
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Xiaohui Yuan,
Wuhan University of Technology,
China

REVIEWED BY

Honglian Ye,
University of California, Davis,
United States
Jingna Si,
Beijing Forestry University, China

*CORRESPONDENCE

Cundong Li
auhlcd@163.com
Hezhong Dong
donghezhong@163.com
Liantao Liu
liultday@126.com

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal
Frontiers in Plant Science

RECEIVED 30 July 2022

ACCEPTED 06 September 2022
PUBLISHED 18 October 2022

CITATION

Guo C, Liu L, Sun H, Wang N, Zhang K,
Zhang Y, Zhu J, Li A, Bai Z, Liu X,
Dong H and Li C (2022) Predicting
Fv/Fm and evaluating cotton
drought tolerance using
hyperspectral and 1D-CNN.
Front. Plant Sci. 13:1007150.
doi: 10.3389/fpls.2022.1007150

COPYRIGHT

© 2022 Guo, Liu, Sun, Wang, Zhang,
Zhang, Zhu, Li, Bai, Liu, Dong and Li.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 18 October 2022

DOI 10.3389/fpls.2022.1007150
Predicting Fv/Fm and evaluating
cotton drought tolerance using
hyperspectral and 1D-CNN
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Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University,
Baoding, China, 2College of Mechanical and Electrical Engineering, Hebei Agricultural University,
Baoding, Hebei, China, 3Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and
Forestry Sciences, Shijiazhuang, China, 4Cotton Research Center, Shandong Key Lab for Cotton
Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, China
The chlorophyll fluorescence parameter Fv/Fm is significant in abiotic plant

stress. Current acquisition methods must deal with the dark adaptation of

plants, which cannot achieve rapid, real-time, and high-throughput

measurements. However, increased inputs on different genotypes based on

hyperspectral model recognition verified its capabilities of handling large and

variable samples. Fv/Fm is a drought tolerance index reflecting the best drought

tolerant cotton genotype. Therefore, Fv/Fm hyperspectral prediction of

different cotton varieties, and drought tolerance evaluation, are worth

exploring. In this study, 80 cotton varieties were studied. The hyperspectral

cotton data were obtained during the flowering, boll setting, and boll opening

stages under normal and drought stress conditions. Next, One-dimensional

convolutional neural networks (1D-CNN), Categorical Boosting (CatBoost),

Light Gradient Boosting Machines (LightBGM), eXtreme Gradient Boosting

(XGBoost), Decision Trees (DT), Random Forests (RF), Gradient elevation

decision trees (GBDT), Adaptive Boosting (AdaBoost), Extra Trees (ET), and K-

Nearest Neighbors (KNN) were modeled with Fv/Fm. The Savitzky-Golay + 1D-

CNN model had the best robustness and accuracy (RMSE = 0.016, MAE =

0.009, MAPE = 0.011). In addition, the Fv/Fm prediction drought tolerance

coefficient and the manually measured drought tolerance coefficient were

similar. Therefore, cotton varieties with different drought tolerance degrees

can be monitored using hyperspectral full band technology to establish a 1D-

CNN model. This technique is non-destructive, fast and accurate in assessing

the drought status of cotton, which promotes smart-scale agriculture.

KEYWORDS

chlorophyll fluorescence parameter Fv/Fm, high-throughput measurement, cotton,
drought tolerance, hyperspectral, one-dimensional convolutional neural network
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Introduction

Cotton (Gossypium hirsutum L.) is an important cash crop

cultivated globally. Drought is major abiotic stress (Cruz de

Carvalho, 2008), whose high frequency reduces the average

productivity of major crops by up to 50% globally (Lamaoui

et al., 2018). According to the World Food and Agriculture

Organization, global food output losses caused by drought during

the past decade amount to USD 30 billion (Zhang et al., 2021a).

Cultivating drought-resistant varieties is not only important for

resistance against frequent droughts but also an important current

breeding goal. Drought-resistant varieties strongly tolerate drought,

with moderate drought stress stabilizing the yields (Wang

et al., 2018).

Breeding and screening drought-resistant varieties are usually

complex and time-consuming since it depends solely on breeder

expertise. Many relevant reports of the classification methods for

different genotypes also exist, which mostly focus on fluorescence

scanning, protein electrophoresis, deoxyribonucleic acid (DNA)

molecular markers (Zhang et al., 2012), the determination of

relative water content, net photosynthesis, stomatal conductance

electron transfer rate, photochemical quenching, chlorophyll a/b

ratio, plant height, and leaf area (Zou et al., 2020). The high-

throughput method has gradually become an important technique

for selecting drought-resistant varieties from numerous varieties.

Drought significantly decreases the leaf water potential, followed

by partial leaf stomatal closure, increased leaf temperature, and

reduced photosynthetic efficiency (Najafi et al., 2007; Ahmed et al.,

2013). Chlorophyll fluorescence kinetic parameters reflect leaf

light energy absorption, transformation, transmission, and

distribution characteristics (Hikosaka and Tsujimoto, 2021). The

maximum photochemical quantum yield (Fv/Fm) in the

chlorophyll fluorescence kinetic parameters represents the

maximum light energy conversion efficiency in the photosystem

II complex (PSII) reaction center. Thus, drought tolerance

indicators have subsequently been developed to evaluate the

drought adaptability of different plant genotypes. Fv/Fm
positively correlates with drought degree (Zou et al., 2020).

Therefore, Fv/Fm provides valuable information for evaluating

plant physiological changes under drought stress (Lang et al.,

2018), hence an efficient drought tolerance index in selecting the

best drought tolerant cotton genotype. Measuring the crop

drought Fv/Fm is feasible. However, it requires manual

measurements and analysis, a 20–30 min plant adaptation

period in the dark, which has low efficiency and requires a

heavy workload; hence cannot meet plant phenotype analysis

needs, such as high flux, automation, and real-time measurement.

Therefore, high-throughput evaluation for screening drought-

resistant cotton varieties by Fv/Fm warrants further studies.

Rapid and efficient methods for screening cotton varieties must

be developed by combining high-throughput phenotype methods

and drought-resistant variety screening (Shakoor et al., 2017; Feng

et al., 2019). This study focused on an accurate and robust
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prediction of drought-resistant varieties among different cotton

genotypes, from small to large spatial scales.

Hyperspectral remote sensing performs fast, non-destructive,

and economical data collection. Compared to conventional remote

sensing, it produces a large amount of spectral information and has

a high resolution and strong spectral continuity. It determines the

optimal wave width and effective band from large hyperspectral

datasets to obtain the best inversion effect (Yao et al., 2013). In

addition, it comprehensively and accurately reflects the inherent

spectral characteristics and differences between plants. Compared to

the traditional identification method, this technology shortens the

analysis time and reduces the material crop consumption, such as

wheat (Mahesh et al., 2008; Choudhary et al., 2009), rice (Wang

et al., 2015), cotton (Carreiro Soares et al., 2016), and grape (Zhao

et al., 2018). Using hyperspectral data to monitor plant growth and

development is based on plant spectral characteristics. Based on the

spectral reflectance in different wavelength ranges, the spectral

index provides a high crop parameter inversion accuracy. The

vegetation color, cell structure, and water content determine most

plant spectral characteristics. Thus, its successful application

depends on a full understanding of the interaction between light

and plant matter from the cellular to the canopy scale, the

interpretation of reflectance data from different sources and

related leaf spectral diversity. However, elucidating the interaction

between drought and chlorophyll structural characteristics, cell

structures, water, visible light, and near-infrared and short-wave

infrared regions is a major challenge due to the inability to separate

Fv/Fm from a series of other traits.

Large data volumes and the diversity of analysis methods for

hyperspectral data often lead to large data problems

(Montesinos-López et al., 2017); hence, advanced algorithms

are required for parsing to generate physiological parameters

evaluation models. With rapid agricultural artificial intelligence

developments (Lu et al., 2017), excellent feature extraction and

data inference abilities, and deep learning (DL) algorithms have

attracted attention in constructing crop parameter inversion

models combined with hyperspectral data (Shah et al., 2019).

Machine learning (ML) methods, such as CatBoost, LightGBM,

XGBoost, decision trees, Random Forests (RF), Gradient lifting

trees (GBDT), adaboost, ExtraTrees, and K-Nearest Neighbor

(KNN), are promising for extracting spectral features related to

drought resistance by converting original data into new features

(Khan et al., 2020). ML usually performs well on a sample-

specific basis but loses generalizability when implemented on

new data sets with different feature spaces and distributions of

different plant species and growth conditions. DL is a new

machine learning research field. It was developed to establish

and simulate human brain neural networks for analytical

learning, and simulates the mechanism of data interpretation

in the brain. Thus, it is an unsupervised learning method (Durai

and Shamili, 2022; Khan et al., 2022). It derives from artificial

neural network research, and its multi-layered perceptron, with

multiple hidden layers, which differs from machine learning.
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Unlike machine learning, DL has the input, hidden, output

layers, and an accepting layer. One-dimensional convolutional

neural networks (1D-CNN) are one of the most effective and

popular deep learning models. It has the advantage of high

recognition accuracy (Ghosal et al., 2018) and provides more

general and robust leaf biochemical character retrieval. The

network framework includes a convolution, pooling, and full

connection layer used for feature extraction, compression, and

classification, respectively. Convolutional Neural Networks

(CNN) are used in many fields, such as weed and pest

identification (Ding and Taylor, 2016), plant disease and stress

diagnosis (Ghosal et al., 2018), and agricultural image

segmentation (Xiong et al., 2017). Therefore, 1D-CNN has a

good developmental history and an advantage in physiological

parameter evaluation.

Many studies have used hyperspectral models to analyze and

screen crop varieties. For example, Miao et al. (2018) introduced

the t-SNEmodel, pretreated by Procrustes analysis (PA), into the

field of hyperspectral imaging (HSI) to classify 800 grains of

eight waxy maize varieties. Yu et al. (2021) combined DL and

neural networks to classify 18 okra varieties. However, in most

studies, the prediction results are based on the spectral

information of a single growth stage. Combining the data of

each growth stage achieves a higher prediction accuracy. As far

as we know, research on screening drought resistant cotton

varieties based on hyperspectral reflectance and deep learning at

various growth stages has not yet been reported. Therefore, a

1D-CNN regression model with reflectance and Fv/Fm is crucial

to screen drought resistant varieties among the different

cotton genotypes.

In this study, we aimed to explore the feasibility of Fv/Fm
based on 1D-CNN fitting to evaluate drought resistance among

cotton genotypes by screening drought-resistant cotton varieties

using hyperspectral and deep learning. The Fv/Fm and spectral

reflectance of 80 cotton genotypes were measured at the

flowering, boll setting, and boll opening stages under drought

stress. We hypothesized that deep learning with strong

interpretation and stability could be used to interpret the

specific spectral responses of drought-resistant cotton

genotypes, mainly the leaf reflectance in different genotype

diversity and environmental change datasets. The specific

objectives were: (1) To compare and analyze the full spectral

data and the Successive Projections Algorithm (SPA) dimension

reduction data; (2) To compare 1D-CNN with Categorical

Boosting (CatBoost), Light Gradient Boosting Machine

(LightBGM), XGBoost, DT, RF, Gradient elevation decision

trees (GBDT), Adaptive Boosting (AdaBoost), Extra Trees

(ET), and K-Nearest Neighbors (KNN); (3) To determine

whether Fv/Fm prediction is feasible for screening cotton

drought resistant varieties through cluster analysis. Based on

Savitzky-Golay (S-G) and 1D-CNN model coupling, an Fv/Fm
evaluation model was created, and a model update strategy was

proposed to improve accuracy and robustness.
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Materials and methods

Plant materials

Eighty cotton cultivars widely cultivated in the Yellow River

Basin and the lower reaches of the Yangtze River across different

timelines were analyzed in this study, as shown in

Supplementary Table 1.
Experimental design and treatments

The experiment was conducted in a cotton field at Qingyuan

experimental station of Hebei Agricultural University (38.85° N,

115.30° E, Baoding City, Hebei, China) from April to October 2021.

The site information (Qingyuan Experiment Station) is presented in

Figure 1. The study location has a temperate continental monsoon

climate, with an average annual average temperature of 13°C and

2700 sunshine hours. The annual average precipitation is 532 mm,

with about 60% of the precipitation from July to August. The

experiment was laid out in a randomized complete block design

(Supplementary Figure 1). The experiment had two drought stress

levels based on the soil relative water contents (SRWC), including

CK (well-watered, 75 ± 5% SRWC serving as the control) and DS

(drought stress with 45 ± 5% SRWC) (Gao et al., 2020; Xiao et al.,

2020). There were 160 plots per treatment replicated three times

totalling 480 plots. The SRWC was monitored by time domain

reflectometry (TDR, TRIMETDR series soil moisturemeter, IIMKO

Company, German) and then watered tomaintain the SRWCwithin

the appropriate ranges using micro-sprinkler irrigation.

Selected cotton seeds were sown on 24 April 2021. Four to

five seeds were manually sown per hill using the hill-dropping

seeding method, with a planting density of 5 plants m-2 and a

row spacing of 48 cm. Next, mulching was done with a plastic

film along the rows. The seedlings were thinned to one vigorous

stand per hill upon germination at the two true-leaf stages

(Zhang et al., 2021c). Drought stress treatment was induced at

the third true-leaf stage. Each plot received 450 kg ha-1 of

compound fertilizer containing 15% N, 15% P2O5 and 15%

K2O as base fertilizer, and 150 kg ha-1 urea (46% N) was top-

dressed at flowering. In addition, pest control, weed control,

chemical control, and plant pruning were performed according

to local agronomic practices. The soil texture based on the

USDA soil classification standards of the tested soil at different

soil layers in the cotton field is shown in Supplementary Table 2.

An electrically powered rain-out shelter was used to protect

the plants against receiving precipitation. A rain sensor

automatically controlled the rain-out shelter switch. The

shelter closed automatically in the event of rain and opened as

soon as the rain stopped. Thus, as described previously, any

possible interference of natural precipitation with the

waterlogging experiment was avoided.
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Determination of indices and methods

Leaf hyperspectral, Fv/Fm, RWC and LWCwere measured on 6

July 2021 (flowering stage), 14 August 2021 (boll setting stage), and

17 September 2021 (boll opening stage). Three representative plants

were randomly selected from each plot. The specific determination

of indices and methods was as follows:
Hyperspectral data collection

Based on the HR-1024i spectrometer (SVC, USA), the

instrument blade clamp light source was used to measure the leaf

surface reflection spectrum. The spectrometer had a measurement

range of 350–2500 nm and a total of 1024 channels. The spectral

resolution was 3 nm, and the sampling interval was 0.6 nm. To

ensure a full spectrometer probe view field on leaf samples under

the sun, the spectrometer sensor probe was vertically oriented

downward, about 0.7 m from the cotton canopy top, and the

field angle was set at 25 degrees. White board correction was carried

out before each measurement to reduce error. The measurements

were carried out in sunny, cloudless, windless, or low wind speed

weather, between 10:00 am and 2:00 pm. Three representative,

uniform, and pest-free plants were selected from each test plot to

measure the reflection spectrum of the top four and fully developed

leaves after topping. Before each measurement, the dust on top of

the cotton leaves was wiped off to ensure the leaf surfaces were kept

clean. Four sample points per leaf were selected, and their average

was used as the leaf reflection spectrum. Measurements were taken

once per month for three consecutive months. After field spectrum

measurements, the top leaf for each plant was marked on its

underside and labelled with a serial number for subsequent Fv/Fm
measurements to ensure consistency. The detailed determination

method and leaf selection are presented in Supplementary Figure 2.
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Chlorophyll fluorescence content

A portable FMS-2 fluorometer (Hansatech, King’s Lynn,

UK) was used to measure the chlorophyll fluorescence

characteristic parameter Fv/Fm for newly developed, inverted

leaves. Leaf initial (Fo) and maximum fluorescence (FM) were

measured from 0:00 am to 2:00 am. The maximum

photochemical quantum yield was then calculated as Fv/Fm =

(Fm-Fo)/Fm (Bilger and Björkman, 1990).
Root water contents and leaf
water contents

Three plants were selected and uprooted from each plot.

Next, their roots and shoots were separated, and the fresh

weights were determined. The roots and shoots were then

dried 80°C to a constant weight to determine the dry weights.

Finally, the water content was calculated as follows:

Water content ð% )

=
Fresh weight − Dry weight

Fresh weight
� 100 (1)
Calculation of drought
resistance coefficient

The average Fv/Fm was measured to calculate the drought

tolerance coefficient as described by Mwadzingeni et al., 2016.

Drought tolerance coefficient of Fv=Fm ð% )

=
Average value of Fv=Fm DS
Average value of Fv=Fm CK

(2)
FIGURE 1

A sampling plot in Qingyuan District, Baoding, Hebei province. The red dot represents the sampling point.
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Fv/Fm is the maximum photochemical quantum yield, CK is

the normal conditions, DS indicates drought stress.
Spectral pretreatment and characteristic
wavelength screening

Extraction, reflectance, and
spectral pretreatment

The first step was to superimpose and match all spectral

curves. In the second step, S-G first-order smoothing was used to

eliminate spectral noise and reduce the influence of

environmental background interference due to the spectral

mutation of the instrument (del Amor et al., 2020). The third

step was to remove the file header from the processed data,

generate raw data, and save it as a TXT text file. The fourth step

was calculating the averages of spectral data and generating

spectral data for each ground object type. The fifth step was to

interpolate the obtained data because the whiteboard reflectance

band did not match the spectral band of each ground object type.

The final step was to select the fourth data column (percentage)

in the file and multiply the whiteboard reflectance according to

the reflectance formula described by Zhao et al., 2022. This test

adopted the vertical measurement method using the following

formula:

Rt =
L
Lr

Rr (3)

Rt is the reflectivity of the measured object, Rr is the

reflectivity of the standard version, L is the measured value of

the measuring object, Lr is the standard value of the instrument.

SPA filter characteristic wavelength
A total of 1440 data groups were recorded. The SVC HR

(overlay) software was used to extract the wavelength and

reflectivity of each sample, and MATLAB was used to perform

SPA on all spectra data to extract the characteristic wavelengths.

Relevant source code can be found online https://blog.csdn.net/

weixin_43637490/article/details/118468559.
Model development

One dimensional convolutional neural
network (1D-CNN)

1D-CNN modeling was used to screen the spectral

information of cotton drought-resistant genotypes. The main

reasons were as follows: (1) the CNN network analyzed one-

dimensional data (leaf spectral information) well. (2) It was able

to advance the nonlinear mode from the data. (3) It allowed

hierarchical spectral data processing to support feature

abstraction and extraction. CNN is one of the best algorithms

in deep learning, which can be divided into one-, two-, and
Frontiers in Plant Science 05
three-dimensional. 1D-CNN is a classical deep neural network

with high robustness, similar to 2D, with a local connection and

weight-sharing characteristics. 1D-CNN was selected to adapt to

the nature of spectral data (that is, the spectral reflectance had a

one-dimensional data structure) to allow the convolution

operation to extract the learning features of patterns. A

convolutional neural network is usually used for image

recognition, target detection, and classification (Fukushima,

1980). 1D-CNN also performs well in time series prediction

and data fitting. In contrast, 2D-CNN is mainly used for image

and text recognition, and 3D-CNN is for video recognition and

medical applications. Due to its unique structure, CNN

processes network structure data characteristics well, effectively

solving the data processing difficulties caused by other factors

(Liang et al., 2020). The hierarchy proposed in this study

includes an input layer, multiple hidden layers (convolution,

activation, and pooling layer), and the composition of a full

connection (dense) and output layer (Figure 2) (Zhang

et al., 2021b):

The convolution layer functions to extract input data

features. Different convolution kernels are equivalent to

different feature extractors. The main feature is the use of

weight sharing and local connections. The operation of one-

dimensional convolution is shown in formula (3):

yi = f (Sik
ij
*x

i + bj) (4)

where * represents convolution operation, yi is the ith output

characteristic diagram, xi is the ith input characteristic diagram,

kij is the convolution kernel used in the layer convolution

calculation, and bj is the offset of the jth characteristic diagram.

For the nonlinear transformation of features extracted from

CNN and dense layers, the output of these layers and extracted

features were activated using the corrected linear unit (ReLU)

function (Cui and Fearn, 2018) (formula (4). The nonlinear

activation function ReLU has a low computational cost and fast

convergence speed. Its formula is:

R(x) = max(0, x)if
x < 0;R(x) = 0

x ≥ 0;R(x) = x

(
(5)

where x is the feature of CNN or dense layer calculation.

The pooling layer was abstracted as statistical information

extraction to reduce dimensionality and minimize array

dimension based on maintaining the original characteristics.

The convolution layer significantly reduces the number of

network connections. Adding a pooling layer after a

convolution layer avoids overfitting to a certain extent. The

pooling layer effectively reduces the number of neurons, making

the network invariant to small local morphological changes,

which creates a larger receptive field. Two types of common

pooling functions are recognized: maximum pooling (taking the

maximum value of all neurons in a region) and average pooling

(taking the average value of all neurons in a region), expressed as
frontiersin.org
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in formula (5) and (6), respectively:

pl = max½al� (6)

pl =
1
koal (7)

where p is the characteristic matrix obtained by pooling, l is the

characteristic graph width, and a is the characteristic matrix after

convolution layer activation. The maximum and average pooling

values calculate the maximum and average values in the adjacent

rectangular area, respectively, and location-independent

information can be obtained through the maximum pooling value.

The full connection layer is similar to the relationship between

one layer and the next layer in the feed-forward network, in which

each node of the upper layer and the nodes of the next layer have a

weight connection. It is mainly used to complete the final
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prediction. Each output neuron of the full connection layer is

connected to the neuron in the upper layer, and the input

characteristics are combined after the activation function is used

to output the prediction results. For the prediction problem, the

output layer gives the probability value of the prediction category.

Its output is given by formula (7):

di = f (wipi + bi) (8)

where i = 1, 2, and k; d is the ith output, with a total of K

outputs; wi and bi are the weights and thresholds of the ith

neuron, respectively; and f (x) is the activation function.

In this study, a vector that extracted 1024 spectral features

was constructed as the input layer, the Fv/Fm prediction value

was used as the output layer (usually, the input vector length is

larger than the convolution kernel length), and the hidden layer

included 1D-CNN with five convolution layers and two pooling
FIGURE 2

Flow chart illustrating 1D-CNN data processing. The training set accounts for 75% and the test set 25%. A matrix was created with 72 rows, 1024
columns, and a dimension added to the training set channel. Another matrix was created with nine rows, 1024 columns, one channel number,
zero elements, and a dimension was added to the test set channel. Finally, an empty deep learning model named “model” was defined. Next,
five one-dimensional convolution layers were added (corresponding to five ReLU activation functions), including 16 convolution cores
measuring 3 x 3 and a step length of one. The first maximum pool layer was added, and the pool core size was 2 x 2, and the step distance was
two. The first global average pooling layer was then added, yielding the first full connection layer; the output size was (batch, 1). The RMSProp
optimizer was then defined with a learning rate of 0.001, the gradient decay rate of 0.9, the fuzzy factor was zero, and the learning rate decay
rate was zero. The MAE loss function and RMSProp optimizer were then used. The framework of the in-depth learning model was integrated,
and data was transferred to the defined model by training 5000 epochs; the amount of data in each batch was 5. Finally, the table was given a
title, and the image displayed. The test code is the same as the above training code.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1007150
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2022.1007150
layers (Figure 2). The spectral data was convoluted, and the

convolution filter (also known as the kernel) was used to extract

the feature map. The scaler variable was used to accept the entire

data normalization process for the following anti-normalization.

Data were subsequently normalized in Excel by subtracting the

mean and dividing by the variance.

The number of hidden layers, the number of feature maps in

each layer, the CNN kernel size, the pool and step size, and the

regularization parameters are all adjustable and were optimized by

experience to obtain the best value. The optimized architecture

specification is presented in Figure 2. Additionally, the proposed

architecture was developed as a common architecture for multiple

scenarios and case studies (multiple independent data sets), while

the existing architecture was evaluated separately on a single data

set. The training data set in the CNN model developmental stage

was randomly divided into two sub-datasets, calibrated and

validated. During feed-forward and backpropagation, these

batches were sequentially fed into the network. Once all batches

were entered into the model (training era), the validation data set

was used to evaluate model efficiency and accuracy on unknown

samples. The model was trained on 6 July 2021 (flowering stage), 14

August 2021 (boll setting stage), and 17 September 2021

(boll opening stage) to ensure sample calibration and

verification convergence.
Machine learning models

For a more comprehensive model performance and accuracy

comparison, nine machine learning algorithms, including

CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET

and KNN, were used for modeling and comparative analysis

using 1D-CNN.

CatBoost is a decision tree-based model consisting of an open

source software library developed by Hancock (2020) with

categorical features in a special way. LightGBM is a distributed

gradient boosting framework based on a decision tree algorithm,

which supports single-machine multi-threading and multi-machine

parallel computing, to quickly process massive data (Meng et al.,

2016). XGBoost is an additive model that optimizes only the sub-

model in the current step in each iteration (Chen and Guestrin,

2016). DT is a non-parametric supervised learning tool with a tree

structure composed of four elements: decision nodes, program

branches, state nodes, and probability branches (Sarker et al.,

2020). RF is a typical bagging algorithm in ensemble learning

(Breiman, 2001), that randomizes the use of variables (columns)

and data (rows) to generate many classification trees and then

summarizes the results of the classification trees. GBDT was

developed by Friedman (2001), and builds on each tree, learning

the residual (negative gradient) of the sum of all previous tree

conclusions (Kriegler and Berk, 2010). AdaBoost is an algorithm for

constructing strong classifiers as a linear combination of simple

weak classifiers (Freund and Schapire, 1997; Wang et al., 2022). ET
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is directly divided using random features and random thresholds on

random features (Geurts et al., 2006; Ahmad et al., 2018). KNN was

proposed by Cover and Hart (1967) and is not limited to a fixed

number of parameters (Guo et al., 2003).
Model evaluation

To evaluate model performance, leaf samples from each data

set were sorted, and 75% of the samples were used as the training

data set and the remaining 25% as the test data set. In deep

learning, the loss function is used to find errors or deviations in

the learning process. However, the loss function uses the same

metrics as the training process, which differs in value, to evaluate

the performance of the generated model to ensure species

fairness in the training and testing data sets (Burnett et al.,

2021). Therefore optimization is a key step in comparing

prediction and loss functions to optimize input weights.

During model training, full-spectrum data is used as input,

and model accuracy and loss are recorded simultaneously. The

network parameters are fine-tuned based on the results.

Therefore, the determination coefficient (R2), Root Mean

Square Error (RMSE), Mean Absolute Percentage Error

(MAPE) and Mean Absolute Error (MAE) are selected to

accurately evaluate test results (Ibrahim et al., 2021).

Set the predicted value to: ŷ = fŷ1, ŷ2, · · ·ŷng And the true

value to y = {y1, y2,· ··, yn}.R
2 is the determination coefficient. The

higher the model R2, the higher the accuracy, and the better the

fitting effect. The formula is as follows:

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

,∈ ½1, 0� (9)

RMSE is the root mean square error, the difference between

the predicted and actual values. The smaller the model RMSE

value, the better the model prediction. The calculation formula is

as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − ŷ i)

2,∈ ½0, +∞)

r
(10)

MAPE is the mean absolute percentage error; a statistical

index used to measure prediction model accuracy. The smaller

the model MAPE value, the higher the prediction model

accuracy. The calculation formula is as follows:

MAPE =
100%
n on

i=1
ŷ i − yi
yi

����
���� (11)

MAE is the mean absolute error, which is the average of the

absolute error between the real and predicted values. It

accurately reflects the predicted error value. The larger the

model MAE value, the greater the error, indicating a lower

prediction model accuracy. The calculation formula is as follows:
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MAE =
1
no

n
i=1jyi − ŷ ij (12)

where n is the number of samples, yi is the true values of

cotton PH or AGB, ŷ i is the predicted values of cotton PH or

AGB, and �yi is the average of the PH or AGB true values.
Results

Effects of drought stress on Fv/Fm in
cotton leaves

Generally, when comparing drought stress effects on Fv/Fm
(Figure 3), statistical differences were observed among the

flowering, boll setting, and boll opening stages (p ≤ 0.05). The

DS and CK were initially increased and then decreased in the

three cotton growth stages. DS treatment significantly reduced

Fv/Fm (P< 0.05), by 2%, 12%, and 3% across the three

stages, respectively.
Correlation between Fv/Fm and RWC,
and LWC

Correlation analysis between Fv/Fm and RWC, and LWC is

illustrated in Figure 4. The results revealed a significant positive

correlation between Fv/Fm and RWC, and LWC under DS

(Figure 4B) and CK (Figure 4A). Thus, Fv/Fm significantly

positively correlated with drought resistance in cotton. Fv/Fm was

further used as the input in the model to evaluate the drought

resistance of cotton.
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Preprocessing of hyperspectral data

The spectrum was pretreated to reduce the influence of the

external environment, the dark current of the spectrometer and to

eliminate baseline drift, light scattering, and spectrum noise. The

Savitzky-Golay technology was applied to preprocess the

hyperspectral data, eliminating spectral differences (filtering noise

and smoothing waveforms) caused by different scattering levels and

enhancing spectral and data correlation. The spectral band peaks

and valleys were obvious, overlapping peak interference was

avoided, and spectral resolution and sensitivity were improved

through Savitzky-Golay pretreatment (Figure 5).
Changes in the cotton canopy
reflectance spectrum under
different conditions

The cotton canopy spectral reflectance was measured at the

flowering (Figures 6A), boll setting (Figures 6B), and boll

opening stages (Figures 6C), respectively. The trends for the

different varieties at different growth stages were similar, and the

differences were obvious under different soil water conditions

(Figure 6). In the visible light region (350–750 nm), there were

two absorption valleys (370–510 and 600–710 nm) and

reflection peaks (520–580 nm). The canopy spectral reflectance

increased with drought stress, especially at the “green peak”. The

higher the soil water content, the better the plant growth, the

larger the leaf area index, the higher the chlorophyll content, the

stronger the absorption of blue and red light, and the deeper the

red valley, leading to an obvious green peak. The opposite
FIGURE 3

Effects of drought stress on Fv/Fm at the flowering, boll setting, and boll opening stages. CK, normal conditions; DS, drought stress. * and **
indicate significance at the 0.05 and 0.01 probability levels, respectively.
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scenario leads to a shallower red valley and, thus, a gentler and

less obvious curve at the green peak. However, a reflection

platform (760–1250 nm) occurred in the near-infrared region

(750–1350 nm), where 1000 nm dropped abruptly. Spectral

reflectance decreased with drought stress due to cotton cell

structural changes, especially in the “near-infrared platform”,
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where the difference was significant. A lower spectral reflectance

occurs under heavy drought stress. The spectral canopy curves

under different drought conditions showed similar trends in the

other growth stages. The reflectivity showed a downward trend

in the short infrared band (1350–2500 nm), and two water

absorption bands occurred at the 1450 and 1950 nm bands.
A B

D E F

C

FIGURE 5

Image analysis of spectral data, preprocessed by Savitzky-Golay, under different drought conditions and cotton growth stages. (A) The flowering
stage of cotton under normal conditions; (B) The boll setting stage of cotton under normal conditions; (C) Boll opening stage of cotton under
normal conditions; (D) The Flowering stage of cotton under drought stress; (E) The boll setting stage of cotton under drought stress; (F) Boll
opening stage of cotton under drought stress.
A B

FIGURE 4

Spearman correlation coefficients matrix and the corresponding 95% confidential levels between Fv/Fm and the water contents in the roots and
leaves. Under normal conditions (A) and under drought stress (B), respectively. The significance level of correlations is indicated as follows: **P<
0.01. Fv/Fm, the maximum photochemical quantum yield; RWC, Root water contents; LWC, leaf water contents.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1007150
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2022.1007150
Full band modeling and analysis and
comparative analysis of various
modeling methods

To determine the best model algorithm for predicting cotton

leaf Fv/Fm, we used the full band and the characteristic wavelengths

screened by the SPA algorithm to compare and analyze 1D-CNN,

CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET, and

KNN, respectively. The characteristic wavelengths screened by SPA

were inadequate (Supplementary Table 3). Thus, only full band
Frontiers in Plant Science 10
modeling results are shown here (specifically, training and test sets;

Table 1). 1D-CNN, CatBoost, LightBGM, XGBoost, DT, RF,

GBDT, AdaBoost, ET, and KNN had a relatively stable model

accuracy under the different drought conditions during the

flowering stage, but nine of the machine learning algorithms

(CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET,

and KNN) were relatively unstable in estimating Fv/Fm during the

boll setting stage under drought stress. 1D-CNN was also relatively

unstable in estimating Fv/Fm during the boll setting stage under

drought stress. However, the 1D-CNN model had the highest
A

B

C

FIGURE 6

Average reflectance spectra of cotton leaves under different drought conditions and growth stages. (A) The flowering stage of cotton under
normal conditions and drought stress; (B) The boll setting stage of cotton under normal conditions and drought stress; (C) The boll opening
stage of cotton under normal conditions and drought stress; Each line represents the average value of 240 reflectance spectra of 80 different
cotton varieties. Solid lines represent normal conditions; dashed lines represent drought stress.
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accuracy and the best effect in the comprehensive evaluation of

cotton drought stress. The flowering stage had the highest accuracy

when comparing the predictions and analyses of the various stages.

The model was more stable under normal conditions.

Furthermore, the loss function of 1D-CNN was observed to

decrease rapidly, and the loss rate was low, which improved the

accuracy and reduced diagnosis time, leading to a better

diagnosis performance (Figure 7).
Fv/Fm as predicted from
canopy characteristics

To evaluate the cotton drought tolerance using the spectral

features extracted by 1D-CNN, the predicted Fv/Fm value was

determined by 1D-CNN and correlated with the actual value

(Figure 8). Generally, under sufficient water conditions and

drought stress, the correlation between the predicted and

measured values was high (R2 ≥ 0.641). However, the

correlation coefficient was the highest under sufficient water

conditions (R2 of flowering, boll setting, and boll opening stages

were 0.908, 0.974, and 0.821, respectively; Predicted and

measured of flowering, boll setting, and boll opening stages

were 0.7894 and 0.7923, 0.8467 and 0.8439, 0.7246 and 0.7241,
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respectively; Figures 8A-C). In addition, the correlation

coefficient at the flowering stage was the highest among the

treatments (R2 of CK and DS were 0.908 and 0.959, respectively;

Predicted and measured of CK and DS were 0.7894 and 0.7923,

0.7959 and 0.7955; respectively; Figure 8A, D).
Cotton drought tolerance evaluation
based on the Fv/Fm drought tolerance
coefficient and cluster analysis

Since the above fitting effect was the highest at the flowering

stage, the drought tolerance coefficient was used to evaluate

cotton drought tolerance. We clustered the Fv/Fm and predicted

value drought tolerance coefficients through cluster analysis,

thereby highlighting the varieties with strong drought

tolerance (Figure 9). We assumed that the higher drought

tolerance coefficients for predicted or measured Fv/Fm values

indicated enhanced drought resistance. The predicted Fv/Fm
classification was similar to the manual measurement

classification (Figures 9A, B). The top ten drought tolerant

varieties obtained through cluster analysis and evaluation of

the measured drought tolerance coefficients were: 38, 24, 6, 56,

25, 58, 8, 43, 71, and 72 (Figure 9A). The top ten drought
TABLE 1 Modeling of drought tolerance at different cotton growth stages with different prediction models.

Prediction model Conditions Flowering stage Boll setting stage Boll opening stage

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

1D-CNN CK 0.016 0.009 0.011 0.003 0.005 0.003 0.002 0.005 0.001

DS 0.010 0.005 0.006 0.006 0.005 0.007 0.002 0.005 0.002

CatBoost CK 0.021 0.018 2.299 0.001 0.001 0.115 0.003 0.002 0.283

DS 0.017 0.015 1.849 0.003 0.002 0.315 0.004 0.003 0.454

LightGBM CK 0.010 0.005 0.629 0.002 0.001 0.167 0.002 0.001 0.162

DS 0.005 0.003 0.369 0.004 0.003 0.425 0.003 0.002 0.310

XGBoost CK 0.010 0.003 0.445 0.001 0.001 0.143 0.002 0.001 0.183

DS 0.007 0.003 0.334 0.005 0.003 0.449 0.003 0.002 0.311

DT CK 0.010 0.003 0.424 0.002 0.001 0.133 0.002 0.001 0.180

DS 0.009 0.005 0.636 0.005 0.003 0.405 0.003 0.002 0.275

RF CK 0.010 0.004 0.528 0.001 0.001 0.089 0.002 0.001 0.177

DS 0.007 0.004 0.556 0.004 0.003 0.345 0.003 0.002 0.282

GBDT CK 0.010 0.003 0.390 0.001 0.001 0.086 0.002 0.001 0.174

DS 0.007 0.004 0.508 0.004 0.003 0.362 0.003 0.002 0.237

AdaBoost CK 0.010 0.003 0.431 0.001 0.001 0.087 0.002 0.001 0.176

DS 0.003 0.001 0.171 0.004 0.003 0.343 0.003 0.002 0.313

ET CK 0.010 0.005 0.608 0.001 0.001 0.086 0.002 0.001 0.157

DS 0.005 0.003 0.428 0.004 0.002 0.311 0.003 0.002 0.279

KNN CK 0.038 0.022 2.765 0.001 0.001 0.123 0.003 0.002 0.250

DS 0.044 0.032 4.011 0.004 0.003 0.424 0.004 0.003 0.365
frontie
1D-CNN, One-dimensional convolutional neural network; CatBoost, Categorical Boosting; LightBGM, Light Gradient Boosting Machine; XGBoost, eXtreme Gradient Boosting; DT,
Decision Tree; RF, Random Forest; GBDT, Gradient elevation decision tree; AdaBoost, Adaptive Boosting; ET, Extra Trees; KNN, K-Nearest Neighbors; RMSE, Root mean square error;
MAPE Mean absolute percentage error; MAE, Mean absolute error.
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tolerant varieties predicted were 38, 24, 6, 56, 25, 58, 8, 43 71,

and 72 (Figure 9B). The Fv/Fm, drought tolerance coefficient, can

be more reliably evaluated from remote sensing data.
Discussion

This study revealed a high correlation between Fv/Fm, RWC

and LWC; thus, Fv/Fm can be used as a direct indicator for

evaluating the drought resistance of cotton. In addition, Fv/Fm
and 1D-CNN models are good at predicting the inversion

process of physiological and biochemical cotton indicators and

hyperspectral data. The models also achieved the expected

effects, and this method can quickly and nondestructively

evaluate cotton drought tolerance.
Relationship between measurement
parameters under drought stress

Cotton flowering and boll setting stages are extremely

sensitive to soil water content and are important for adequate

yield, which significantly declines under stress (Bange et al.,

2004; Pettigrew, 2004). Therefore, this study evaluated the

drought resistance of cotton varieties by investigating the

effects of drought stress on cotton plants at the flowering, boll

setting, and boll opening stages in the field. Leaf photosynthetic

structure is an important index to evaluate plant stress resistance
Frontiers in Plant Science 12
and plays a key role in plant growth and metabolism, especially

for photosystem PSII (El-Hendawy et al., 2019a). PSII maximum

photochemical efficiency (Fv/Fm) has widely been used as an

indicator for the early detection of different abiotic stresses

(Naumann et al., 2008), which directly reflect crop damage

under adverse environments. Under normal environmental

conditions, Fv/Fm is relatively stable, but under adverse

environmental conditions, photosynthetic efficiency is limited,

and chloroplasts are protected from light damage, thereby

significantly reducing Fv/Fm (Castañeda-Murillo et al., 2022).

The findings in this study are consistent with those by

Fracheboud (2002), where under drought stress, the Fv/Fm
values of cotton varieties decreased during the growth period.

Therefore, Fv/Fm values have gained interest as a screening tool

to study preliminary and indicative responses to the rapid

changes in plant photosynthetic status, and to evaluate the

irreversible physiological damage caused by drought tolerance.
Optimizing input variables for the 1D-
CNN model is important for
hyperspectral inversion of cotton
Fv/Fm prediction and drought
tolerance evaluation

Numerous studies have mostly used vegetation index as an

input to evaluate the degree of stress (Li et al., 2022). However,

current vegetation index information is still limited, and the lack
A B

D E F

C

FIGURE 7

The loss rate curve of the 1D-CNN model with different drought conditions and cotton growth stages. (A–C), Flowering stage, boll setting
stage, and boll opening stage under normal conditions, respectively; (D–F), Flowering stage, boll setting stage, and boll opening stage under
drought stress, respectively.
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of a stable vegetation index closely related to drought stress may

eventually reduce model generalizability. However, several

specific spectral indices exist that have considerable potential

in accurately estimating relevant parameters. SPA is a forward

variable selection algorithm that minimizes vector space

collinearity (Araújo et al., 2001). Its advantage lies in its

extraction of several characteristic wavelengths from the whole

band, which eliminates redundant information in the original

spectral matrix when screening characteristic spectral

wavelengths (Zhang et al., 2019). It is mainly divided into the

following steps: firstly, data is imported under different

processes; secondly, the Kennard stone algorithm is used to

select samples; finally, SPA is used to select variables for

multivariable calibration (Zhao et al., 2022). In this study, we

used the MATLAB 2019b software to screen the characteristic

spectral reflectance wavelengths of each process by coding a

continuous projection algorithm, and only 1–2 sensitive

wavelengths were screened under normal conditions at the

flowering, boll setting, and boll opening stages. This

challenged the establishment of a unified spectral index to

estimate potential complex factors. Therefore, to improve

relevant parameter prediction accuracy, some studies used the

full spectrum wavelength (350–2500 nm) (Hansen et al., 2002;

El-Hendawy et al., 2019b).

Interestingly, our study revealed that compared to the

screening characteristic wavelengths using the continuous

projection algorithm, the Fv/Fm predictions in the calibration

and validation data sets had additional improvements based on

the full band 1D-CNNmodel analysis. The maximum coefficient
Frontiers in Plant Science 13
of determination values (R2) and minimum root mean square

error values (RMSE) further revealed that the 1D-CNN model,

based on data fusion in all conditions, was the most accurate in

predicting Fv/Fm. Rasooli Sharabian et al., (2014) reported

similar results. Elsayed et al. (2020) also revealed that

compared to a single spectral index, a PLSR model based on

spectral index data fusion and canopy temperature improved the

GY prediction accuracy of barley and wheat under water stress.

This study also revealed that the fusion of full band spectral data

further improves the Fv/Fm prediction accuracy of cotton

drought tolerance under different conditions. This is because

this method can measure potential confounding factors related

to environmental conditions. Therefore, it covers all the major

physiological plant changes induced by drought stress.

This study supports machine learning and deep learning

methods instead of the traditional cotton growth parameter

estimation methods. Compared to CatBoost, LightBGM,

XGBoost, DT, RF, GBDT, AdaBoost, ET, and KNN, the Fv/

Fm remote sensing prediction accuracy inversion model

constructed by 1D-CNN was higher and had strong stability.

This shows that predicting physiological and biochemical

indices and evaluating cotton drought tolerance using

hyperspectral technology is feasible. In the field, different

varieties have different leaf optical characteristics and canopy

structures; thus, spectral interpretation is very complex. Despite

these complexities, 1D-CNN achieved high accuracy in

independent verification. 1D-CNN has previously been used

for image segmentation, weed detection and prediction of other

crops (such as rice and soybeans). However, the use of 1D-CNN
A B

D E F

C

FIGURE 8

Fv/Fm predicted and measured values from the test data set under (A–C) sufficient water conditions and (D–F) water stress conditions. The
canopy characteristics input by each model is from (A, D) 6 July 2021 (flowering stage), (B, E) 14 August 2021 (boll setting stage), and (C, F) 17
September 2021 (boll opening stage).
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A

B

FIGURE 9

Cluster analysis of the drought tolerance coefficients of the Fv/Fm measured values (A) and predicted values (B) for the 80 cotton varieties. 1,
Jifeng 554; 2, Jifeng 103; 3, Jifeng 522; 4, Jifeng 908; 5, Jifeng 914; 6, Jifeng 1982; 7, Jifeng 4; 8, 7886; 9, Cangmian 268; 10, Jimian 315; 11,
Han 218; 12, Hannong 12; 13, Han 8266; 14, Han 258; 15, Han 686; 16, YM111; 17, Nongda KZ05; 18, Nongdamian 10; 19, Nongdamian 12; 20,
Lumianyan 28; 21, Xuzhou 1818; 22, Zhongmiansuo 41; 23, Shandongxiamian11-42; 24, Zhongmiansuo 12; 25, Yumian 19; 26, Ejing 1; 27,
Zhongmiansuo 35; 28, Zhongmiansuo 60; 29, Xinshi 71143; 30, Xinza 15; 31, Xinshi 17; 32, GK39; 33, 0 shi; 34, Zhongmiansuo 94A915; 35,
Lumianyan 36; 36, DP33B; 37, Guoxinmian01; 38, Guoxinmian02; 39, Guoxinmian03; 40, Guoxinmian05; 41, Hanwu 216; 42, Zhongmian 100;
43, Zhongmiansuo 79; 44, Cangmian 666; 45, Han 6203; 46, Shikang 126; 47, Cang 198; 48, Ji 228; 49, Guoxinmian 9; 50, K836; 51, Lumian
522; 52, Lumian 5172; 53, K638; 54, Guoxin 4; 55, Jifeng1187; 56, Jifeng 1458; 57, Jifeng 103; 58, Jifeng 914; 59, Jifeng 965; 60, MH335223; 61,
Guoxinmian 11; 62, Zhongmiansuo 17; 63, Chunbeibao; 64, Zhongmiansuo 60;65, CG3020-3; 66, Jimian 2016; 67, Ji 1518; 68, Jihang 8; 69,
Jimian 262; 70, Ji 178; 71, Ji 172; 72, Yuzaomian 9110; 73, Dexiamian 1; 74, Jicai 6913; 75, Zhongmiansuo 23; 76, Zhongmiansuo 50; 77, Ji668;
78, Zhibao 86-1; 79, Jimian 958; 80, Jifeng 1271.
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for many cotton varieties is rarely reported. Based on our

experimental process, the 1D-CNN estimation method used

many characteristics and can use cotton spectral values

directly as input, automatically learning and selecting features

from the training data. Compared to traditional machine

learning, 1D-CNN local connection, weight sharing, and

hierarchical expression ensure that the network model

effectively learns corresponding data features from many

samples, avoids the complex feature extraction process and

does not require manual feature extraction. Therefore, 1D-

CNN improves prediction accuracy and reduces workload.
Possible problems with hyperspectral
and 1D-CNN models

Unfortunately, 1D-CNN also has challenges, such as a high

square error and high deviation (underfitting), which are mainly

caused by inadequate sample number, inconsistent distribution of

the training and verification sets, complex network structure (such

as 1D-CNN), excessive sample noise interference, poor data quality,

and overtraining. From the perspective of variance and deviation,

underfitting equates to high training set variance and deviation,
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which performs well in the training set. Still, it performs poorly in

the test and new data sets. Generally, the main methods required to

effectively solve overfitting are to increase the data set size, simplify

and regularize the model, increase the drop layer, perform feature

selection and sparse learning, delete abnormal noise points, use

integrated learning methods, and re-clean the data.

From this study, spectral reflectance alone may not be

sufficient to identify the most drought-tolerant cotton lines

during screening. Therefore more phenotypic information

sources are needed to fully clarify the complexity of drought

tolerant genotype responses in cotton.
Influence of time scale differences on
model performance

Different time scales and their effects on plant growth must

be adopted in agricultural development as a management

strategy. The reasons for spectral differences between different

time scales are plant growth, phenological development, and

environmental changes (Fava et al., 2009; Meerdink et al., 2016;

Yang et al., 2016). These differences may be inverted in the

relationship between spectra and traits, which is what we
FIGURE 10

Chlorophyll fluorescence and hyperspectral reflectance approach for detecting drought tolerance in cotton.
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detected in the performance of each independent model for the

flowering, boll setting, and boll opening stages. Li et al. (2022)

constructed six sorghum genotype models of dry and fresh

weight using support vector machines on two separate dates

and found that the combined model accuracy was higher than

each independent model. Compared to the boll setting and

opening stages, the flowering stage model was more robust

and accurate (RMSE = 0.016, MAE = 0.009, MAPE = 0.011).

We observed that specific time scales affected accuracy. This

study showed that the flowering stage accuracy was higher than the

other stages. This may be due to vigorous growth of cotton crops

during the early stage, rapid leaf area increases, large pigment

accumulation in vegetation tissue, metabolic increase, high

photosynthetic activity, strong Fv/Fm absorption, and a gradually

enhanced regression equation fitting effect. With the postponement

of the cotton growth period and the stress and aging of cotton

plants in the later stages, leaves started losing their green coloration,

turned yellow, and gradually withered. The Fv/Fm content

subsequently decreased significantly until the leaves withered and

died, unable to absorb light energy, and dry matter accumulation

stopped (Silva Benavides et al., 2013), thus, leading to fitting effect

deterioration. This is, therefore, the best period to estimate Fv/Fm.
Conclusion

Full band spectral data was studied here to predict Fv/Fm
values and to evaluate cotton drought tolerance, (Figure 10)

showed the workflow. The spectral distribution of the 80 cotton

varieties at different growth stages and under different water

stress conditions had similar trends. However, their near-

infrared band reflectance decreased with drought stress and

increased then decreased with growth. Compared to CatBoost,

LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET, and KNN,

1D-CNN models predicted cotton Fv/Fm during the three

growth stages, implying that 1D-CNN models have higher

accuracy and stability in the large-scale data processing. In

evaluating cotton drought tolerance, the predicted Fv/Fm
clustering results were similar to manually measured clustering

results. Generally, the combined technology of S-G+1D-CNN

has been successfully applied to predict cotton variety Fv/Fm

values and evaluate drought tolerance. The full spectrum might

therefore become an important tool for drought tolerance

screening. In this study, it was not necessary to destructively

sample all test field indicators, thus greatly reducing cost and

time. This accelerated the related processing of phenotypic

information for the different varieties and helped to develop a

detection system for the high-throughput phenotypic

identification algorithm. Therefore, more consideration should

be given to spectral data and the computational power of deep

learning models to reveal deeper phenotypic information. These

models can be used to evaluate and screen out drought-resistant

cotton varieties.
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Productivity and biochemical composition of phaeodactylum tricornutum
(Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and
open ponds. Biomass Bioenergy 54, 115–122. doi: 10.1016/j.biombioe.2013.03.016

Wang, X., Li, J., and Huang, T. (2022). Cnvabnn: an adaBoost algorithm and
neural networks-based detection of copy number variations from NGS data.
Comput. Biol. Chem. 99, 107720. doi: 10.1016/j.compbiolchem.2022.107720

Wang, L., Liu, D., Pu, H., Sun, D.-W., Gao, W., and Xiong, Z. (2015). Use of
hyperspectral imaging to discriminate the variety and quality of rice. Food Anal.
Methods 8, 515–523. doi: 10.1007/s12161-014-9916-5
Frontiers in Plant Science 18
Wang, Y., Reiter, R. J., and Chan, Z. (2018). Phytomelatonin: A universal abiotic
stress regulator. J. Exp. Bot. 69, 963–974. doi: 10.1093/jxb/erx473

Xiao, S., Liu, L., Zhang, Y., Sun, H., Zhang, K., Bai, Z., et al. (2020). Fine root and
root hair morphology of cotton under drought stress revealed with RhizoPot. J.
Agro. Crop Sci. 206, 679–693. doi: 10.1111/jac.12429

Xiong, X., Duan, L., Liu, L., Tu, H., Yang, P., Wu, D., et al. (2017). Panicle-seg: a
robust image segmentation method for rice panicles in the field based on deep
learning and superpixel optimization. Plant Methods 13, 104. doi: 10.1186/s13007-
017-0254-7

Yang, X., Tang, J., Mustard, J. F., Wu, J., Zhao, K., Serbin, S., et al. (2016).
Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two
temperate deciduous forests. Remote Sens. Environ. 179, 1–12. doi: 10.1016/
j.rse.2016.03.026

Yao, X., Yao, X., Tian, Y., Ni, J., Liu, X., Cao, W., et al. (2013). A new method to
determine central wavelength and optimal bandwidth for predicting plant nitrogen
uptake in winter wheat. J. Integr. Agr. 12, 788–802. doi: 10.1016/S2095-3119(13)
60300-7

Yu, Z., Fang, H., Zhangjin, Q., Mi, C., Feng, X., and He, Y. (2021). Hyperspectral
imaging technology combined with deep learning for hybrid okra
seed identification. Biosyst. Eng. 212, 46–61. doi: 10.1016/j.biosystemseng.
2021.09.010

Zhang, X., Liu, F., He, Y., and Li, X. (2012). Application of hyperspectral imaging
and chemometric calibrations for variety discrimination of maize seeds. Sensors 12,
17234–17246. doi: 10.3390/s121217234

Zhang, Y., Wang, Y., Yi, Y., Wang, J., Liu, J., and Chen, Z. (2021b). Coupling
matrix extraction of microwave filters by using one-dimensional convolutional
autoencoders. Front. Phys. 9. doi: 10.3389/fphy.2021.716881

Zhang, W., Xu, H., Duan, X., Hu, J., Li, J., Zhao, L., et al. (2021a). Characterizing
the leaf transcriptome of chrysanthemum rhombifolium (Ling et c. shih), a drought
resistant, endemic plant from china. Front. Genet. 12, 625985. doi: 10.3389/
fgene.2021.625985

Zhang, D., Xu, Y., Huang, W., Tian, X., Xia, Y., Xu, L., et al. (2019). Non-
destructive measurement of soluble solids content in apple using near infrared
hyperspectral imaging coupled with wavelength selection algorithm. Infrared. Phys.
Techn. 98, 297–304. doi: 10.1016/j.infrared.2019.03.026

Zhang, Y., Zhang, Y., Liu, G., Xu, S., Dai, J., Li, W., et al. (2021c). Nitric oxide
increases the biomass and lint yield of field-grown cotton under temporary
waterlogging through physiological and molecular regulation. Field Crops Res.
261, 107989. doi: 10.1016/j.fcr.2020.107989

Zhao, D., Feng, S., Cao, Y., Yu, F., Guan, Q., Li, J., et al. (2022). Study on the
classification method of rice leaf blast levels based on fusion features and adaptive-
weight immune particle swarm optimization extreme learning machine algorithm.
Front. Plant Sci. 13. doi: 10.3389/fpls.2022.879668

Zhao, Y., Zhang, C., Zhu, S., Gao, P., Feng, L., and He, Y. (2018). Non-
destructive and rapid variety discrimination and visualization of single grape
seed using near-infrared hyperspectral imaging technique and multivariate
analysis. Molecules 23, 1352. doi: 10.3390/molecules23061352

Zou, J., Hu, W., Li, Y., He, J., Zhu, H., and Zhou, Z. (2020). Screening of
drought resistance indices and evaluation of drought resistance in cotton
(Gossypium hirsutum l.). J. Integr. Agr. 19, 495–508. doi: 10.1016/S2095-3119
(19)62696-1
frontiersin.org

https://doi.org/10.1016/j.biosystemseng.2008.05.017
https://doi.org/10.1016/j.rse.2016.08.003
https://doi.org/10.48550/arXiv.1611.01276
https://doi.org/10.3390/s18124391
https://doi.org/10.1186/s13007-016-0154-2
https://doi.org/10.1186/s13007-016-0154-2
https://doi.org/10.3389/fpls.2016.01276
https://doi.org/10.3923/pjbs.2007.2752.2755
https://doi.org/10.1016/j.rse.2008.06.004
https://doi.org/10.2134/agronj2004.0377
https://doi.org/10.1016/j.eaef.2013.12.003
https://doi.org/10.1007/s11036-019-01443-z
https://doi.org/10.3390/rs11080920
https://doi.org/10.1016/j.pbi.2017.05.006
https://doi.org/10.1016/j.biombioe.2013.03.016
https://doi.org/10.1016/j.compbiolchem.2022.107720
https://doi.org/10.1007/s12161-014-9916-5
https://doi.org/10.1093/jxb/erx473
https://doi.org/10.1111/jac.12429
https://doi.org/10.1186/s13007-017-0254-7
https://doi.org/10.1186/s13007-017-0254-7
https://doi.org/10.1016/j.rse.2016.03.026
https://doi.org/10.1016/j.rse.2016.03.026
https://doi.org/10.1016/S2095-3119(13)60300-7
https://doi.org/10.1016/S2095-3119(13)60300-7
https://doi.org/10.1016/j.biosystemseng.2021.09.010
https://doi.org/10.1016/j.biosystemseng.2021.09.010
https://doi.org/10.3390/s121217234
https://doi.org/10.3389/fphy.2021.716881
https://doi.org/10.3389/fgene.2021.625985
https://doi.org/10.3389/fgene.2021.625985
https://doi.org/10.1016/j.infrared.2019.03.026
https://doi.org/10.1016/j.fcr.2020.107989
https://doi.org/10.3389/fpls.2022.879668
https://doi.org/10.3390/molecules23061352
https://doi.org/10.1016/S2095-3119(19)62696-1
https://doi.org/10.1016/S2095-3119(19)62696-1
https://doi.org/10.3389/fpls.2022.1007150
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Predicting Fv/Fm and evaluating cotton drought tolerance using hyperspectral and 1D-CNN
	Introduction
	Materials and methods
	Plant materials
	Experimental design and treatments
	Determination of indices and methods
	Hyperspectral data collection
	Chlorophyll fluorescence content
	Root water contents and leaf water contents
	Calculation of drought resistance coefficient
	Spectral pretreatment and characteristic wavelength screening
	Extraction, reflectance, and spectral pretreatment
	SPA filter characteristic wavelength

	Model development
	One dimensional convolutional neural network&#146;(1D-CNN)

	Machine learning models
	Model evaluation

	Results
	Effects of drought stress on Fv/Fm in cotton leaves
	Correlation between Fv/Fm and RWC, and LWC
	Preprocessing of hyperspectral data
	Changes in the cotton canopy reflectance spectrum under different&#146;conditions
	Full band modeling and analysis and comparative analysis of various modeling methods
	Fv/Fm as predicted from canopy characteristics
	Cotton drought tolerance evaluation based on the Fv/Fm drought tolerance coefficient and cluster analysis

	Discussion
	Relationship between measurement parameters under drought stress
	Optimizing input variables for the 1D-CNN model is important for hyperspectral inversion of cotton Fv/Fm prediction and drought tolerance evaluation
	Possible problems with hyperspectral and 1D-CNN models
	Influence of time scale differences on model performance

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


