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seedlings of fullmoon maple
(Acer japonicum)
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Atsushi Takabayashi4 and Ryouichi Tanaka4
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3Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science
& Technology (NUIST), Nanjing, China, 4Institute of Low Temperature Science, Hokkaido University,
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Leaves of fullmoon maple (Acer japonicum) turn brilliant red with anthocyanins

synthesis in autumn. Based on field observations, autumn coloring mainly occurs

in outer-canopy leaves exposed to sun, whereas inner-canopy leaves remain

green for a certain longer period before finally turn yellowish red with a smaller

amount of anthocyanins. Here, we hypothesized that outer-canopy leaves

protect themselves against photooxidative stress via anthocyanins while

simultaneously shading inner canopy leaves and protecting them from strong

light (holocanopy hypothesis). To test this hypothesis, we investigated

photoinhibition and leaf N content during autumn senescence in leaves of

pot-grown seedlings of fullmoon maple either raised under shade (L0, ≈13%

relative irradiance to open) or transferred to full sunlight conditions on 5th (LH1),

12th (LH2), or 18th (LH3) Oct, 2021. Dry mass-based leaf N (Nmass) in green leaves

in shade-grown seedlings was ≈ 30 mg N g-1 in summer. Nmass in shed leaves

(25th Oct to 1st Nov) was 11.1, 12.0, 14.6, and 10.1 mg N g-1 in L0, LH1, LH2, and

LH3 conditions, respectively. Higher Nmass was observed in shed leaves in LH2,

compared to other experimental conditions, suggesting an incomplete N

resorption in LH2. Fv/Fm after an overnight dark-adaptation, measured on 19th

Oct when leaf N was actively resorbed, ranked L0: 0.72 > LH3: 0.56 > LH1: 0.45 >

LH2: 0.25. As decreased Fv/Fm indicates photoinhibition, leaves in LH2 condition

suffered the most severe photoinhibition. Leaf soluble sugar content decreased,

but protein carbonylation increased with decreasing Fv/Fm across shade-grown

seedlings (L0, LH1, LH2, and LH3) on 19th Oct, suggesting impaired

photosynthetic carbon gain and possible membrane peroxidation induced by

photooxidative stress, especially in LH2 condition with less N resorption
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efficiency. Although the impairment of N resorption seems to depend on the

timing and intensity of strong light exposure, air temperature, and consequently

the degree of photoinhibition, the photoprotective role of anthocyanins in outer-

canopy leaves of fullmoon maple might also contribute to allow a safe N

resorption in inner-canopy leaves by prolonged shading.
KEYWORDS

inner-canopy leaves, sugar accumulation, holocanopy hypothesis, light attenuation,
photooxidative stress
Introduction

Autumn red coloring, a result of accumulation of

anthocyanins, is considered to have a protective role against

photooxidative stress under low temperature (photoprotection

hypothesis) (2003; Feild et al., 2001; Hoch et al., 2001), where

anthocyanins might act as light attenuators or antioxidants

(Neill et al., 2002; Moustaka et al., 2020). Conversely, red color

is also considered a signal against pest insects as a consequence

of co-evolution (co-evolution hypothesis) (2021; Pena-Novas

and Archetti, 2020). These two hypotheses are still debated

(Renner and Zohner, 2019; Pena-Novas and Archetti, 2020;

Hughes et al., 2022).

N resorption during autumn is an essential feature of

deciduous trees for overwintering and growth in next spring

(Hörtensteiner and Feller, 2002; Cooke and Weih, 2005;

Niinemets and Tamm, 2005; Millard and Grelet, 2010; Tanaka

and Tanaka, 2011; Tobita et al., 2021). According to the

photoprotection hypothesis, anthocyanins are considered to

contribute to efficient N resorption by means of preventing

photooxidative stress (2020; Hoch et al., 2003; Renner and

Zohner, 2019). Conversely, such a contribution of

anthocyanins to efficient N resorption was not necessarily

confirmed in other studies (2021; Feild et al., 2001; Pena-

Novas and Archetti, 2020).

Fullmoon maple (Acer japonicum) is popular in Japan

because of its beautiful brilliant red coloring in autumn. From

field observations, autumn red coloring is predominant in leaves

grown in the outer-canopy of fullmoon maple, whereas inner-

canopy leaves remain green for a longer time and finally turn

yellowish red with less anthocyanins (cf. Koike, 1990) (Figure 1).

Leaves of fullmoon maple flush once in spring, and shed almost

at the same time, irrespective of canopy position (Kikuzawa,

1983; Koike, 1990). The light environment within a canopy is

substantially heterogenous. Leaves within a canopy acclimate to

their growth light environment, where outer-canopy leaves have

higher area-based leaf N content and photosynthetic capacity

than inner-canopy leaves (2018b; Niinemets et al., 2004; Kitao

et al., 2006; Niinemets, 2007). Regarding N resorption at the
02
canopy level, heterogeneous light environments within the

canopy should be taken into account.

Regarding species-specific autumn coloring, Koike (1990;

2004) summarized differences in autumn coloring among

deciduous broad-leaf tree species with different successional

traits. Late successional tree species, such as maple and cherry

with flush type leaf development, change leaf color from the

outer part of canopy. Early successional tree species, such as

birch, poplar, and willow, show earlier leaf senescence in the

inner canopy, with leaves generally turning yellow, even when

the outer-canopy leaves are still green. As early successional

species develop new leaves continuously, they have young

leaves in the outer canopy and old leaves in the inner

canopy. As for fullmoon maple, a typical anthocyanic species,

classified as late successional deciduous broad-leaf tree species,

outer-canopy leaves had higher amount of anthocyanins than

inner-canopy leaves during leaf senescence, while leaf

senescence was quite synchronized irrespective of the leaf

position, based on the seasonal changes in dry mass-based

leaf anthocyanins and N content (Supplementary Figure 1).

Higher amount of anthocyanins in the outer leaves of fullmoon

maple is consistent with the fact that an induction of

anthocyanins synthesis requires high light intensities (Steyn

et al., 2002).

Sugar accumulation might be a regulative signal of leaf

senescence (Ono et al., 2001; Wingler et al., 2006).

Anthocyanins are known to be synthesized from accumulated

sugars in leaves during autumn (Stitt and Hurry, 2002; Hughes

et al., 2022). Besides photoprotection, recently, a possible

function of anthocyanins has been proposed as a sugar-buffer

to moderate sugar feedback regulation, which prevents early

sugar-mediated leaf senescence (Ono et al., 2001; Landi et al.,

2015; Lo Piccolo et al., 2018; Lo Piccolo and Landi, 2021; Davies

et al., 2022). Leaves in red-leafed Prunus cerasifera var. pissardii

showed delayed leaf senescence with lower soluble sugar content

than leaves in green-leafed P. cerasifera clone 29C (Lo Piccolo

et al., 2018). The Arabidopsis nla (nitrogen limitation

adaptation) mutant, which showed a lower production of

anthocyanins than wild type under limiting N, showed earlier
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senescence (Peng et al., 2008). Furthermore, anthocyanins might

prolong leaf longevity by delaying the progress of abscission

layer in leaves of sugar maple (Acer saccharum Marsh.)

(Schaberg et al., 2008).

Regarding the canopy-level response to photooxidative

stress, outer-canopy leaves, acting as efficient light attenuators,

might protect inner-canopy leaves against solar radiation under

low temperature during leaf senescence. Photooxidative stress

might directly interfere the cellular processes for N resorption,

involved in membrane intactness (Hörtensteiner and Feller,

2002; Okumoto and Pilot, 2011), or indirectly reduce

photosynthates necessary for protein breakdown and phloem

loading of amino acids (Hörtensteiner and Feller, 2002; Cooke

and Weih, 2005; Liu et al., 2008; Okumoto and Pilot, 2011).

Exposure of inner-canopy leaves to strong light due to earlier

shedding of outer-canopy leaves might cause photooxidative

stress, leading to an insufficient N resorption.

Here, we assumed that higher amount of anthocyanins in the

outer-canopy leaves of fullmoon maple might prevent early leaf

senescence, leading to synchronized leaf senescence with inner-

canopy leaves. Based on this assumption, we propose a novel

hypothesis positing that outer-canopy leaves of fullmoon maple

protect inner-canopy leaves from oxidative stress by shading,

contributing to efficient N resorption in the inner-canopy leaves

(holocanopy hypothesis) (holo: from the Greek word holos –

όloς-, meaning whole or entire). Validation of this hypothesis

requires evidence that N resorption of inner-canopy leaves is

protected by shading during leaf senescence. In other words,

exposure of inner-canopy leaves to strong sunlight during

autumn senescence (i.e. early shedding of outer-canopy leaves)

might reduce N resorption via photooxidative stress. To test this

hypothesis, we investigated photoinhibition and leaf N content

during autumn senescence in leaves of shade-grown seedlings of

fullmoon maple, transferred to the full sunlight condition on

different dates during autumn senescence, simulating early

shedding of outer-canopy leaves.
Frontiers in Plant Science 03
Materials and methods

Plant materials

Four-year-old bare-root seedlings of fullmoon maple (Acer

japonicum) (≈ 40 cm in shoot height) were transplanted into 4-L

plastic pots, filled with clay loam soil mixed with Kanuma

pumice soil (1:1 in volume), at the end of April 2021. We

added 40 g pot-1 of commonly-used fertilizer (Osmocote Exact

Standard 15-9-11 +TE, HYPONeX Japan, Osaka, Japan).

Twenty six seedlings were grown under natural light (H0),

while the other 26 seedlings were grown in an experimental

house (width: 2 m x length: 5 m x height: 2m) covered with a

shade cloth (relative light irradiance, ≈ 13% to open) (L0). Leaves

flushed within a few days after transplanting into the pots. We

used leaves with the same leaf age, which flushed in spring.

Seedlings were grown at the respective light conditions

during the summertime. Then, seedlings grown under shade

were transferred into open conditions (the same place where H0

plants were cultivated) in autumn, on 5th Oct (LH1), 12th Oct

(LH2), or 18th Oct (LH3), simulating early shedding of outer

leaves in the canopy. Basically 4 seedlings were used as replicates

for each experimental condition (treatment). Photosynthetically

active radiance (PAR) and air temperature at open and shade

conditions were monitored by photo-sensors (S-LIA-M003,

Onset Computer Corporation, Bourne, MA, USA), and

thermo-sensors (S-THB-M002, Onset Computer Corporation)

placed in solar radiation shields (RS3, Onset Computer

Corporation), combined with data loggers (H21-USB, Onset

Computer Corporation) (Figure 2).
Chlorophyll fluorescence measurements

Fv/Fm = (Fm-Fo)/Fm, was measured after an overnight dark-

adaptation with a chlorophyll fluorometer (Mini-PAMII, Walz,
FIGURE 1

Autumn coloring in an adult tree of fullmoon maple (Acer japonicum) (A) in outer-canopy (B) and inner-canopy (C) leaves. Photographs were
taken on 26 Oct, 2021, at the arboretum of Hokkaido Research Center, Forestry and Forest Products Research Institute, in Sapporo (43.0°N,
141.4°E; 180 m a.s.l.).
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Effeltrich, Germany) periodically from summer to autumn until the

leaves shed. Fm is themaximum fluorescence level elicited by a pulse

of saturating light (≈ 6000 µmol m-2 s-1), and Fo is the minimum

fluorescence level. Although Fv/Fm cannot be equated with the

quantum efficiency of PSII photochemistry (Sipka et al., 2021), a

decrease in Fv/Fm might still be used as an empirical indicator of

photoinhibition (Krause, 1994; Werner et al., 2002). One leaf per

seedling was used for the measurement. Dark adaptation clips

(DLC-8, Walz) were attached to leaves in the evening of the

previous day for the measurements. We measured Fv/Fm in the

following morning after an overnight dark-adaptation. We started

the measurements of Fv/Fm on 2nd Aug, 2021. Regarding shade-

grown seedlings transferred into the open condition, we attached

the dark adaptation clips in the evening of 4th, 11th, and 17th Oct in

LH1, LH2, and LH3 seedlings, respectively. After measuring Fv/Fm
on the following morning (5th, 12th, and 18th Oct) to evaluate Fv/Fm
before transfer, seedlings were transferred to the open condition.
Frontiers in Plant Science 04
We also measured Fv/Fm 1 day after the transfer, specifically on 6th,

13th, and 19th Oct, respectively. Then, we monitored Fv/Fm at an ≈

1-week interval.
Leaf sugar, starch and nitrogen contents

Leaves used for Fv/Fm were sampled immediately after the

measurements. One third of a whole leaf was sampled for

determination of leaf sugar, starch, and N contents. The rest

two third was frozen with liquid nitrogen, and stored at −80°C

until further analysis of protein carbonylation and leaf pigments,

as described below. Regarding shed leaves, several leaves per

seedling were sampled for determination of leaf N contents. Leaf

samples for sugar, starch, and N analyses were dried at 70°C to

constant weight in an electric oven. Sugars were extracted with

80% ethanol and determined by the phenol–sulfuric acid
A

B

FIGURE 2

Seasonal changes in daily integrated photosynthetically active radiation (PARint) (A), and daily mean temperature (B) in open (black line) and
shade (red line) conditions. Red symbols indicate the date of transfer of shade-grown seedlings to the open condition; LH1 (square): 5th Oct,
LH2 (triangle-up): 12th Oct, and LH3 (triangle-down): 18th Oct, 2021.
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method (DuBois et al., 1956). Absorbance was measured at 490

nm using a spectrophotometer (AE-450N, ERMA Inc., Tokyo,

Japan). Starch in the residue was solubilized by potassium

hydroxide, and then digested to glucose with amyloglucosidase

solution (A9228, Sigma, St. Louis, Mo., USA) (Kabeya et al.,

2003). The digested glucose was determined by the mutarotase-

glucose oxidase method (Wako Autokit Glucose (439-90901),

FUJIFILM Wako Pure Chemical Industries, Ltd., Osaka, Japan).

Absorbance was measured at 505 nm using a microplate

photometer (SH-1200, CORONA ELECTRIC Co. Ltd., Ibaraki,

Japan). Dry-mass-based leaf nitrogen content (Nmass) was

determined by a nitrogen carbon analyzer with oxygen

circulating combustion system (SUMIGRAPH, NC 22F,

Sumika Chem. Anal. Service, Osaka, Japan). We assumed that

leaf N content of H0 and L0 seedlings sampled on 2nd Aug, 20th

Aug, and 8th Sept as leaf N content in green leaves. Efficiency of

N resorption was calculated as: resorption efficiency = ([N in

green leaves] – [N in shed leaves])/[N in green leaves] × 100

(Hoch et al., 2003).
Analysis of protein carbonylation

Frozen samples as described above were ground to powder

in liquid N2. Twenty mg of powdered sample were mixed with

200 mL of LDS buffer consisting of 50 mM Tris HCl pH7.5, 0.3M

sucrose, 0.1M dithiothreitol and 2% (w/v) lithium dodecyl

sulfate, and incubated at 75°C for 5 min. The total protein

concentration was determined by using a XL-Bradford kit

(Pharma Foods International Co. Ltd., Kyoto, Japan)

according to the manufacturer’s instruction. Protein carbonyl

concentration was determined by derivatization with 2,4-

dinitrophenylhydrazine (DNPH), using protein carbonyl assay

kit (ab17820, Abcam plc, Cambridge, UK) according to the

manufacturer’s instruction with a slight modification.

Specifically, protein extracts were diluted with the dilution

buffer supplied by the assay kit so that the protein

concentration was adjusted to 0.36 mg/ml. Ten mL of each

sample was loaded onto a 14% (w/v) polyacrylamide gel and

resolved by SDS-PAGE. The gel was blotted onto PVDF

membrane. Carbonylated protein was reacted with a primary

antibody against the dinitrophenyl moiety and the secondary

anti-IgG antibody conjugated with horse radish peroxidase

which were supplied by the kit (ab178020, abcam), and was

detected with fluorescent dye (NEL104001EA, Western

Lightning Plus-ECL, PerkinElmer, MA, USA) by a charge-

coupled-device camera (LuminoGraph II, ATTO Corp.,

Tokyo, Japan). The signals from all bands were combined to

estimate the total protein carbonylation of each sample.

Amounts of protein carbonylation were expressed in

arbitrary units.
Frontiers in Plant Science 05
Analyses of leaf pigments

Pigments (chlorophyll a, b, violaxanthin, antheraxanthin,

and zeaxanthin) were extracted from 20 mg of frozen leaf

materials by homogenization in pre-cooled acetone at –30˚C,

as described by Furukawa et al. (2019). Extracts were centrifuged

for 5 min at 21,600 × g at 4°C, and the supernatant was analyzed

by high performance liquid chromatography (HPLC) using a

C18 column (YMC-Pack ODS-AL 250 mm in length, 4.6 mm in

i.d.; YMC Co., Ltd, Kyoto, Japan). The sample was eluted with an

isocratic flow of solvent A (100% methanol) for 17 min, followed

by a linear gradient from solvent A to B (60% methanol, 20%

ethanol, 20% hexane) in 6 min and with an isocratic flow of

solvent B at a flow rate of 0.8 mL min–1. The eluates were

monitored by an L-2450 photodiode array detector (HITACHI

High Technologies Science Corporation, Tokyo, Japan).

Frozen samples were ground to powder using Multi-Beads

Shocker (Yasui Kikai Corporat ion, Osaka, Japan) .

Approximately 10 mg of powdered sample were mixed with 1

ml of 3 M HCl: H2O: MeOH (1: 3: 16, v: v: v). Anthocyanins

were extracted using Shake Master (Biomedical Science

Corporation, Tokyo, Japan) and 2.3-mm diameter zirconia

beads for 2 min, and then incubated at 4°C for 2 h (Junker

and Ensminger, 2016). Subsequently, the extract was centrifuged

at 15,000 × g and 4°C for 5 min. The absorbance of the

supernatant was determined at 524 and 653 nm with a

spectrometer. Anthocyanin concentration was calculated as

(A524 − 0.24A653)/33,000 [mmol mL-1], using a molar

extinction coefficient of 33,000 M−1 cm−1 (Gould et al., 2000),

and corrected for the interference by pheophytins (Murray and

Hackett, 1991).
Statistical analyses

One factorial ANOVA was employed to investigate the

differences among the light treatments (H0, L0, LH1, LH2, and

LH3) in Fv/Fm, leaf N and resorption efficiency, leaf sugar and

starch contents, and leaf pigment contents on each date (R Core

Team and R Development Core Team, 2020). When there was at

least one significant difference among light treatments based on

the ANOVA, Tukey-Kramer post-hoc test followed. We applied

linear regression analyses to investigate the responses of 1) leaf

sugar content, 2) leaf starch content, and 3) protein

carbonylation to Fv/Fm. The level of significance was 0.05.
Results

Fv/Fm during the summertime from the beginning of August

to the end of September 2021 was relatively constant at ≈ 0.76
frontiersin.org
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and 0.81 in H0, and L0 seedlings, respectively (Figures 3A, C;

Table 1). From the beginning of October, Fv/Fm started to

decrease and reached 0.5 in H0 and 0.68 in L0 seedlings by

the end of October. The daily-integrated PAR (PARint) of the

initial day of transfer was 11.0, 27.5, and 15.5 mol m-2 day-1 for

LH1, LH2, and LH3 seedlings, respectively (Figure 2A). Daily

mean temperature of the initial day of transfer was 14.1, 13.1,

and 5.7°C for LH1, LH2, and LH3 seedlings, respectively

(Figure 2B). Fv/Fm in LH1, LH2, and LH3 seedlings decreased

from 0.82, 0.81, and 0.74 to 0.60, 0.58, and 0.56, respectively, one
Frontiers in Plant Science 06
day after the transfer. Although Fv/Fm decreased linearly until

25th Oct in LH2 and LH3 seedlings, it stopped decreasing

temporarily from 6th to 13th Oct in LH1 seedlings, but then

decreased again until 25th Oct (Figure 3C; Table 1). The daily

mean temperature from 6th to 13th Oct kept relatively high,

around 15°C, with relatively high PARint (> 20 mol m-2 day-1 for

4 days, not including 13th Oct). However, it suddenly dropped

from 16th to 23th Oct, reaching a minimum value of 5.2°C

(Figures 2A, B). On 19th Oct, during the course of N resorption

(cf. Figure 3D), LH2 seedlings showed the lowest Fv/Fm,
A C

DB

FIGURE 3

Seasonal changes in Fv/Fm (A, C) and dry mass-based leaf N (B, D) in leaves of fullmoon maple grown under open (H0: circle), shade (L0:
diamond), and shade to open (LH1: square, LH2: triangle up, and LH3: triangle down) conditions. Seedlings grown under shade were transferred
to open conditions on 5th (LH1: square), 12th (LH2: triangle up), and 18th (LH3: triangle down) of October. Open symbols indicate attached leaves
(n = 3 to 6), whereas closed symbols indicate pooled data for shed leaves collected from 25 October to 1 November (n = 9 to 22). Values are
means ± se. Detailed results of statistical analyses are shown in Tables 1, 2.
TABLE 1 Seasonal change in Fv/Fm after an overnight dark-adaptation in leaves of fullmoon maple seedlings grown under different light conditions.

Date Open Shade
H0 L0 LH1 LH2 LH3 F-statistics

Aug 2 0.76 ± 0.01 b 0.81 ± 0.00 a ― ― ― 28.0** (F1,6)

Aug 20 0.74 ± 0.01 b 0.80 ± 0.01 a ― ― ― 21.9** (F1,6)

Sep 8 0.79 ± 0.02 b 0.81 ± 0.01 a ― ― ― 8.03* (F1,6)

Sep 29 0.75 ± 0.02 b 0.81 ± 0.01 a ― ― ― 12.6* (F1,6)

Oct 5 ― ― 0.82 ± 0.01 ― ―

Oct 6 0.71 ± 0.04 ab 0.81 ± 0.01 a 0.60 ± 0.05 b ― ― 8.49* (F2,8)

Oct 12 ― ― ― 0.81 ± 0.01 ―

Oct 13 0.64 ± 0.03 b 0.78 ± 0.01 a 0.59 ± 0.02 b 0.58 ± 0.04 b ― 9.85** (F3,11)

Oct 18 ― ― ― ― 0.74 ± 0.02

Oct 19 0.53 ± 0.07 ab 0.72 ± 0.03 a 0.45 ± 0.09 bc 0.25 ± 0.05 c 0.56 ± 0.02 ab 13.1*** (F4,17)

Oct 25 0.50 ± 0.03 b 0.68 ± 0.01 a 0.07 ± 0.04 c 0.02 ± 0.01 c 0.10 ± 0.05 c 76.4*** (F4,15)
fr
H0: open condition, L0: shade condition (relative irradiance of ≈ 13% of open condition) throughout the experimental period, LH1: transfer from shade to open on Oct 5, LH2: transfer from
shade to open on Oct 12, and LH3: transfer from shade to open on Oct 18. Values are means ± se; n= 3 to 6 for attached leaves. Italic indicates Fv/Fm in shade-grown leaves, measured in the
morning of the day of transfer. * denotes significant effect at P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. ns indicates no significant effect. Different letters indicate significant differences among
means of the light treatments on the same date at P < 0.05.
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compared with Fv/Fm in L0, LH1, and LH3 seedlings

(Figure 3C; Table 1).

The mean value of dry-mass-based leaf N content (Nmass) in

green leaves (2nd Aug to 8th Sep) was significantly lower in H0

seedlings (26.1 ± 0.1 mg g-1, n=12) than in shade-grown

seedlings (L0: 30.8 ± 0.7 mg g-1, n=12), based on the student’s

t test (P < 0.001). Nmass in H0 seedlings decreased from the end

of September, whereas that in shade-grown seedlings (L0)

decreased from the beginning of October (Figures 3B, D).

Among shade-grown seedlings, L0 and LH2 seedlings had

higher Nmass compared with LH1 and LH3 just before leaf

shedding on 25 Oct (Figure 3D; Table 2). Conversely,

significantly higher Nmass was observed in shed leaves of LH2

seedlings than those in the other treatments. Accordingly,

resorption efficiency was significantly lower in LH2 seedlings

(52.8%) when compared with that in L0 seedlings (64.0%).

Leaf sugar content was relatively higher in H0 seedlings than

in L0 seedlings during summertime (Figures 4A, C; Table 3).

Leaf sugar content increased from late summer to autumn

irrespective of light conditions, whereas L0 showed a greater

increase than H0, resulting in no significant difference in leaf

sugar content between H0 and L0 seedlings after 13th Oct, which

corresponds to the onset of N resorption (Table 3; cf. Figure 3D).

Although no significant difference in leaf sugar content among

shade-grown seedlings with different transfer timings (L0, LH1,

LH2, and LH2) was detected, a wide variation in leaf sugar

content was observed on 19th Oct, where a marginal difference

between L0 and LH2 (P=0.09) was detected.

Leaf starch content decreased from mid-summer to autumn,

and reached almost 0 before shedding, irrespective of growth

light conditions (Figures 4B, D). On 6th Oct, one day after the

transfer of LH1 seedlings to the open condition, significantly

higher leaf starch content was observed in LH1 seedlings

compared with L0 seedlings (Figure 4D; Table 4).
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We investigated leaf sugar and starch as well as protein

carbonylation in shade-grown seedlings (L0, LH1, LH2, and

LH3) as a function of Fv/Fm on 19th Oct, when approximately

half of the retrievable N had been resorbed (Figure 3D). Across

the treatments, leaf sugar content decreased with decreasing Fv/

Fm (Figure 5A), whereas no significant linear relationship

between leaf starch and Fv/Fm was observed (Figure 5B).

Conversely, protein carbonylation, which is a good indicator

of oxidative stress by reactive oxygen species (ROS) (Anjum

et al., 2015), increased with decreasing Fv/Fm (Figure 6).

Dry mass-based leaf chlorophyll content (Chl a+b) was

lower in open-grown seedlings (H0) than in fully-shade-grown

seedlings (L0) (Table 5). However, as leaf mass per area was

higher in open-grown seedlings (H0) than shade-grown

seedlings (L0, LH1, LH2, and LH3), area-based leaf

chlorophyll was not significantly different among the light

treatments (data not shown). The ratio of chlorophyll a to b

(Chl a:b) was not significantly different among the light

treatments. Chlorophyll-based xanthophyll cycle pool size

(sum of xanthophyll pigments: violaxanthin, antheraxanthin

and zeaxanthin) ((V+A+Z)/Chl) was significantly higher in H0

seedlings than shade-grown seedlings (L0, LH1, LH2, and LH3).

The conversion state of xanthophyll cycle (Z+A)/(V+A+Z)

showed higher values in H0, LH1, LH2, and LH3 leaves

sampled under full sunlight than in L0 leaves sampled under

shade. Chlorophyll-based anthocyanins (anthocyanin/Chl) was

higher in open-grown (H0) seedlings, than in shade-grown (L0),

and 1 day open-exposed (LH3) seedlings.
Discussion

In the present study, early shedding of outer canopy leaves,

simulated by transferring shade-grown seedlings to fully-open
TABLE 2 Seasonal change in dry-mass based leaf N content (Nmass, mg g-1) and resorption efficiency (%) in leaves of fullmoon maple seedlings
grown under different light conditions.

Date Open Shade
H0 L0 LH1 LH2 LH3 F-statistics

Aug 2 26.1 ± 0.6 b 30.6 ± 0.9 a ― ― ― 17.0** (F1,6)

Aug 20 26.8 ± 0.4 b 29.9 ± 1.2 a ― ― ― 6.01* (F1,6)

Sep 8 25.5 ± 0.8 b 32.1 ± 1.4 a ― ― ― 17.0** (F1,6)

Sep 29 20.9 ± 0.4 b 30.8 ± 1.1 a ― ― ― 76.0*** (F1,6)

Oct 6 19.7 ± 0.8 b 30.5 ± 1.3 a 27.7 ± 0.7 a ― ― 32.5*** (F2,8)

Oct 13 17.6 ± 1.7 b 27.2 ± 1.9 a 24.2 ± 0.3 ab 26.7 ± 0.5 a ― 6.69** (F3,11)

Oct 19 18.7 ± 2.1 23.2 ± 2.3 20.6 ± 1.0 21.6 ± 0.6 19.5 ± 1.7 0.97ns (F4,17)

Oct 25 12.6 ± 2.3 ab 16.0 ± 0.9 a 10.7 ± 0.4 b 15.3 ± 1.2 ab 11.1 ± 0.8 b 4.58ns (F4,15)

Shed leaves 10.0 ± 1.0 b 11.1 ± 0.4 b 12.0 ± 0.6 b 14.6 ± 0.6 a 10.1 ± 0.2 b 12.0*** (F4,70)

Resorption efficiency (%) 57.5 ± 8.4a 64.0 ± 1.3a 65.9 ± 1.9 a 52.8 ± 1.9 b 67.1 ± 0.8 a 9.48*** (F4,70)
fr
H0: open condition, L0: shade condition (relative irradiance of ≈ 13% of open condition) throughout the experimental period, LH1: transfer from shade to open on Oct 5, LH2: transfer from
shade to open on Oct 12, and LH3: transfer from shade to open on Oct 18. Values are means ± se; n= 3 to 6 for attached leaves, sampled from Aug 2 to Oct 25, and n = 9 to 22 for shed leaves
collected from Oct 25 to Nov 1. * denotes significant effect at P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. ns indicates no significant effect. Different letters indicate significant differences among
means of the light treatments on the same date at P < 0.05.
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light-exposed conditions, caused significantly lower N

resorption in the seedlings transferred on 12th Oct (LH2).

Leaves of LH2 seedlings showed a significantly lower Fv/Fm
compared to L0, LH1, and LH3 on 19th Oct, when approximately

half of resorbable N had been exported from the leaves in all

treatments. Across the treatments, higher degree of protein

carbonylation was observed in leaves with lower Fv/Fm on 19th

Oct. This suggests that photoinhibition, indicated by a decrease

in Fv/Fm (Krause, 1994; Werner et al., 2002), might be closely-

associated with oxidative stress by ROS, indicated by protein

carbonylation (Anjum et al., 2015). Leaf sugar accumulation
Frontiers in Plant Science 08
might be necessary for an efficient N resorption as a driving

energy for chlorophyll and protein catabolism (Hörtensteiner

and Feller, 2002), and amino acids export (Liu et al., 2008;

Okumoto and Pilot, 2011), as well as for a regulative signal of leaf

senescence under low temperature (Stitt and Hurry, 2002;

Wingler et al., 2006; Tarkowski and Van den Ende, 2015).

Shade-grown seedlings (L0) increased leaf sugar content to a

level comparable to sun-grown seedlings (H0) in autumn, also

suggesting the relevance of leaf sugar accumulation for leaf N

resorption. In this context, smaller sugar content in LH2

seedlings with severer photoinhibition, indicated by the lower
A

B D

C

FIGURE 4

Seasonal changes in dry mass-based leaf sugar (A, C) and leaf starch content (B, D) in leaves of fullmoon maple grown under open (H0: circle),
shade (L0: diamond), and shade to open (LH1: square, LH2: triangle up, and LH3: triangle down) conditions. Seedlings grown under shade were
transferred to open conditions on 5th (LH1: square), 12th (LH2: triangle up), and 18th (LH3: triangle down) of October (n = 3 to 6). Values are
means ± se. Detailed results of statistical analyses are shown in Tables 3, 4.
TABLE 3 Seasonal change in dry-mass based leaf sugar content (mg g-1) in leaves of fullmoon maple seedlings grown under different light conditions.

Date Open Shade
H0 L0 LH1 LH2 LH3 F-statistics

Aug 2 67.4 ± 2.9 a 36.3 ± 1.6 b ― ― ― 88.6*** (F1,6)

Aug 20 70.4 ± 1.6 a 37.9 ± 2.8 b ― ― ― 98.7*** (F1,6)

Sep 8 70.1 ± 1.8 a 39.4 ± 3.6 b ― ― ― 59.5*** (F1,6)

Sep 29 76.6 ± 3.1 a 53.1 ± 4.2 b ― ― ― 20.4** (F1,6)

Oct 6 82.0 ± 4.7 a 58.5 ± 4.5 b 66.3 ± 6.7 ab ― ― 5.82* (F2,8)

Oct 13 84.4 ± 10.1 63.1 ± 3.3 67.1 ± 5.8 67.2 ± 3.5 ― 2.32ns (F3,11)

Oct 19 86.0 ± 6.2 a 79.3 ± 5.5 ab 70.3 ± 10.7 ab 56.0 ± 4.2 b 65.4 ± 1.6 ab 3.33* (F4,17)

Oct 25 66.5 ± 6.4 65.5 ± 6.7 52.2 ± 4.6 48.8 ± 4.2 61.7 ± 0.3 1.44ns (F4,15)
fr
H0: open condition, L0: shade condition (relative irradiance of ≈ 13% of open condition) throughout the experimental period, LH1: transfer from shade to open on Oct 5, LH2: transfer from
shade to open on Oct 12, and LH3: transfer from shade to open on Oct 18. Values are means ± se; n= 3 to 6 for attached leaves, sampled from Aug 2 to Oct 25. * denotes significant effect at P
≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. ns indicates no significant effect. Different letters indicate significant differences among means of the light treatments on the same date at P < 0.05.
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Fv/Fm on 19th Oct (Krause, 1994; Werner et al., 2002), might

result in lower N resorption efficiency.

An increase in protein carbonylation is a biomarker of

oxidative stress by ROS (Anjum et al., 2015). A greater

amount of protein carbonylation was observed with decreasing

Fv/Fm, suggesting that oxidative damage of proteins facilitated by

ROS might occur in shade-grown seedlings transferred into

open condition, especially in LH2 seedlings. Oxidative stress,

indicated by an increase in protein carbonylation, might also

increase the risk of membrane peroxidation (Anjum et al., 2015).

Membrane intactness is also important for recycling N from the

photosynthetic apparatus (Hörtensteiner and Feller, 2002) as

well as for amino acid export (Okumoto and Pilot, 2011).

Membrane peroxidation might be a cause of the insufficient N

resorption observed in LH2 seedlings. It is noteworthy that an

involvement of ROS in Rubisco degradation (Desimone et al.,

1996; Stieger and Feller, 1997; Ishida et al., 1998; Hörtensteiner

and Feller, 2002) might be reflected on the later start of N
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resorption in shade-grown seedlings (L0) compared with open-

grown seedlings (H0), as well as the retarded N resorption in L0

seedlings compared with LH1 and LH3 on 25th Oct.

Higher LMA is a typical morphological trait in sun leaves,

which also have higher area-based photosynthetic capacity

(2018b; Niinemets et al., 2004; Kitao et al., 2006). In the

present study, open and shade treatments were appropriate to

allow the study of typical sun and shade leaves (Table 5).

Assuming that anthocyanins have a photoprotective role as

light attenuators and antioxidants (Neill et al., 2002; Moustaka

et al., 2020), open-grown seedlings (H0) had higher

photoprotective capacity by anthocyanins than shade-grown

(L0) and 1 day open-exposed seedlings (LH3). Moreover, LH1

(14 days open-exposed), and LH2 (7 days open-exposed)

seedlings showed intermediate values of anthocyanins between

H0, and L0 and LH3, suggesting that anthocyanins might

gradually accumulate at a time scale of a few days. The

conversion state of xanthophyll cycle [(Z+A)/(V+A+Z)],
TABLE 5 Leaf mass per area (LMA) and pigments in leaves of fullmoon maple seedlings grown under different light conditions, sampled in the
morning of Oct 19.

Oct 19 Open Shade
H0 L0 LH1 LH2 LH3 F-statistics

LMA (g m-2) 62.5 ± 3.6 a 35.4 ± 1.2 b 37.0 ± 1.8 b 34.4 ± 0.7 b 39.4 ± 3.0 b 23.4 *** (F4,17)

Chl a+b
(µmol g-1)

2.98 ± 0.39 b 8.55 ± 1.06 a 6.70 ± 0.32 ab 6.54 ± 0.67 ab 5.87 ± 1.17 ab 4.63 * (F4,17)

Chl a:b 2.55 ± 0.09 2.65 ± 0.14 2.21 ± 0.12 2.38 ± 0.12 2.65 ± 0.07 2.30 ns (F4,17)

(V+A+Z)/Chl
(mmol mol-1)

154.2 ± 16.9 a 57.7 ± 9.4 b 94.2 ± 5.1 b 88.5 ± 11.6 b 69.0 ± 11.9 b 9.96 *** (F4,17)

(Z+A)/(V+A+Z) 0.79 ± 0.05 a 0.57 ± 0.06 b 0.88 ± 0.02 a 0.81 ± 0.03 a 0.78 ± 0.02 a 6.76 ** (F4,17)

Anthocyanin/Chl
(mol mol-1)

2.32 ± 0.65 a 0.63 ± 0.34 b 1.87 ± 0.10 ab 0.91 ± 0.19 ab 0.58 ± 0.29 b 4.14 * (F4,17)
f

Pigments analyzed were dry-mass based leaf total chlorophyll content (Chl a+b), chlorophyll a to b ratio (Chl a:b), chlorophyll-based xanthophyll cycle pigments content ((V+A+Z)/Chl),
including violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z), conversion state of xanthophyll cycle ((Z+A)/(V+A+Z)), chlorophyll-based anthocyanins content (anthocyanin/Chl).
H0: open condition, L0: shade condition (relative irradiance of ≈ 13% of open condition) throughout the experimental period, LH1: transfer from shade to open on Oct 5, LH2: transfer from
shade to open on Oct 12, and LH3: transfer from shade to open on Oct 18. Values are means ± se; n= 3 to 6. *, **, and *** denote significant effect at P ≤ 0.05, ≤ 0.01, and ≤ 0.001, respectively.
ns indicates no statistically significant effect. Different letters indicate significant differences among means of light treatments on the same date at P < 0.05.
TABLE 4 Seasonal change in dry-mass based leaf starch content (mg g-1) in leaves of fullmoon maple seedlings grown under different light conditions.

Date Open Shade
H0 L0 LH1 LH2 LH3 F-statistics

Aug 2 14.6 ± 2.6 11.2 ± 3.2 ― ― ― 0.66ns (F1,6)

Aug 20 22.3 ± 3.4 18.4 ± 5.7 ― ― ― 0.36ns (F1,6)

Sep 8 13.7 ± 1.9 5.3 ± 4.3 ― ― ― 3.04ns (F1,6)

Sep 29 7.3 ± 1.5 8.8 ± 1.8 ― ― ― 0.40ns (F1,6)

Oct 6 7.9 ± 0.5 ab 4.5 ± 0.8 b 10.4 ± 1.7 a ― ― 8.62* (F2,8)

Oct 13 5.8 ± 2.0 4.3 ± 0.6 8.3 ± 3.9 6.8 ± 1.5 ― 0.64ns (F3,11)

Oct 19 6.6 ± 2.1 2.6 ± 0.8 5.3 ± 3.7 2.5 ± 1.2 4.5 ± 1.6 1.00ns (F4,17)

Oct 25 1.9 ± 0.8 a 0.3 ± 0.3 0.4 ± 0.7 0.5 ± 0.4 0.0 ± 0.3 2.08ns (F4,15)
r

H0: open condition, L0: shade condition (relative irradiance of ≈ 13% of open condition) throughout the experimental period, LH1: transfer from shade to open on Oct 5, LH2: transfer from
shade to open on Oct 12, and LH3: transfer from shade to open on Oct 18. Values are means ± se; n= 3 to 6 for attached leaves, sampled from Aug 2 to Oct 25. * denotes significant effect at
P ≤ 0.05. ns indicates no significant effect. Different letters indicate significant differences among means of light treatments on the same date at P < 0.05.
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which is closely related to thermal energy dissipation (Demmig-

Adams and Adams, 1992; Verhoeven et al., 1999), promptly

responded to the increase in solar radiation, where LH1, LH2,

and even LH3 (1 day after the transfer) seedlings showed a

comparable value of [(Z+A)/(V+A+Z)] to that in H0 seedlings

grown under full sunlight. Although the pool size of xanthophyll

cycle was different between open-grown seedlings (H0) and

shade-grown seedlings (L0, LH1, LH2, and LH3), conversion

of xanthophyll pigments to (Z+A) was well functioned against

high light in the open-transferred seedlings (LH1, LH2, and

LH3). Some photoprotective responses such as increases in

anthocyanins, and [(Z+A)/(V+A+Z)], compared to shade-

grown L0 seedlings, were observed in LH1 and LH2 seedlings.
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As Fv/Fm in LH1 on 19th Oct was comparable to Fv/Fm in open-

grown H0 seedlings (Table 1), LH1 seedlings might have

successfully acclimated to high light condition. Conversely, the

photoprotective responses might not be sufficient enough in

LH2 seedlings since significantly lower Fv/Fm on 19th Oct was

observed, compared to H0 seedlings.

The higher starch content observed in LH1 than in L0 on 6th

Oct, one day after the transfer, suggests a positive effect of

transfer into open condition with greater amount of solar

radiation on the photosynthetic carbon gain, in spite of

apparent photoinhibition. LH1 seedlings also showed a

temporal cessation of photoinhibition from 6th to 13th Oct,

and comparable Fv/Fm to that in H0 on 19th Oct, with
A

B

FIGURE 5

Relationship between Fv/Fm and leaf soluble sugar content (A) and leaf starch content (B) in leaves (measured and sampled on 19th Oct) of fullmoon
maple seedlings grown under shade (L0, diamond), transferred from shade to open conditions on 5th Oct (LH1, square), on 12th Oct (LH2, triangle-up),
and on 18th Oct (LH3, triangle-down). Linear regression analysis was conducted for the pooled data across the light treatments.
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accumulation of anthocyanins and increased xanthophyll cycle

conversion, suggesting acclimation to the high light condition

(Tobita et al., 2010). This acclimation might result from the

relatively high air temperature around 15°C at the first week

after the seedling transfer, and the moderate initial impact of

solar radiation (PARint on the first day of transfer: 11.0 mol m-2

day-1). Conversely, LH2 seedlings were exposed to substantially

high PARint (≈25 mol m-2 day-1) on the first three days after

transfer, and suffered low temperatures down to 5°C in the

following week, which might induce the most severe

photoinhibition with incomplete acclimation (Ball, 1994;

Krause, 1994). Regarding LH3 seedlings, the initial PARint was

intermediate (15.5 mol m-2 day-1), but the air temperature was

relatively low (below 10°C), leading to fast-progressing

photoinhibition. However, the extent of photoinhibition in

LH3 seedlings was limited on 19th Oct because of the shorter

period (1 day) of exposure to open radiation. Although the

degree of photoinhibition seems to be dependent on solar

radiation and air temperature as well as the timing of

simulated leaf shedding (2018a; 2022; Werner et al., 2001;

Kitao et al., 2004), severer photoinhibition, as was observed in

LH2, might increase the risk of incomplete N resorption by

oxidative damage.

Based on the findings described above, we propose the

“holocanopy hypothesis” to describe the phenomenon where

the outer-canopy leaves of fullmoon maple, the longevity of

which is prolonged with anthocyanins (2003; Feild et al., 2001;

Hoch et al., 2001; Schaberg et al., 2008; Lo Piccolo et al., 2018;
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Moustaka et al., 2020; Lo Piccolo and Landi, 2021), protect

inner-canopy leaves from photooxidative stress by shading,

contributing to efficient N resorption as a whole canopy. This

hypothesis deserves further experimentation and validation in

different species and experimental systems. Based on field

observations, the timing of leaf shedding is quite synchronized

in all leaves within a canopy of fullmoon maple, as leaf age of

fullmoon maple is similar due to flush-type shoot development

(Kikuzawa, 1983; Koike, 1990). In the case of synchronized leaf

senescence, light attenuation by the outer-canopy leaves would

be of relevance to protect the inner-canopy leaves against

photooxidative stress during leaf N resorption. Although

further investigation in other autumn-coloring species is

needed, whole-canopy responses warrant consideration to

understand the role of autumn coloring.
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