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Driven by the increase in its frequency and duration, high temperature weather

is increasingly seriously affecting crop development. High temperature inhibits

the leaf development, flowering, and pollination of cotton, but its effects on the

roots and root hair phenotypes and lifespans remain unclear. Thus, this study

selected the two cotton varieties Nongda 601 (ND) and Guoxin 9 (GX) as

materials and adopted the RhizoPot, an in situ root observation system, to

investigate the effects of high temperature (38°C day and 32°C night) on the

growth dynamics of the aboveground parts and root phenotypes of cotton at

the seedling stage. The results showed that high temperature reduced the net

photosynthetic rate and chlorophyll content, decreased the dry matter

accumulation and transfer to the root, and lowered the root-shoot ratio (R/S

ratio). The root phenotypes changed significantly under high temperature.

After 7 d of high temperature stress, the root lengths of ND and GX decreased

by 78.14 mm and 59.64 mm, respectively. Their specific root lengths

increased by 79.60% and 66.11%, respectively. Their specific root surface areas

increased by 418.70 cm2·g-1 and 433.42 cm2·g-1, respectively. Their proportions

of very fine roots increased to 99.26% and 97.16%, respectively. After the removal

of high temperature (RHT), their root lengths tended to increase, and their

proportions of very fine roots continued to increase. The root hairs of ND and

GX were also significantly affected by high temperature. In particular, the root

hair densities of ND and GX decreased by 52.53% and 56.25%, respectively. Their

average root hair lengths decreased by 96.62% and 74.29%, respectively.

Their root hair lifespans decreased by 7 d and 10 d, respectively. After the RHT,

their average root hair lengths failed to recover. A principal component analysis

indicated that the root architectures were significantly affected by root hair

density, average root hair length, specific root length, and specific root surface

area under high temperatures. In summary, cotton adapts to high temperature
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environments by increasing the specific root length, specific root surface area,

and the proportions of very fine roots, and reducing the lifespan of root hairs.
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Introduction

Abiotic stresses, such as high temperature, drought, salt,

chemical toxicity, and oxidative stress, pose serious threats to

agricultural production (Wang et al., 2003). High temperature

weather is increasing in both frequency and duration due to

emissions of greenhouse gases, which subsequently affects crop

development (Luo, 2011). Studies have pointed out that if global

warming exceeds the pre-industrial level by 1.5°C, extreme high

temperature weather will further intensify (Hoegh-Guldberg

et al., 2019), thus, hindering crop growth and development,

reducing crop yield and quality, and even resulting in complete

crop failure (Fahad et al., 2017; Li et al., 2020; Parker et al., 2020).

This is mainly because high temperature can easily cause the

plant defense system to fail, making the plants more vulnerable

to pathogens and pests and inhibiting the accumulation of

photosynthetic products (Kim et al., 2022).

Cotton (Gossypium hirsutum L.), as a major cash and fiber

crop, originated in tropical and subtropical regions and prefers

warmth and light. Temperature has an extremely significant

effect on cotton growth and development, and it can affect its

growth and maturation and regulate its phenological

development and rate of biomass accumulation (Xu et al.,

2017). Temperature beyond a certain range (35°C) seriously

affects the germination and elongation of pollen tubes (Zahid

et al., 2016), causes indehiscent anthers and sterile pollen, and

reduces the single boll weight, which ultimately leads to a

decrease in crop yield (Zhang et al., 2022). Each time the daily

maximum temperature rises by 1°C, the lint yield will decrease

by 110 kg/hm2 (Gao et al., 2021). The current temperature is

close to or above the optimal temperature for cotton growth and

yield (30°C) (Majeed et al., 2021).

High temperature weather may alter the resource allocation

of shoots and roots. Compared with the shoot parts, root

structures and their responses to temperature changes through

interactions are rarely explored (Luo et al., 2020). Roots are a

major organ responsible for maintaining plants and absorbing

nutrients (Lynch, 2011). Their morphological and physiological

characteristics are closely related to stress resistance (Joshi et al.,

2016). Root growth is a dynamic process that is facilitated by

suitable temperatures (Mai et al., 2018; Gavelienė et al., 2022).

When the optimal temperature is 22–30°C, a temperature of 32–
02
40°C will inhibit root distribution and growth (Zahid et al.,

2016). The optimal temperature range promotes an increase in

the root-shoot ratio (R/S ratio) (Koevoets et al., 2016), but a

temperature above the optimal temperature will reduce the

absorption of water and nutrients by the roots and weaken

their resistance to abiotic stresses (Luo et al., 2020). However,

further research is still needed to clarify the development of

cotton roots and the responses of their root hair phenotypes

under high temperature.

The root phenotypes of crops can be altered to improve their

high temperature resistance, which constitutes an important

phenotypic characteristic. High temperature not only inhibits

root development (Calleja-Cabrera et al., 2020; Hund et al.,

2008) but also affects the absorption of water by the roots and

accelerates root senescence, causing the lignified roots to

elongate to almost the tip and resulting in a reduction in the

root absorption area and rate of nutrient absorption (Zhen et al.,

2020). Martins et al. (2017) showed that, as the temperature

increases, the roots could elongate faster to protect the

meristems. Previous research showed that the root length and

number of cotton roots increased significantly at 35°C

(McMichael and Quisenberry, 1993; McMichael and Burke,

1994), but when the temperature exceeded 35°C, both the

main root and lateral root lengths were shortened (McMichael

et al., 1996). After subjecting 64 different varieties of soybean to

high temperature treatment (40°C day and 32°C night), Alsajri

et al. (2019) found that the root length, root surface area, and

root volume all decreased significantly. Under high temperature

stress, the root diameter and root cortex thickness of rice were

both significantly inhibited (Zhen et al., 2020). A study also

revealed that high temperatures reduced the root dry weight and

R/S ratio but increased the specific root length, specific root

surface area, and specific root volume (Tahir et al., 2008). Fine

roots (roots<2 mm in diameter) are the most active part of the

whole root system (Comas et al., 2000; Eissenstat et al., 2000)

and serve as the main pathway for the absorption of water and

nutrients and the regulation of plant growth (Zeleznik and

Dickmann, 2004; Zhang et al., 2020). Studies have shown that

the growth rate of fine roots increases with increasing soil

temperatures (Mahmud et al., 2019). Therefore, it is necessary

to explore the dynamic changes in cotton roots under high

temperature stress to manage extreme high temperature weather
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in the field and provide important references for

production practice.

Root hairs are formed through the elongation of root

epidermal cells. They increase the contact area between the

roots and soil and improve the efficiency of water and nutrient

absorption (Bates and Lynch, 2001; Bengough et al., 2011). The

growth and development of root hairs are affected by abiotic

stresses, such as high temperature and drought, and the

insufficiency of nutrients, such as phosphorus (P) and nitrogen

(N) (López-Bucio et al., 2003; Wei et al., 2016). For example,

temperature-sensitive Arabidopsis thaliana seedlings were

unaffected at normal temperature (20°C) but failed to form

root hairs at elevated temperature (30°C), which manifests as a

reduction in the root hair length and density (Kim et al., 2021).

The root hair number of trifoliate orange decreased at 40°C–45°C

(Mohammad and Shiraishi, 2000). N stress significantly

shortened the root hair lifespan of cotton but greatly increased

its root hair density and length (Zhu et al., 2022). Under low P

stress, cotton responded to P deficiency by extending its root hair

lifespan and increasing its specific root length and lateral root

branch density (Zhang et al., 2021). Drought stress accelerates the

death of fine roots and root hairs, and cotton has adapted to such

external environments by developing more fine roots and longer

root hairs (Xiao et al., 2020). However, it is still unclear how the

root hairs of cotton respond to high temperature. In this context,

exploring the root hairs and root hair lifespan of cotton under

high temperature is of great value to clarify the physiological

mechanisms that underlie the high temperature resistance

of cotton.

In summary, existing studies on the effect of high

temperature on cotton mainly focus on the phenotypes of

aboveground parts but rarely touch upon the responses of

roots, root hair phenotypes, or their lifespans under high

temperature. It is highly necessary to conduct dynamic

research on roots, since it facilitates dynamic observation of

the characteristics of changes in root phenotypes. Traditional

root research methods, such as the digging method (Cheng et al.,
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2009), the soil coring method (Gahoonia and Nielsen, 1991), and

the soil block method (Oliveira et al., 2005), cannot realize

dynamic observation because they all require destructive

sampling to separate the roots from culture soil. In addition,

traditional methods are time-consuming and labor-intensive

and cause substantial damage to roots, making it difficult

obtain complete roots. Alternatively, X-ray computed

tomography (CT) and magnetic resonance imaging (MRI)

support the dynamic observation of roots and are widely used

to study root phenotypes (Kurogane et al., 2021; Li et al., 2022).

However, both methods are extremely expensive and limited by

container size and substrate type. Our laboratory independently

developed the RhizoPot, an in situ root observation system,

which is highly efficient, inexpensive, simple to operate, and has

high imaging resolution. It has proven useful in studies on

cotton under N (Zhu et al., 2022), drought (Xiao et al., 2020),

and P (Zhang et al., 2021) stresses. A RhizoPot can obtain

continuous lossless images of root phenotypes, and was

employed in this study to investigate the dynamic response

characteristics of the root phenotypes of two cotton varieties

under high temperature and clarify the effects of high

temperature on the dynamic changes in cotton roots and the

morphology and lifespan of root hairs. The results increase our

understanding of the characteristics of cotton root phenotypes

and longevity responses under high temperature stress, and will

facilitate the breeding of cotton varieties that are resistant to

high temperature.
Materials and methods

Materials and system

The experiment was conducted in the phytotron of Hebei

Agricultural University (Baoding City, Hebei Province, China,

38.85° N, 115.30° E) from April to October 2021 (Figure 1A).

Two local commercial cotton cultivars, Nongda 601 (ND) and
A B DC

FIGURE 1

Schematic diagram of the in situ root observation system RhizoPot (A), RhizoPot growth imaging device (B), In situ root system image (C),
rendering of the segmented in situ root image (D).
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Guoxin 9 (GX), were used in this study. The soil was sampled

from the topsoil layer (0–20 cm) at the Experimental Station of

Hebei Agricultural University (Baoding City, Hebei Province,

China, 38.85° N, 115.30° E). The soil was pH 7.20; organic

matter content, 16.57 mg·kg-1; total N, 1.23g·kg-1; alkali-

hydrolysable N, 77.67 mg·kg-1; available phosphorus, 16.54

mg·kg-1; and available potassium, 129.32 mg·kg-1. After air

drying, the soil was filtered through a 2 mm sieve to remove

pebbles and large solid clods. The filtered soil was then mixed

evenly by a weight ratio of soil: sand = 4:1 (v/v) to prepare a

mixed substrate. The substrate was loaded into a RhizoPot,

which was a growth vessel that we designed and assembled

using transparent acrylic plates. A flatbed scanner (Epson

Perfection Version 39, Suwa, Japan) used to collect images,

and a laptop was used to control the operations of a scanner.

The scanner was fixed to the inclined surface of the vessels. The

outer wall of the RhizoPot was covered with a layer of black

cardboard to prevent the exposure of roots to light (Figure 1B)

(Xiao et al., 2020; Zhang et al., 2021). The mixed substrate

weighed 6.5 kg in each RhizoPot.
Growth conditions and treatments

Phytotron conditions: normal temperature CK, 26°C day and

20°C night; time: 14 h/10 h; light intensity: 600 mmol·m-2·s-1; relative

water content of substrate: 45%–50% (Zhang et al., 2021). First, a

wet towel was used to accelerate germination. Full seeds that

germinated consistently were selected and sown in the RhizoPot.

The seeds were 1 cm near the scanner side at a depth of 3 cm. High

temperature (HT, 38°C day and 32°C night) treatment was started

when the cotton grew to six leaves. The test treatments were as

follows: CK + ND, normal temperature and Nongda 601 (CKND);

CK + GX, normal temperature and Guoxin 9 (CKGX); HT + ND,

high temperature and Nongda 601 (HTND); HT + GX, high

temperature and Guoxin 9 (HTGX). After 7 d of high

temperature treatment, the normal temperature (CK, 26°C day

and 20°C night) was restored through the removal of high

temperature (RHT). A total of 20 RhizoPot systems were

employed. Each treatment was prepared with five replicates.
Determination methods

Determination of the morphological indicators
of aboveground parts

The morphological indicators of aboveground parts were

determined at 0 d, 1 d, 3 d, 5 d, and 7 d after high temperature

treatment and 4 d and 7 d after the RHT. The height from the

cotyledon node to the stem tip was measured as the plant height

using a ruler. The stem diameter 1 cm above the cotyledon node

was measured with a Vernier caliper. The leaf area was measured

by the length and width coefficient method.
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Determination of the physiological indicators
of aboveground parts

The net photosynthetic rate of the top third leaf on the stem

was determined at 0 d, 1 d, 3 d, 5 d, and 7 d after high

temperature treatment and 4 d and 7 d after RHT using a

portable photosynthetic system (LI-6400XT; LI-COR, Lincoln,

NE, USA). The light intensity was set at 600 mmol·m-2·s-1. The

maximum photochemical efficiency (Fv/Fm) and the actual

photochemical quantum yield (FPSII) were measured using a

portable modulated chlorophyll fluorimeter (PAM-2500, Walz,

Germany) at the same location where the photosynthetic

parameters were determined. The relative chlorophyll content

(SPAD) was measured using a chlorophyll meter (SPAD-502,

Konica-Minolta, Tokyo, Japan). The leaf measured was the same

as that measured for photosynthesis.
In situ root observation

In situ root collection was performed each day starting with

high temperature treatment. The resolution of images scanned was

1,200 and 4,800 dpi (Figure 1C). The whole observation window

was scanned for 1,200 dpi images. The observation window was

evenly divided into four parts for separate scanning for 4,800 dpi

images (Xiao et al., 2020; Zhu et al., 2022). Scanned 1,200 dpi in situ

root images were used for image segmentation using the improved

DeepLab v3 + (Shen et al., 2020). The extracted roots were white,

and the substrate was black (Figure 1D). The segmented root

images were analyzed using WinRHIZO software (Reg 2009,

Instruments Region, Inc., Québec City, Canada). The root length

(RL, cm), average root diameter (AD,mm), root surface area (RSA),

and root volume (RV, cm3) were obtained by analyzing the root

images scanned. The roots were divided into fine roots (less than

2 mm in diameter) and very fine roots (less than 0.5 mm in

diameter) based on the average root diameter obtained. The root

length density (RLD, cm · cm-3) was calculated from the following

formula (Zhang et al., 2021):

RLD = RL=A� DOF

where A denotes the area of the observation window (cm2), and

DOF denotes the soil thickness observable by the RhizoPot, which

was set at 0.25 cm in this study.

The in situ root images with a resolution of 4,800 dpi were

analyzed for root hair phenotype traits using Adobe Photoshop

2020 (Adobe, San Jose, CA, USA). Three points were randomly

selected on each image. The average root hair length (ARHL,

mm) was measured using the scale of Adobe Photoshop 2020.

The number of root hairs within 1 mm2 of each point was

measured to obtain the root hair density (RHD). The root hairs

were considered senescent and dead when they gradually turned

from white to yellow and became twisted (Xiao et al., 2020;

Zhang et al., 2021).
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Sample collection and
parameter determination

The cotton plants were sampled after 7 d of high temperature

treatment and 7 d of recovery. First, a plant was divided by the

cotyledon node into its aboveground parts and belowground parts,

and the fresh weights were measured. The dry weights were

measured after the samples were dried to a constant weigh in an

85°C oven. A root flushing platform designed by our laboratory was

used to rinse the substrate in the culture pan with a tap under a

certain pressure to obtain clean whole roots that were free of

impurity. The roots were then scanned using an Epson 10000 XL

scanner with a resolution of 600 dpi. WinRHIZO software (Reg

2009, Instruments Region, Inc., Québec City, Canada) was used for

analysis to obtain the root length, average root diameter, root

volume, and root surface area. The specific root length, specific

root surface area, and specific root volume were calculated:

Specific root length (cm · g−1)  =  root length=root dry weight

Specific root surface area  ð cm2 · g−1) = root surface area=root dry weight

Specific root volume (cm3 · g−1)  =  root volume=root dry weight
Statistical analysis

Microsoft Excel 2010 (Redland, WA, USA) was used for data

statistics, sorting, and analysis. SPSS 21.0 (IBM, Inc., Armonk, NY,

USA) was adopted for a one-way analysis of variance (ANOVA)

and a correlation analysis between the treatment groups. The

Kaplan-Meier method was employed for survival analysis (Kaplan

and Meier, 1958). The average root hair lifespan was equal to the

average survival time, and the median root hair lifespan (i.e., time to

50% survival) was estimated and used to plot survival curves (Xiao

et al., 2020). A correlation analysis and principal component

analysis (PCA) were performed to clarify the relationships

between these traits. GraphPad Prism 8.0 (San Diego, CA, USA)

and Origin Pro2022b (OriginLab, Northampton, MA, USA) were

used for drawing.
Results

Effects of high temperature and 7 d
recovery on the morphology and
relative chlorophyll content of the
aboveground parts

High temperature significantly inhibited the development of

the aboveground parts of cotton (Figure 2). The plant height,

stem diameter, leaf area, and SPAD all tended increase as the
Frontiers in Plant Science 05
duration of high temperature was extended, and the gap

gradually widened at 5 d of the high temperature treatment.

At 5 d, compared with those of the control, the plant heights of

ND and GX under high temperature treatment decreased by

8.17% and 2.64%, respectively (Figure 2A); their stem diameters

decreased by 2.10% and 1.26%, respectively (Figure 2B). High

temperature aggravated cotton senescence, resulting in leaf

abscission. The leaf areas of HTND and HTGX decreased by

8.77% and 7.46%, respectively (Figure 2C), and their SPAD

values decreased by 6.77% and 6.86%, respectively (Figure 2D).

At 7 d, compared with those of the control, the plant heights of

HTND and HTGX decreased significantly by 9.05% and 8.08%,

respectively; their leaf areas decreased by 24.29% and 16.33%,

respectively, and their SPAD values decreased by 10.65% and

10.40%, respectively. The difference was significant in each case

(p<0.05). In contrast, their stem diameters decreased by 1.81%

and 0.56%, respectively. All the indicators increased after

the RHT.
Effects of high temperature and 7 d
recovery on the net photosynthetic rate
and chlorophyll fluorescence parameters

With the extension of duration of high temperatures, the net

rate of photosynthesis (Pn) of HTND and HTGX both tended to

decrease (Figure 3A). At 1 d, due to the short duration of high

temperature, the net rate of photosynthesis of HTND and

HTGX, compared with those of the control, increased

significantly by 48.56% and 17.55%, respectively (p<0.05). At 2

d-7 d, the net rate of photosynthesis of HTND and HTGX

abruptly decreased. Compared with those of the control, the net

rate of photosynthesis of HTND and HTGX decreased

significantly by 19.38% and 30.89% (p<0.05) at 3 d,

respectively, and by 69.78% and 73.77% (p<0.05) at 7 d,

respectively. Within 7 d after the RHT, the net rate of

photosynthesis tended to increase, but it was still lower than

that of the control.

PSII maximum photochemical efficiency (Fv/Fm) reflects

the maximum photosynthetic potential of plants and is an

important criterion on the occurrence of photoinhibition

during photosynthesis. High temperature treatment

significantly reduced the Fv/Fm of ND and GX (p<0.05)

(Figure 3B). Compared with that of the control, the Fv/Fm of

ND decreased significantly by 2.30%, 5.12%, and 7.16% at 3 d,

5 d, and 7 d of the high temperature treatment, respectively

(p<0.05), while that of GX decreased significantly by 2.26%,

3.52%, and 6.55%, respectively, (p<0.05). Fv/Fm rapidly

increased after the RHT. There was no significant difference

between any treatment and the control at 7 d after RHT.

PSII actual photochemical quantum yield (FPSII) reflects

the actual photochemical efficiency of a photoreaction. High

temperature treatment reduced FPSII (Figure 3C), which was
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significantly lower than that of the control at each treatment

period (p<0.05). Compared with those of the control, the FPSII

of HTND at 3 d, 5 d, and 7 d decreased significantly by 7.97%,

23.56%, and 28.48% (p<0.05), respectively. Those of HTGX
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decreased significantly by 4.69%, 20.0%, and 27.45% (p<0.05),

respectively. The changing trend of FPSII after the RHT was

consistent with that of Fv/Fm. At 7 d after the RHT, theFPSII of

HTND and HTGX were still significantly lower than those of the
A B

DC

FIGURE 2

Changes in plant height (A), stem diameter (B), leaf area (C), and relative chlorophyll content (D) of two cotton varieties under normal conditions
and high temperature and after 7 d of recovery. The means of three replicates ± standard error are depicted. For each trait, bars with the same
letter are not significantly different according to Duncan’s test at a p<0.05 threshold. ns, not significant (p>0.05).
A B C

FIGURE 3

Changes in net photosynthetic rate (Pn) (A), maximum photochemical efficiency (Fv/Fm) (B), and actual photochemical quantum yield (FPSII)
(C) of two cotton varieties under normal conditions and high temperature and after 7 d of recovery. The means of three replicates ± standard
error are depicted. For each trait, bars with the same letter are not significantly different according to Duncan’s test at a p<0.05 threshold. ns,
not significant (p>0.05).
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c on t r o l and d e c r e a s e d by 2 0 . 9 0% and 14 . 9 3% ,

respectively (p<0.05).
Effects of high temperature and 7 d
recovery on the biomass and R/S ratio

High temperature significantly inhibited the growth of cotton

plants.Afterhigh temperature treatment, the freshanddryweightsof

the aboveground and belowground parts decreased significantly

(p<0.05) (Table 1). Compared with those of the control, the fresh

and dry weights of the aboveground parts of HTND decreased by

24.10% and 22.90%, respectively. However, after 7 d recovery, there

was no significant difference between them. In contrast, those of

HTGXdecreased by 26.08% and 28.60%, respectively. After the high

temperature treatment, the fresh anddryweights of thebelowground

parts of ND decreased by 27.88% and 45.23%, respectively, while

those of GX decreased by 26.39% and 38.04%, respectively. High

temperature treatment caused the R/S ratios of the two varieties to

significantly decrease by 29.56% and 15.89%, respectively (p<0.05).
Effects of high temperature and 7 d
recovery on the roots (destructibility)

High temperature significantly inhibited the growth of cotton

roots and reduced the root length, root surface area, root volume, and

average root diameter (p<0.05) (Table 2). After high temperature

treatment and the RHT, the root length of HTND decreased by

7.79% relative to that of the control, and its root surface area, root

volume, and average root diameter decreased by 10.10%, 11.21%, and

4.50%, respectively. In contrast, those of HTGX decreased by 8.53%,

10.10%, 17.0%, and 6.54%, respectively.

Under high temperature treatment, the two varieties differed

significantly from the control in terms of specific root length, specific

root surface area, and specific root volume (p<0.05) (Table 2). High
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temperature treatment significantly increased the specific root length,

specific root surface area, and specific root volume (p<0.05).

Compared with those of the control, the specific root length,

specific root surface area, and specific root volume of ND under

high temperature treatment increased by 79.60%, 64.15%, and

78.10%, respectively. In contrast, those of GX increased by 66.11%,

433.42 cm2·g-1, and 5.20 cm3·g-1, respectively.
Effects of high temperature and 7 d
recovery on the dynamics of
root development

After high temperature treatment, the root length, root surface

area, root volume, and average root diameter of cotton all decreased

significantly (p<0.05) (Figure 4). The root lengthofHTNDdecreased

significantly by 27.74% and 35.31% at 5 d and 7 d, respectively, while

that of HTGX decreased by 13.21% and 22.71%, respectively. The

root surface areas of HTND and HTGX decreased by 24.59% and

15.13% at 5 d, respectively, and by 33.68% and 31.68% at 7 d,

respectively. The root volumes of HTND and HTGX decreased by

54.21% and 52.23% at 5 d, respectively, and by 61.90% and 51.95% at

7 d, respectively. The average root diameters of HTND and HTGX

decreased by 18.25% and 13.40% at 5 d, respectively, and by 23.64%

and 21.91% at 7 d, respectively. After the RHT, the root length, root

surface area, root volume, and average root diameter all tended

to increase.
Effects of high temperature and 7 d
recovery on the root growth rate and
root length density

The changes in rates of root growth of two cotton varieties during

treatment and 7 d after RHT were observed (Figure 5A). At 1d and

3 d, there was no change in the rate of root growth of HTND or
TABLE 1 Plant biomass and R/S ratio under normal and high temperatures.

Parameters ND GX

CK HT CK HT

Shoot fresh weight(g) 13.51 ± 1.74ab 10.25 ± 1.92c 15.39 ± 0.86a 11.37 ± 1.65bc

Root fresh weight(g) 9.82 ± 2.47ab 9.08 ± 0.68b 9.87 ± 1.22a 9.26 ± 0.69ab

Total fresh weight(g) 23.33 ± 3.78ab 19.34 ± 2.42b 25.26 ± 2.05a 20.64 ± 2.16ab

Shoot dry weight(g) 4.02 ± 0.21ab 3.10 ± 0.89b 1.50 ± 0.72a 3.31 ± 0.64ab

Root dry weight(g) 2.13 ± 0.09a 1.17 ± 0.38b 2.24 ± 0.29a 1.40 ± 0.54b

Total dry weight(g) 6.15 ± 0.21ab 4.27 ± 1.26b 6.74 ± 1.00a 4.60 ± 1.71b

R/S 0.53 ± 0.04a 0.37 ± 0.09c 0.50 ± 0.02ab 0.42 ± 0.08bc
Depicted are the means of three replicates ± standard error. Different letters indicate that there are significant differences between different treatments (p < 0.05).
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HTGX relative to the control, and positive growth was observed in

each case. The root growth rates of HTND and HTGX decreased by

-0.018 and -0.004 at 5 d, respectively, and by -0.042 and -0.177 at 7 d,

respectively. After the RHT, the root growth rates of HTND and

HTGX tended to increase. The root growth rates of HTND and

HTGX were 0.04 and 0.324 at 4 d after RHT, respectively, and 0.05

and 0.087 at 7 d, respectively. After high temperature treatment, the

root length densities of ND and GX increased at 1 d, 3 d, and 5 d,

similar to the trend presented by the root length density of the

control. They began to decrease at 6 d of the high temperature

treatment but increased again after the RHT (Figure 5B).
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Effects of high temperature and 7 d
recovery on the proportions of fine roots
and very fine roots

Observation of the cotton roots indicated that most of the

roots< 0.5 mm in diameter (very fine roots). High temperature

increased the proportion of very fine roots. Under control

conditions, the proportion of very fine roots of CKND was

93%–97%, and that of CKGX was 94%–96% (Figures 6A, B). At

1 d of the high temperature treatment, there was little difference

between HTND and the control in the proportion of very fine
TABLE 2 Cotton root parameters of two varieties under normal and high temperatures.

Parameters ND GX

CK HT CK HT

Root length(cm) 7261.34a 6695.93a 7467.85a 6830.63a

Root surface area(cm2) 1389.08ab 1248.85c 1464.05a 1316.34bc

Root volume(cm3) 21.33ab 18.94b 23.06a 19.14b

Specific root length(cm·g-1) 3417.09b 6127.33a 3332.26a 5527.11b

Specific root surface area(cm2·g-1) 653.31b 1157.16a 659.56b 1085.75a

Specific root volume(cm3·g-1) 10.03b 17.85a 10.49b 15.48a

Average root diameter(mm) 0.63a 0.60a 0.66a 0.61a
front
Depicted are the means of three replicates. Different letters indicate that there are significant differences between different treatments (p < 0.05).
A B

DC

FIGURE 4

Changes in the root length (A), root surface area (B), root volume (C), and average root diameter (D) of two cotton varieties under normal
conditions and high temperature and after 7 d recovery.
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roots. At 3 d, the proportion of very fine roots in the total root

length was 98.89%. At 7 d, the proportion of very fine roots

peaked (99.26%). After the RHT, the proportion of very fine

roots did not decrease but remained around 98% (Figure 6C). In

contrast, the proportion of very fine roots of HTGX was basically

consistent with that of the control at 1 d-3 d, increased to 99.67%

at 5 d, and decreased slightly to 97.16% at 7 d. However, after the

RHT, it remained around 99% (Figure 6D). This indicated that,

under high temperature treatment, very fine roots emerged in

large quantities, or there was no increase in root diameter.
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Effects of high temperature on the root
hair length, density, and survival

High temperature significantly inhibited the root hair

density and root hair length of cotton and lowered the survival

of its root hairs. After high temperature treatment, the root hair

densities of ND and GX decreased significantly by 52.53% and

56.25% (p<0.05) relative to those of the control, respectively

(Figure 7A). At 1 d of the high temperature treatment, neither

ND nor GX differed significantly from the control in root hair
A B

FIGURE 5

Changes in the root growth rate (A) and root length density (B) of two cotton varieties under normal conditions and high temperature and after
7 d recovery.
A B

DC

FIGURE 6

Changes in the proportions of fine roots and very fine roots of two cotton varieties under normal conditions and high temperature and after 7 d
recovery (A: CKND; B: CKGX; C: HTND; D: HTGX).
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length. The root hair length of HTND decreased significantly by

84.87%, 93.39%, and 96.62% relative to that of the control at 3 d,

5 d, and 7 d, respectively (p<0.05), while that of GX decreased

significantly by 34.69%, 47.62%, and 74.29% (p<0.05),
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respectively (Figure 7B). Within 7 d after the RHT, the

significant trend to decrease persisted (p<0.05).

The root hair lifespan refers to the time from the emergence

of root hairs to the occurrence of exterior twisting (Figure 8).
A B C

FIGURE 7

Changes in the root hair density (A), average root hair length (B), and root hair survival (C) of two cotton varieties under normal conditions and
high temperature and after 7 d recovery. (A) values are the means of three replicates ± standard error, (B) values are the means of four
replicates ± standard error, n, the number of root hairs used to draw the survival curve; The p -values indicate the statistical significance of the
effect of high temperature stress on the root hair lifespan of cotton. For each trait, bars with the same letter are not significantly different
according to Duncan’s test at a p<0.05 threshold. ns, not significant.
A B

DC

FIGURE 8

Images of the same root region of cotton root hairs under high temperature stress. Scale bar, 500 mm. Images shown are taken on 1d (A), 3d
(B), 5d (C), 7d (D).
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The median lifespans of CKND and HTND were 27 d and

21.5 d, respectively, while those of CKGX and HTGX were 23 d

and 21 d, respectively. High temperature aggravated the

senescence of root hairs and caused the root hair lifespans of

ND and GX to decrease significantly by 7 d and 10 d relative to

those of the control, respectively (p<0.05) (Figure 7C).
PCA and correlation analysis of
cotton traits

As shown in Figure 9, the root hair lifespan significantly

positively correlated with the average root hair length, root hair

density, proportion of fine roots, root volume, root length, root

dry weight, root fresh weight, net photosynthetic rate, and

relative chlorophyll content but significantly negatively

correlated with the specific root length and specific root

surface area. The specific root length significantly positively

correlated with the specific root surface area and specific root

volume but significantly negatively correlated with the plant

height, stem diameter, SPAD, net photosynthetic rate, Fv/Fm,

FPSII, root fresh weight, root dry weight, R/S ratio, root length,

root hair density, average root hair length, and root hair lifespan.

The proportion of very fine roots significantly positively

correlated with the proportion of fine roots. A PCA was

performed on 17 root system indicators in this study

(Figure 10). The rate of contribution of the first two principal
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components was 96.7%. Principal component 1 contributed

88.6%. In particular, the root length, proportion of fine roots,

root hair density, average root hair length, root hair lifespan, and

root dry weight were close to the positive direction of the x-axis,

while the proportion of very fine roots, specific root length, and

specific root surface area were in the negative direction of the x-

axis. Principal component 2 contributed a smaller amount,

accounting for 8.1% of total variation. The root growth rate

substantially contributed to principal component 2.
Discussion

Effects of high temperature on the
morphology and physiology of the
aboveground parts

Abiotic stresses increasingly threaten existing ecological and

agricultural systems across the globe. In reality, most biological

temperature responses increase exponentially with temperature

until they reach a thermal optimum. Plant roots perceive these

stresses in the soil and adapt their architecture accordingly

(Karlova et al., 2021; Moore et al., 2021). Plant growth is a

process of continuous increase in weight and volume. This

process is irreversible, but when exposed to high temperature,

it undergoes a series of physiological and biochemical reactions,

which ultimately lead to slow growth and even the arrest of
FIGURE 9

Pearson correlation matrix between the cotton traits. The level of significance of the correlations is indicated as follows: *p< 0.05; **p< 0.01.
PH, plant height; SD, stem diameter; LA, leaf area; SPAD, spad value; Pn, net photosynthetic rate; Fv/Fm, maximum photochemical efficiency;
FPsII, actual photochemical quantum yield; RFW, root fresh weight; RDW, root dry weight; R/S, root-shoot ratio; RL, root length; RA, root
surface area; RV, root volume; RD, average root diameter; SRL, specific root length; SRSA, specific root surface area; SRV, specific root volume;
RGR, root growth rate; RLD, root length density; VFR, proportion of very fine roots; FR, proportion of fine roots; RHD, root hair density; ARHL,
average root hair length; RHL, root hair lifespan.
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growth until death. Previous research revealed that the plant

height of cotton increased linearly with increasing temperature

(Reddy et al., 2017) and that the leaf area index and the dry

matter accumulation of the aboveground parts peaked at 35°C

but began to decrease after 35°C (Virk et al., 2021). This study

found that a high temperature of 38°C significantly reduced the

plant height, stem diameter, leaf area, and SPAD of ND and GX

(Figure 2). At the early stage of high temperature, the leaf growth

decreased, and at 5 d, some leaves began to fall off, possibly

because the high temperature accelerated leaf senescence,

resulting in leaf abscission. This study also indicated that the

dry and fresh weights of the aboveground parts decreased

significantly after high temperature stress (Table 1), similar to

the response of potato to high temperature (Taranet et al., 2018).

The effect of high temperature on the dry matter accumulation

was related to its effect on the photosynthetic rate. The

photosynthetic rate of cotton decreased sharply at 35°C (Zahid

et al., 2016; Moore et al., 2021). This study also discovered that

high temperature reduced the photosynthetic rate (Figure 3A).

This changing trend highly correlated with that of Fv/Fm, i.e.,

with the extension of high temperature duration, Fv/Fm and

FPSII began to gradually decrease until the last day of stress

(Figures 3B, C). This is consistent with the responses of other

crops to high temperature stress. For example, the Fv/Fm and

FPSII of melon (Weng et al., 2022) and soybean (Jumrani et al.,

2017) are seriously inhibited and rapidly decreased under high

temperature stress. After the RHT, the net photosynthetic rate
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and Fv/Fm both tended to increase. After 7 d of recovery, the Fv/

Fm recovered to a normal level, and no irreversible damage was

caused to the aboveground parts of cotton. Therefore, in this

study, the response of aboveground parts to high temperature

(HT) treatment (38°C day and 32°C night) showed obvious

phenotypic and physiological characteristics of high

temperature stress.
Effect of high temperature on
root development

An increase in temperature is beneficial to the root growth of

plants within a suitable range, but it affects root development

once beyond this range (Fonseca de Lima et al., 2021; Snider

et al., 2022). A major function of roots is to absorb water and

nutrients. However, high temperature stress weakens this

function, thus, reducing the transportation of water and

nutrients to the aboveground parts and further inhibiting

plant growth and changing root architecture (Giri et al., 2017;

Calleja-Cabrera et al., 2020; Tiwari et al., 2022). Studies on wheat

have pointed out that high temperature stress reduces the root

dry weight, root length, and R/S ratio; increases the specific root

length, specific root surface area, and specific root volume; and

decreases the number of roots (Benlloch-Gonzalez et al., 2014).

A study on high temperature stress in cotton suggests that high

temperature reduces the root surface area, root length, root
FIGURE 10

Principal component analysis of 17 root system indicators (abbreviated as in Figure 9).
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volume, and average root diameter (Reddy et al., 2017). This

study showed that the specific root length significantly positively

correlated with the specific root surface area and specific root

volume (Figure 9), after high temperature stress, the specific root

length, specific root surface area, and specific root volume of

cotton increased significantly, which was consistent with the

results of studies on wheat (Tahir et al., 2008; Benlloch-Gonzalez

et al., 2014). In contrast, the root length, root surface area, and

root volume decreased significantly, suggesting that high

temperature inhibited root growth (Table 2).

In this study, the root length was significantly and positively

correlated with root surface area and root volume (Figure 9).

This was possibly because high temperature inhibited the

synthesis of endogenous hormones, such as brassinolide and

auxin, in roots. At elevated temperatures, the root system also

elongates to protect the meristem (Martins et al., 2017), while

increasing the number of roots and decreasing the length of

lateral roots (Alsajri et al., 2019). Root branching strength and

average root diameter were highly sensitive to high temperature,

which significantly increased the root branching strength, and

the average root diameter decreased due to the increase in

branching strength (Nagel et al., 2009). This could possibly

occur because high temperature accelerates the division of root

meristems and accelerates the development of lateral root

primordia (Otsuka and Sugiyama, 2012). When the average

root diameter decreases, it may change the acquisition of root

nutrients and affect root development (Luo et al., 2020), thus,

increasing root branching and distribution to adapt to abiotic

stresses, such as high temperature (Zahid et al., 2016). Studies on

grape lupine and sorghum found that high temperature inhibits

root growth, changes the R/S ratio, and affects the root

architecture (Pardales et al., 1992; Ribeiro et al., 2014;

Mahmud et al., 2019; Gavelienė et al., 2022). This study clearly

found that high temperature treatment significantly reduced the

growth rate of roots by relying on the in situ root observation

system RhizoPot (Figure 5A) and that the root growth was

arrested at 4 d of the high temperature treatment but recovered

at 2 d after the RHT.
Reduction in root hair density, length,
and lifespan by high temperature

A root hair is a top-closed tubular structure with epidermal

cells that protrude outwards. Root hairs are closely fitted with

soil, which greatly increases the root surface area and improves

the efficiency of water and nutrient absorption (Peterson and

Farquhar, 1996; Raven and Edwards, 2001). Root hairs consume

little energy when absorbing nutrients from soil (Nestler and

Wissuwa, 2016; Wang et al., 2021), and the growth and

development of root hairs play a vital role in alleviating abiotic

stresses, such as high temperature and drought (López-Bucio

et al., 2003). Root hairs have a short lifespan of about 10 to 20 d,
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and their senescence is manifested as a death state of twisting

and rotation (Hendrick and Pregitzer, 1992; Xiao et al., 2020;

Zhu et al., 2022). The RhizoPot platform introduced in this study

clearly displayed the whole process of root hairs from emergence

to the state of twisting and rotation, which offers support for

studies on the root hair phenotypes and lifespan of cotton under

high temperature stress. This study found that root hair

longevity is significantly and positively correlated with the

mean root hair length and root hair density (Figure 9) after

high temperature stress significantly reduced the root hair

density of cotton (Figure 7A) and shortened its average root

hair length (Figure 7B). The lifespan of root hairs was

significantly reduced, and most of the root hairs twisted and

died at the end of 7 d continuous high temperature treatment

(Figure 7C). This result indicated that root hairs are highly

sensitive to high temperature stress. However, this result was

different from previous research that showed that root hair

density and length both tend to increase under drought stress

and low N and P stress (Xiao et al., 2020; Zhang et al., 2021; Zhu

et al., 2022). This was probably because high temperature stress

enhanced the cell membrane permeability of roots and raised

their levels of reactive oxygen species, thus, inhibiting the

development of root hairs (Kim et al., 2021). Further research

is merited to identify the specific cause.
Conclusion

This study used a RhizoPot platform to investigate the

dynamic traits of the root phenotypes of cotton under high

temperature. When cotton was subjected to high temperature

stress, its roots responded first. High temperature stress reduced

the root length, root surface area, root volume, average root

diameter, root growth rate, and root length density of cotton.

The specific root length, root surface area, and root volume

increased significantly, while the proportion of fine roots

presented an opposite trend. After the removal of high

temperature, the root length, average root diameter, and root

growth rate all rejuvenated somewhat. The root hairs were more

sensitive to high temperature stress, which shortened their

lifespan and reduced the density and average length of root

hairs. Cotton mainly adapts to high temperature stress by

increasing the proportion of very fine roots, specific root

length, and specific root surface area, which shortens the

lifespan of root hairs.
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