the features extracted by

Resnet are input to the SVR for training and evaluation (Figure 2).

Among them, the kernel function of SVR is determined as radial

basis function (RBF), and the hyperparameters of SVR (penalty

factor C, kernel parameter gamma, and kernel width epsilon) are

optimized using particle swarm optimization (PSO) algorithm to

achieve the optimal regression effect (Han et al., 2021). In the PSO,

the population size is set to 50, the individual learning factor c1 =

1.5, the social learning factor c2 = 1.7, the maximum number of

iterations is set to 50, and the cross-validation fold is set to 10-fold.
FIGURE 1

Flowchart of the 1D Resnet architecture.
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Transfer learning is a type of machine learning method that

uses the knowledge learned previously to solve problems in new

fields more quickly for similar fields. Among them, the transfer

of features and models is used in current research widely. The

general idea of transfer learning in this study can be summarized

as extracting similar features to minimize the differences in

related domains and then developing models to find

parameters shared between related domains to reduce the

demand for target domain data, while the parameters are

calibrated with the aim of adapting the model to the target

domain, thereby improving the learning effect. Recently, with

the popularity of deep learning methods, deep neural network

models with characteristics of global weight sharing have also

been used in transfer learning (deep transfer learning) gradually,

which can extract more expressive features automatically, and

therefore applied to computer vision, text dataset processing,

and voice or audio recognition widely (Zhang et al., 2020c).

TrAdaBoost is a traditional transfer learning framework

(Yehia et al., 2021). TrAdaBoost assumes that the input

features and output labels of the source and target domains

with different distributions are the same and assigns an initial

weight to each input sample. In each round of iteration, the

weight of target domain samples that are misclassified will be

increased, and the weight of source domain samples that are

misclassified will be decreased, which is the same as the strategy

of AdaBoost to update weight (Yu et al., 2021). Two-stage

TrAdaBoost.R2 is an extension of AdaBoost.R2 (Li et al.,

2021) for solving regression problems of TL, which can solve

the problem of negative transfer of source and target domains. In

the first stage, when the weights of the target domain tend to

reach zero, binary search is used to replace the error rate to

update the weights of the source domain. In the second stage, the

weights of source domain weight are fixed, and AdaBoost.R2 is

called to update the weights of the target domain. The details of

the two-stage TrAdaBoost are described in Table 1.

The overall Resnet1D-SVR-TrAdaBoost.R2 assembles the

above three models and combines their advantages to enable

more accurate predictions on source and target domain datasets.

The schematic diagram of Resnet-SVR-TrAdaBoost.R2 is shown

in Figure 2. Decision tree (DF), which is often used as a learning
Frontiers in Plant Science 05
algorithm in TrAdaBoost.R2, is replaced by a more suitable SVR.

The input to SVR is provided by the bottleneck features (Output

from the flatten layer) extracted by the pretrained model of

Resnet. The algorithm details of Resnet-SVR-TrAdaBoost.R2 are

shown in Table 1.

It is worth mentioning t hat there are two parameters that

have a great influence on the generalization ability of Resnet1D-

SVR-TrAdaBoost.R2 and need to be tuned. One is the number of

calibration samples (M) in the target domain. A large number of

calibration samples in target domain can improve the

performance of the model, but they will also increase the

learning time and cost. Hence, there is a trade-off between

them. The second is the maximum number of iterations (N) of

the TrAdaBoost.R2 part. Increasing N within a reasonable range

can improve the robustness of the model, but overfitting will be

result when it is too large. It is necessary to find a relatively

suitable N, so we discussed the issue of M and N effects in detail

in the following sections.

Keras (2.6.0) with Tensorflow (2.6.0) was used as the

backend to implement our algorithms, running on Intel Core

i7-11800H CPU at 2.30 GHz with 16 GB RAM and NVIDIA 6

GB GeForce RTX 3060 Laptop GPU.
2.2 Larch wood dataset

The larch samples were collected from Xinghuo Forest Farm

(45°43′5.73″N, 129°13′34.37″E), Fangzheng County,

Heilongjiang Province, China, which is the natural secondary

forest farm of larch. Four plots on the sunny side and the shaded

side were set up with a plot size of 20 m × 20 m. Three typical

sample trees were selected from each plot. After each sample tree

was felled, the portable chain saw was used to cut multiple wood

discs continuously from the bottom to the top near the standard

diameter at breast height (1.3 m at breast height). The tress were

brought back to the laboratory and peeled by hand; the wood

strips of 2 cm × 2 cm × 4 cm were extracted from the wooden

discs with a total of 181 larch wood samples. Each sample was

labeled and recorded. The samples were placed in a ventilated

and dry room temperature (20°C) environment for 4 weeks, and
FIGURE 2

Schematic diagram of Resnet1D-SVR-TrAdaBoost.R2.
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their equilibrium moisture content was about 10%, and then the

air-dry density of wood samples was determined according to

the International Organization for Standardization (ISO) 13061-

2: 2014 (Dahali et al., 2021).

To avoid the effects caused by surface roughness, 80-mesh

sandpaper was used to polish each side of the samples five times to

make the surface roughness parameter Ra close to 12.5 mm. The

temperature was controlled at 20°C; the moisture content was set to

70%, 50%, 30%, and 10% in four groups; the air-dried wood

samples were soaked in water for 20 days, then dried in an oven,

and weighed; the moisture content of the samples was calculated

every 5–15 min after drying until the moisture content of the

samples was within the range of the specified variation group.

When the specified moisture content value is reached, the Vis-NIR

spectrum data of the samples were measured immediately. A

portable spectrometer has a wavelength range of 350–2500 nm

and composed of 2,151 data points; ASD LabSpec® Pro FR/

A114260 was used to measure the spectrum. A fiber optic probe

was used to scan one time each at two different positions on the

cross-section of the sample, and each scan time was about 1.5 s. The

samples were continuously scanned 30 times during the set scan

period. The average of the two measurements was taken as the

original spectral data.
Frontiers in Plant Science 06
The internal structure of wood samples is varied with moisture

content, which results in different spectral distributions, such as

baseline shift, a small part of the absorption peak shift, and

absorption peak shape change, but the overall trend of the spectra

is similar (Figure 3). In this study, the spectral data for wood

samples with 10%moisture content were used as the source domain

dataset, and the spectral data for wood samples at other moisture

content levels (70%, 50%, and 30%) were used as the target domain

datasets. The calibration transfer was investigated in terms of the

measuring environment.

2.3 Preprocessing of spectral data

Through an extensive literature review, a combination of two

spectral transformation methods was selected for the preprocessing

of original wood spectra (null). The 21-point Savitzky–Golay

smoothing (SGS) algorithm was used to eliminate noises (Xu

et al., 2021), and then the influence of particle sizes and scattering

on the spectra of the sample surfaces were eliminated by combining

standard normal variate (SNV) correction (Li et al., 2020b).We also

compared the synchronous two-dimensional (2D) correlation

spectra (Zhang et al., 2021) of wavelengths before and after the

preprocessing (Figure 4). It is shown that the correlation between
TABLE 1 Detailed steps of Resnet1D-SVR-TrAdaBoost.R2.

Calibration transfer Resnet1D-SVR-TrAdaBoost.R2.

Input: Source domain dataset fXi
s ,Y

i
sg(i = 1, 2,…, m) and target domain dataset fXi

t ,Y
i
tg(i = 1, 2,…, n);

The number of frozen layers L; The value of maximum iterations N;

The number of folds F for cross validation; Kernel function RBF of SVR algorithm;
Step 1: Establish quantitative analysis model of source domain based on Resnet1D, and the weights W of the layers in the model are saved.

Step 2: Load the source domain model weights W, and train the model of target domain based on Resnet1D.

For the source and domain models, freeze the top L convolutional layers. After training model, the bottleneck features Xi
bs(i = 1, 2,…, m) and Xi

bt(i = 1, 2,…, n) (Output
from the flatten layers in each model) are provided as output to the SVR regressor.

Step 3: The penalty factor C and kernel parameter gamma of the hyperparameters are optimized by the PSO algorithm and input to the SVR regressor.

Step 4: Initialize the weight vector wi
1 of distribution for Xi

bs and Xi
bt :

wi
1 =

1
m + n

, for1 ≤ i ≤ m + n

Aggregate the bottleneck features Xi
bs and Xi

bt into T.

For t=1, …, K (step number):

a. Call AdaBoost.R2 with T, wi
t , N, C and gamma to obtain the Model SVRt. Analogically, F-fold cross validation is used to calculate the loss errort of SVRt

b. Call SVR with T and weight vector wi
t .

c. Calculate the adjusted error eit for each instance as AdaBoost.R2.

d. Update the weight distribution:

wi
t+1 =

wi
tb

eit
t =Zt ,  1 ≤ i ≤ n

wi
t=Zt ,  1 ≤ i ≤ m + n

(

where Zt is a normalizing constant, and bt is designated such that the total weight of Xi
bt (final m) instances is:

m
m + nð Þ +

t
K − 1ð Þ 1 −

m
m + nð Þ

� �

Return SVRt, where t = arg mini errori.

Output: The ensemble quantitative analysis model SVRt.
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wavelengths after preprocessing (SGS+SNV) is stronger than that

before preprocessing (null) significantly, which indicates that the

original spectrum has more redundant information unrelated to

wood density and starker collinearity, and preprocessing can

improve the quality of spectral. This result is consistent with Li’s

finding (Li et al., 2020c).

In addition, the high leverage value combined with the

studentized residual t-test method (Xie et al., 2017) was used to

screen the singular sample numbers of the four moisture content

groups in the larch wood dataset. Four groups of outlier numbers

were merged into one, and the sample data corresponding to the

serial number of the four groups of data were removed. Finally, 12

samples (Nos. 4, 6, 27, 39, 40, 48, 44, 45, 57, 68, 97, and 154) were
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eliminated, and a total of 169 samples of larch wood were obtained.

The sample set partitioning based on the joint x–y distances (SPXY)

method (Xu et al., 2019) was used to divide the four groups of

datasets into the correction set and prediction set. Among them, the

calibration set and prediction set had 118 and 51 samples,

respectively. For concision, the statistical result when wood density

in the 10% moisture content dataset was demonstrated (Figure 5),

and we found that the other three “calibration-prediction” group

pairs had similar results. It can be found that both the calibration set

and prediction set are in normal distribution, and the mean value,

standard deviation, and range of wood density in both datasets are

similar, demonstrating that the division result can represent the

overall distribution.
A B

FIGURE 4

Two-dimensional correlation spectra of wavelengths for different spectral preprocessing. (A) Null. (B) SGS+SNV. r is the correlation coefficient
to evaluate correlations between wavelength variables. SGS, Savitzky–Golay smoothing; SNV, standard normal variate.
FIGURE 3

Vis-NIR spectra for wood samples with different moisture content (10%, 30%, 50%, and 70%). Vis-NIR, visible–near-infrared.
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3 Results

3.1 Effects of the number of calibration
samples in the target domains for
calibration transfer

The purpose of the calibration transfer method is to improve

the performance of the target domain model with as few

calibration samples of the target domain as possible.

Therefore, it makes sense to determine an appropriate range of

calibration sample sizes in the target domain. In this study, the

number of calibration samples for different target domains (M)

was set as 20, 40, 60, 80, 100, 120, and 140. The SPXY method

was used to collect the calibration and prediction samples of the

target domains to ensure the representativeness of distribution

for each moisture content group. Among them, the predicted

sample size was set to 30 for both source and target domains, and

the calibration samples are selected from the remaining samples.

For the proposed Resnet1D-SVR-TrAdaBoost.R2, a robust

source domain model (10% moisture content group) was first

constructed. The 118 calibration samples selected in Section 2.3

were used to train theResnet1Dmodel, andR2 and rootmean square

error (RMSE) of the prediction were used to evaluate the

generalization ability. To remove the effect of random parameters

in the CNN, the finalized model (R2 = 0.7174, RMSE = 0.0312) was

the one that was closest to themean (R2 = 0.7145, RMSE= 0.0318) of

20 repetitions of training.Next, theweightsWs of the source domain

model were saved and loaded into the target domain model as a

pretrained model. The first 10 convolutional layers were frozen to

fine-tune the weights of the target domain model, and then, the

bottleneck features after the flattening layer were imported into the

SVRregressor.Themaximumnumberof iterations (N)was set to 50.

To verify whether Resnet1D-SVR-TrAdaBoost.R2 method is

effective and whether it is better than traditional methods, we

added PLSR+SBC (partial least squares regression (PLSR) model
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transferred by SBC method), Resnet1D-TL (Resnet1D model

based on transfer learning), and Resnet1D-SVR (Resnet1D-SVR

model based on transfer learning) in this protocol for

comparison. The proposed Resnet1D-SVR-TrAdaBoost.R2 was

used as the calibration transfer method; the experiments in the

target domain groups with a wood moisture content of 70%,

50%, and 30% were implemented; and the results of three groups

were averaged (Figure 6). It is worth mentioning that the results

in each group were the average of 15 times running, to overcome

the impacts of random parameters. There is no doubt that the

obtained results are the least desirable when the target domain

data are used to train the model directly, so no comparison is

made here.

In Figure 6, as the sample size of the target domain increased,

the performance of the models improved gradually. All models

achieved the best predictions at 140 samples. When M was 20, the

performance of Resnet1D-TL (R2 = 0.0404, RMSE = 0.051) was the

worst; it implied that the calibration ability of deep transfer learning

was poor when there were few samples in the target domain. When

M was greater than 40, the prediction effect of the PLSR+SBC

model was the worst, which means that even if the target domain

samples were sufficient relatively, the calibration ability of the deep

transfer learning-based methods was still stronger than the

traditional calibration transfer methods, and with the increased of

samples, the gap was widening. The trend of Resnet1D-SVR-

TrAdaBoost.R2 and Resnet1D-SVR was similar, but the

performance of Resnet1D-SVR-TrAdaBoost.R2 was better, which

shows that TrAdaBoost.R2 was necessary to calibrate the

parameters. It is worth mentioning that there is an exception

here; when M was 40, the prediction effect of Resnet1D-SVR (R2

= 0.3095, RMSE = 0.0445) was better than that of Resnet1D-SVR-

TrAdaBoost.R2 (R2 = 0.2897, RMSE = 0.0450). Comparing the

result data, we found that the model evaluation metrics (R2 and

RMSE) of Resnet1D-SVR fluctuated greatly during the repeated

experiments, and the prediction effect was not stable enough, so the
A B

FIGURE 5

Descriptive statistics of wood density in 10% moisture content dataset. (A) Calibration set. (B) Prediction set.
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high average result was accidental. When M was greater than 60,

Resnet1D-SVR-TrAdaBoost.R2 had the absolute advantage of

accuracy in target domain samples.
3.2 Performance comparison of
models built by different calibration
transfer methods

In this subsection, the performance of models built with

different calibration transfer methods was compared, and the

calibration capabilities of Resnet-SVR-TrAdaBoost.R2 were

discussed. In this protocol, the calibration and prediction

samples selected in Section 2.3 were used to test the methods,

and the weight Ws of the source domain model was the same as

described in Section 3.1. PLSR and SVR without any calibration

transfer (PLSR-Target, SVR-Target) were chosen as a

comparison. PLSR+SBC, PLSR+PDS (PLSR model transferred

by PDS method), SVR+PDS (SVR model transferred by PDS

method), Resnet1D-TL, and Resnet1D-SVR were chosen as

baselines. For the proposed Resnet1D-SVR-TrAdaBoost.R2,

the maximum number of iterations (N) was set to 50. The

experiments with a wood moisture content of three groups were

implemented in the target domain sample sets, and the average

results were presented (Figure 7). It is worth mentioning that the

results in each group were the average of 20 times running and

overcame the impacts of random parameters.

As shown in Figure 7, the non-linear method (SVR) had a

much better performance in both source and target domains as

compared with the linear method (PLSR). In the traditional

calibration transfer method based on PLSR, the calibration

ability of SBC has an outstanding performance (R2 = 0.3021,

RMSE = 0.0495). The prediction ability of SVR+PDS (R2 =

0.3113, RMSE = 0.0468) was the best among non-transfer

learning methods, especially since the R2 value of SVR+PDS in
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the source domain was 0.0188 higher than Resnet1D-TL, but

Resnet1D-TL performed better in the target domain. Overall, the

prediction accuracy of the models built by the transfer learning

method was higher. Among them, a strong generalization ability

of Resnet1D-SVR-TrAdaBoost.R2 was exhibited in both the

source domain (R2 = 0.7152, RMSE = 0.0313) and the target

domain (R2 = 0.4106, RMSE = 0.0422). The performance of the

prediction model was the best among all methods in the

target domain.
3.3 Performance of calibration transfer
models for different larch wood
moisture content

Air-dry density is a strength indicator, which is often used in

the production and circulation of wood. Moisture content and

density of wood are related closely. If the actual moisture content

is lower than the equilibrium moisture content, moisture

hygroscopicity of wood will be exhibited; otherwise, moisture

evaporation of wood will be exhibited. Therefore, it is essential to

establish a model that can predict the air-dry density of wood in

different moisture contents. In this subsection, the calibration

transfer between different moisture contents was investigated.

PLSR was used to establish the prediction models of each

moisture content group and used as a standard. PLSR-Target

was used as a reference, and the proposed Resnet1D-SVR-

TrAdaBoost.R2 was used to calibrate. Calibration and

prediction samples were the same as in Section 2.3. The

number of N is 50.

In the actual measurement, there are individual differences

in the moisture content of a batch of wood. Therefore, we added

a new experimental group, and the SPXY method was used to

select 40 samples from each target domain experimental group

(moisture content of 30%, 50%, and 70%), and these samples
A B

FIGURE 6

Effects of the number of target domains for calibration transfer. (A) R2. (B) RMSE. RMSE, root mean square error.
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were merged into a calibration set with 120 samples. Similarly,

30 samples were selected from the remaining samples and

merged into a prediction set with 90 samples. The calibration

transfer results are shown in Figure 8.

The above results indicated that the scatter points of the

predicted values (PLSR-Target) with 50% and 70% moisture

content were above the PLSR predicted line mostly, and the

overall trend of the predicted value was large. Most of the scatter

points of the predicted values with 30% moisture content were

located near the PLSR prediction line, which means that as the

moisture content increased, the hygroscopic effects of the woods

were enhanced, and the free water in intracellular was also

increased. The increase of moisture content and the change of

internal structure could interfere with the Vis-NIR spectrum

seriously during the hygroscopicity of wood, which generated

the poor prediction effect of the model. Different moisture

contents affect the response function, and large systematic

errors will occur when the 10% moisture content model was

used to predict spectra under other moisture content conditions.
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After calibration transfer by Resnet1D-SVR-TrAdaBoost.R2,

it can be seen that the predicted scatter points of the 30%, 50%,

and 70% moisture content groups were close to the PLSR line

intuitively, while the scatter points of the mixed moisture

content group were relatively close. This experiment showed

that Resnet1D-SVR-TrAdaBoost.R2 had a robust generalization

ability even though the spectra were affected by the detection

environments greatly, and it had the potential for practical

application for different water content or mixed water content.
4 Discussions

The above experiments have proved that the prediction

approach of larch wood density from Vis-NIR spectroscopy

based on parameter calibrating and transfer learning (Resnet1D-

SVR-TrAdaBoost.R2) proposed in the present study had a great

generalization ability in calibration transfer. The advantages and

limitations of this hybrid method would be discussed from three
FIGURE 7

R2 and RMSE values of different calibration transfer methods in source and target domains. RMSE, root mean square error.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1006292
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1006292
aspects including model performance, the effect of the maximum

number of iterations (N) on modeling, and the practical

application of the model in forestry production.
4.1 Comparison of model
predictive ability

For the prediction results in Section 3.3, residual plots

(Figure 9) were used to compare and analyze the applicability

and residuals of the proposed Resnet1D-SVR-TrAdaBoost.R2

with other calibration transfer methods. For concision, the

results when the target domain was 70% moisture content

group were shown, and the results for other groups were

similar. The four residual values fell on both ends of the 0-axis

evenly, proving that the prediction values of the four methods

are distributed equally. The prediction values within the range of

±0.15 have strong interpretability, which proves that the

prediction model has strong reliability. The residuals of

Resnet1D-SVR-TrAdaBoost.R2 were smaller than those of

PLSR-PDS and SVR-PDS significantly, and prediction values

of Resnet1D-SVR-TrAdaBoost.R2 had extreme interpretability

in the range of ±0.1. The performance of PLSR-SBC was between

Resnet1D-SVR-TrAdaBoost.R2 and the other two methods; the

results were consistent with the results of Figure 7.
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Currently, traditional calibration transfer methods (e.g., SBC

and PDS) attempt to minimize data differences in sample sets or

target values and thus use the master model to make predictions

about the properties of slave data, and most new algorithms are

proposed based on this underlying principle (Fan et al., 2008; Du

et al., 2011; Workman, 2018), while others seek an explicit

feature space transformation that maps the spectra of the

source and target domains into a space orthogonal to the

interfering factors (Zhu et al., 2008; Igne et al., 2009; Das

et al., 2012). All of these methods require the support of a

large amount of data to discover similar patterns between

different data domains. At the same time, the quality of the

data can cause large interference with the above methods, which

is why numerous spectral preprocessing methods (Zhen et al.,

2008) and feature band selection methods (Fu et al., 2022) are

proposed to reduce the interference as much as possible, which

requires a large number of comparison experiments, and the cost

of model application is increased. The proposed hybrid model

has a feature extractor, which can exclude the interfering bands

in the training and reduce the dependence of the model on the

quality of the original data; meanwhile, the depth model can

learn the underlying information in the data during the training

process, which reduces the demand of the model on the sample

size; the introduction of the fine-tuning and TrAdaBoost.R2

methods makes it have a certain self-renewal capability.
A B

DC

FIGURE 8

Correlation between standard test values and Vis-NIR predicted values derived from calibration transfer models for 30% (A), 50% (B), 70%
(C), and mixed (D) moisture content. Vis-NIR, visible–near-infrared.
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Comprehensive analysis shows that this hybrid model is better

than the traditional calibration transfer methods.
4.2 Effects of maximum iterations on
model performance

The proposed model of Resnet1D-SVR-TrAdaBoost.R2 was

established based on AdaBoost.R2 strategy. The performance of

the model was affected by the maximum number of iterations

(N). If N was too small, the calibration effect of the model was

unsatisfactory; otherwise, the complexity and computing time of

the algorithm were increased. Therefore, we explored the impact

of N on the generalization performance of the model. For

concision, the effects when the target domain was 30%

moisture content group were shown (Figure 10), and the

results for other groups were similar. The trends of the

evaluation metrics R2 and RMSE were similar, and when the

number of samples (M) in the target domain calibration set

increased from 20 to 140, the trends were almost the same. This

means that increasing the value of N could improve the

general izat ion performance of the Resnet1D-SVR-

TrAdaBoost.R2 model significantly. When the number of N

was greater than 50, the performance of the model tended to be

stable, so the number of N was set as 50 in this study. In practical
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applications, it is recommended to set the number of N to be

greater than 30.
4.3 Practical application in
forestry industries

The results show that Resnet1D-SVR-TrAdaBoost.R2 has good

generality and accuracy, but some limitations also need to be noted.

In practical applications, the measurement cost of target

domain calibration samples (M) in calibration transfer is high.

For the air-dry density prediction of wood under different

moisture contents, volume measurement, drying, and weighing

of wood were required, which were costly and time consuming.

In forestry industries, a huge part of the manpower and material

resources are consumed in the measurement of many wood

properties. Therefore, it is necessary to reduce the need for

labeling samples. The proposed hybrid method could reduce the

demand for measured samples of the target domain to a certain

extent. By comparing the performance of models built with

different numbers of M, it could be seen that Resnet1D-SVR-

TrAdaBoost.R2 still fails to achieve good prediction accuracy

when M was less than 80, but the performance of the model

could reach a satisfactory level when M was larger than 80 (as

shown in Figure 6).
A B

DC

FIGURE 9

Residual analysis for target domain with 70% moisture content group: PLSR+SBC (A), PLSR+PDS (B), SVR+PDS (C), Resnet1D-SVR-TrAdaBoost.R2 (D).
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Overall, the performance of Resnet1D-SVR-TrAdaBoost.R2

hybrid method was better than that of other methods. Therefore,

in actual production, if the requirements for prediction accuracy

are high, Resnet1D-SVR-TrAdaBoost.R2 will be the optimal

choice. In addition, the specific number of recommendations

for M may be instructive for the application of transfer learning

techniques in practical forestry. At the same time, scientific and

standardized field sampling is recommended to ensure the

representativeness of labeling samples.

The proposed hybrid algorithm requires iterative training,

and Vis-NIR spectral data have many characteristic variables, so

the training time of the algorithm is long, and the computing

capacity of the device is required to be higher. During the

experiments, the running time of Resnet-SVR-TrAdaBoost.R2

was about 30 s, while the running time of SBC and PDS was only

1–2 s. In actual production, if fast detection speed is required

without much high accuracy, the traditional calibration transfer

methods can be satisfied. However, if higher prediction accuracy

is required, then Resnet-SVR-TrAdaBoost.R2 will be a

satisfactory choice.

It is worth mentioning that the prediction ability of

Resnet1D-SVR-TrAdaBoost.R2 was the best when the

difference in target and source domain distributions was larger

(as shown in Figures 7, 8). Compared with the traditional deep

transfer learning algorithm, the prediction performance of

Resnet1D-SVR-TrAdaBoost.R2 was more stable and accurate,

but more parameters in the training process were needed to train

and required more sample size and training time. Furthermore,

although Resnet-SVR-TrAdaBoost.R2 was validated under

different measurement conditions, validation under other tree

species was incomplete. Therefore, the proposed hybrid method

needs to be further tested for its applicability to other species.
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5 Conclusion

The problem of low optimization performance of traditional

calibration transfer methods when there are significant non-

linear differences between the spectra of different measurement

environments was addressed. A deep transfer learning strategy

(Resnet1D-SVR-TrAdaBoost.R2) based on TrAdaBoost.R2

parameter calibrating and SVR feature optimization was

proposed in this study. The method was fully analyzed,

verified against field observations, and compared with

conventional calibration transfer methods.

The experimental results showed that the proposed hybrid

method had a good performance. When predicted with larch

wood air-dry density in different moisture contents, the spectra of

the high-dimensional and non-linear were extracted by the

proposed method. The non-linear differences between source and

target domains were weakened by SVR, and finally, the parameters

of each sample were calibrated by TrAdaBoost.R2. In terms of

prediction accuracy, the prediction accuracy of the proposed hybrid

method was superior to other methods (source domain: R2 =

0.7152, RMSE = 0.0313; target domain: R2 = 0.4106, RMSE =

0.0422). In terms of demand for calibration samples of the target

domain, the performance of the proposed hybrid method (M > 80)

was superior to the traditional transfer learning strategy (M = full

calibration samples), also better than Resnet1D-SVR (M > 90).

Furthermore, the satisfactory prediction accuracy could be

obtained by a proposed hybrid method when the source domain

was different from the target domain. In addition, the hybrid

strategy used for the density retrieval of larch wood also

performed well in the density inversion of larch wood in mixed

moisture content. A limitation is that compared to traditional

calibration transfer strategies, the method had a longer running
FIGURE 10

Effects of the value of maximum iterations on model performance.
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time, and its requirements for the calculation capacity of the

equipment were higher. By comprehensive consideration, all the

results indicated that Resnet1D-SVR-TrAdaBoost.R2 performed

well with high versatility, accuracy, and portability in density

inversion of larch wood and was an accurate and feasible method.
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