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As an important nut crop species, macadamia continues to gain increased

amounts of attention worldwide. Nevertheless, with the vast increase in

macadamia omic data, it is becoming difficult for researchers to effectively

process and utilize the information. In this work, we developed the first

in tegrated germplasm and genomic database for macadamia

(MacadamiaGGD), which includes five genomes of four species; three

chloroplast and mitochondria l genomes; genome annotat ions;

transcriptomic data for three macadamia varieties, germplasm data for four

species and 262 main varieties; nine genetic linkage maps; and 35 single-

nucleotide polymorphisms (SNPs). The database serves as a valuable collection

of simple sequence repeat (SSR) markers, including bothmarkers that are based

on macadamia genomic sequences and developed in this study and markers

developed previously. MacadamiaGGD is also integrated with multiple

bioinformatic tools, such as search, JBrowse, BLAST, primer designer,

sequence fetch, enrichment analysis, multiple sequence alignment, genome

alignment, and gene homology annotation, which allows users to conveniently

analyze their data of interest. MacadamiaGGD is freely available online (http://

MacadamiaGGD.net). We believe that the database and additional information

of the SSR markers can help scientists better understand the genomic

sequence information of macadamia and further facilitate molecular

breeding efforts of this species.
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Introduction

Macadamia (Macadamia spp.), which belongs to the

Proteaceae family (Urata, 1954), is an evergreen perennial

flowering plant species (Storey and Hamilton, 1953) originating

from southern Queensland and northern New South Wales in

Australia (Moncur et al., 1985).Macadamia has already become one

of the most important economic oil crop species worldwide

(Sedgley, 1983; Aradhya et al., 1998; Topp et al., 2019) due to the

high level of monounsaturated fatty acid-palmitoleic acid (omega-

7) in its nuts, which can effectively lower blood total cholesterol and

benefit human health (Nagao et al., 1992; Moodley et al., 2007;

Arroyo-Caro et al., 2016). To date, four macadamia species, namely,

Macadamia integrifolia (Maiden & Betche),M. tetraphylla (L. A. S.

Johnson), M. ternifolia (F. Muell), and M. jansenii (C.L. Gross &

P.H.Weston), have been identified (Mast et al., 2008), among which

only M. integrifolia, M. tetraphylla, and their hybrids are most

widely planted worldwide (SAMAC, 2020). The other two species,

M. ternifolia and M. jansenii, have not yet been used for any

commercial purpose because they produce only small, unpalatable,

bitter, inedible nuts, the mature nuts of which contain high

cyanogenic glycoside levels (Trueman, 2013; Mai et al., 2020).

Macadamia plants are diploid (2n = 28) (Peace et al., 2003)

and their genome size ranges from 758 to 896 megabase (Mb)

(Nock et al., 2020; Niu et al., 2022a). In recent years, several de

novo-assembled macadamia genomes have been reported,

providing new insight for genetic breeding. In 2016, the first

assembled draft genome of macadamia (M. integrifolia cultivar

HAES 741) was finished and released by Nock’s lab, the staff of

whom used the short-read Illumina sequence platform (193493

scaffolds, N50 = 4745 bp, 518 Mb) (Nock et al., 2016). In 2020,

the first sequence-based genetic linkage maps of macadamia

were constructed (Langdon et al., 2020). In 2020, an improved

chromosome-scale genome assembly of M. integrifolia cultivar

HAES 741 was completed by the use of the short-read Illumina

and long-read Pacific Biosciences (PacBio) sequencing platforms

(4094 scaffolds, N50 = 413 kb, 745 Mb) (Nock et al., 2020).

Furthermore, in 2020, by using the third-generation sequencing

(TGS) platforms Oxford Nanopore (PromethION), PacBio

(Sequel I), and BGI (Single-tube Long Fragment Read),

researchers assembled the genome of M. jansenii (Murigneux

et al., 2020). In addition, the genomes of M. integrifolia (249

contigs, N50 = 5.3 Mb, 738 Mb), M. tetraphylla (153 contigs,

N50 = 10.0 Mb, 707 Mb), M. ternifolia (211 contigs, N50 = 6.4

Mb, 716 Mb), and M. jansenii (284 contigs, N50 = 4.5 Mb, 738

Mb) were assembled by use of the PacBio HiFi TGS platform

(Sharma et al., 2021a). The genome of M. jansenii has been

improved by Hi-C assembly (219 scaffolds, N50 = 52 Mb, 758

Mb) (Sharma et al., 2021c) and was further updated by the latest

hifiasm assembly (779 contigs, N50 = 46 Mb, 826 Mb) (Sharma

et al., 2021b). Recently, the genome of the cultivar HAES 344 was

sequenced and assembled into 14 pseudochromosomes by the

use of Illumina NovaSeq and PacBio Sequel II sequencing (5387
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contigs, N50 = 281 kb, 794 Mb) (Lin et al., 2022). A

chromosome-scale genome assembly of M. tetraphylla has also

been constructed from long-read Oxford Nanopore

Technologies (ONT) sequencing data (1059 scaffolds, N50 =

51 Mb, 751 Mb) (Niu et al., 2022a). Moreover, in recent years,

the chloroplast and mitochondrion genomes of M. integrifolia,

M. tetraphylla, and M. ternifolia have been assembled and

thoroughly annotated (Niu et al., 2022b).

As inbreeding decline occurs in macadamia, it is vitally

important to understand the genetic distances between

individuals (Steiger et al., 2003). The morphological

characteristics of macadamia could be greatly influenced by

the environment; thus, it is sometimes difficult to identify

genetic relationships through phenotypic observations

(Hardner, 2016). The use of DNA marker systems has become

one of the most efficient strategies to evaluate genetic distance

and genetic foundation (Ranketse et al., 2022). DNA marker

systems, including isozyme (Vithanage and Winks, 1992;

Aradhya et al., 1998), randomly amplified DNA fingerprinting

(RAF) (Peace et al., 2002; Peace et al., 2004; Peace et al., 2005),

amplified fragment length polymorphism (AFLP) (Steiger et al.,

2003), sequence tagged site (STS) (Vithanage et al., 1998),

random amplified polymorphic DNA (RAPD) (Vithanage

et al., 1998), randomly amplified microsatellite fingerprinting

(RAMiFi) (Peace et al., 2004), simple sequence repeat (SSR)

(Schmidt et al., 2006; Nock et al., 2014b; Langdon et al., 2019;

Ranketse et al., 2022), diversity array technology (DArT) and

single-nucleotide polymorphism (SNP) markers (Alam et al.,

2018; O'Connor et al., 2019b), have been developed for the

genetic and molecular breeding of macadamia. Genome-wide

association studies (GWASs) have also greatly facilitated the

identification of new molecular markers associated with yield

traits (O'Connor et al., 2019a; O'Connor et al., 2020). As

codominant, highly reproducible, highly polymorphic and

cost-efficient DNA markers, SSRs have been preferred for use

in studies of genetic identification and diversity analysis. To date,

although the sequencing of the whole genomes of different

macadamia species has been completed, genome-based

development of SSR markers has not been reported.

With the rapidly developed sequencing technologies, the

genomes of dozens of plant species have been sequenced each

year. Nevertheless, how to integrate and well manage the large

amount of omics data is still a task. In recent years, the genomic

databases of some economic crops were well constructed and

greatly facilitated the researchers to use the genome,

transcriptome, or phenotype data. Citrus Genome Database

(CGD, https://www.citrusgenomedb.org/) integrates genomes,

maps, markers, phenotype data, and quantitative trait loci of

agronomic traits of 25 citrus species. The Rice Genome Hub

(RGH, https://rice-genome-hub.southgreen.fr), which is part of

the South Green Bioinformatics platform, also integrates large

amount of rice omics data with a large number of powerful in-

house tools (Droc et al., 2019). Rice Annotation Project Database
frontiersin.org
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(RAP-DB, https://rapdb.dna.affrc.go.jp/) is consisted of updated

genome annotation and focuses on the comprehensive analysis

of genome structure and function of rice genes (Project, 2007).

Gossypium Resource and Network Database (GRAND, http://

grand.cricaas.com.cn) contains the genomic, transcriptomic,

phenotypic, and integrative analysis tools for cotton (Zhang

et al., 2022). With the inspirations from these databases, in this

study we developed the first integrated germplasm and

functional genomic database for macadamia (MacadamiaGGD).

Currently, large amounts of macadamia omics data lack

centralized management. These data are distributed across

multiple repositories or personal websites, with the same data

from the same source in different repositories. In addition, many

macadamia omics data lack the management of versions. The

same data has different versions and accession numbers in

different repositories, which can make it difficult for users to

find the most updated dataset. The main purpose of the

MacadamiaGGD described in this article is to provide the

germplasm data, genome resources, transcriptome (RNA-seq)

data, molecular marker information and genetic linkage map

information to assist in the scientific research and molecular

breeding of macadamia. And several commonly used

bioinformatics tools are also integrated with MacadamiaGGD,

which can help the researchers better utilize the database.
Materials and methods

Data sources and processing

In MacadamiaGGD, we integrated the genetic information

data, including that of five genomes of four species, the

chloroplast and mitochondrion genomes of three species and

genome annotations, which were previously released in public

databases, including the National Center for Biotechnology

Information (NCBI) Assembly database, the GigaScience

database (GigaDB), and the China National Center for

Bioinformation (CNCB) Genome Warehouse (GWH)

database. In addition, transcriptomic data for three macadamia

varieties were downloaded from the NCBI Sequence Read

Archive (SRA) database. The germplasm, genetic linkage map,

SNP and SSR marker data were retrieved from the NCBI

PubMed database and other databases, as summarized in

Table 1. The components of data integration mainly include

the data source, the data transform, and the data sink in the

database. Extract, transform, and load (ETL) architecture was

applied to data integration. In data integration process, raw data

were collected, transformed, sorted, cleaned, aggregated, and

stored via using PostgreSQL 9.5.25, Scala 2.13.1, AKKA 2.6.5,

and SBT 1.3.5 (Figures 1A, B). Processed raw data were applied

for variation calling and data visualization though using

HTML5, CSS3, Java Script, Slick 3.3.2, Bootstrap 3.3.0 and

Play Framework 2.8.2 (Figure 1B).
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Development of the database

MacadamiaGGD was deployed in the Ubuntu 16.04 operation

system using AKKA 2.6.5 (https://akka.io) as the web server,

PostgreSQL 9.5.25 (https://www.postgresql.org) as the database

server, Scala 2.13.1 (https://www.scala-lang.org) as the

programming language and SBT 1.3.5 (https://www.scala-sbt.org)

as the interactive building tool. All the data were managed and

stored in the PostgreSQL Database. The website interface was

generated via Bootstrap 3.3.0 (https://getbootstrap.com) and Play

Framework 2.8.2 (https://www.playframework.com/). The web

interface of MacadamiaGGD was developed using HTML5, CSS3,

Java Script. The query function was enforced based on the Slick

3.3.2 middleware tier. JBrowse 1.16.6 (https://www.jbrowse.org) was

used for genome visualization.
Sample collection and DNA isolation

Leaf samples of 21 macadamia accessions for DNA isolation

were collected from the macadamia plantation in Chongzuo,

Guangxi, China (Table S1). The DNA was isolated following a

previously described method (Doyle, 1991), with slight

modifications. To avoid problems of low efficiency and

insufficient grinding due to manual grinding, young leaves

were ground in a Tissuelyser-192 (Shanghai Jingxin Industrial

Development Co., Ltd., China) and extracted with a 2%

cetyltrimethylammonium bromide (CTAB) buffer. Nucleic

acids were isolated with a chloroform: isoamyl alcohol (24:1)

solution. DNA was purified with ethanol and resuspended in

sterile distilled water. The DNA quality and concentration were

assessed using ultraviolet spectrometry via a Nanodrop 2000c

(Thermo Fisher Scientific, MA, USA) and agarose gel

electrophoresis. The purified DNA was stored at -20°C until use.
Genome-wide SSR screening and
characterization

New microsatellite markers were screened in the M.

integrifolia HAES 741 reference genome (https://www.ncbi.

nlm.nih.gov/bioproject/748012) by using SSRHunter 1.3

(http://www.bio2soft.net) (Li and Wan, 2005). The search

criteria were set as 2, 3, and 4 nucleotides, corresponding to at

least 4 repetitions. Afterward, the SSRs, comprising no fewer

than 30 repeated motifs and being evenly distributed on each

chromosome, were preferentially selected. To further confirm

the quality of the SSR markers, each sequence was again queried

via BLAST within MacadamiaGGD and tested via polymerase

chain reaction (PCR).

Primer 3 (https://primer3.org) was used to design primer

pairs flanking the sequences of the screened SSR motifs. The

primer design parameters were as follows: primer length, 17-25
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TABLE 1 Summary of all datasets in MacadamiaGGD.

Dataset Species References Repository/
Accession
number

URL

Germplasm M. integriflia
M. ternifolia
M.
tetraphylla
M. jansenii

Vithanage and Winks (1992); Aradhya et al. (1998);
Peace et al. (2002); Peace et al. (2005); Allan (2007);
He (2008); Gitonga et al. (2009); Hardner et al. (2009);
Machado Neto and Moryia (2010); Zhang (2011);
Hardner (2016); Zeng and Du (2017); Alam et al. (2018);
Tang et al. (2018); Toft et al. (2018); Langdon et al. (2019);
O'Connor et al. (2019b); Tan et al. (2019); Tan et al. (2020);
Mai et al. (2021); Tan et al. (2021); Lin et al. (2022)

http://MacadamiaGGD.net/nut/toRef

Genome assembly M. integriflia
HAES 741

Nock et al. (2020) NCBI/PRJNA748012 https://www.ncbi.nlm.nih.gov/bioproject/
748012

M. integriflia
HAES 344

Lin et al. (2022) CNCB/PRJCA004595 https://ngdc.cncb.ac.cn/gwh/Assembly/
23196/show

M.
tetraphylla

Sharma et al. (2021a) GigaDB/100906;
NCBI/PRJNA694456

http://gigadb.org/dataset/view/id/100906/

M. ternifolia Sharma et al. (2021a) GigaDB/100906;
NCBI/PRJNA694456

http://gigadb.org/dataset/view/id/100906/

M. jansenii Sharma et al. (2021a) GigaDB/100906;
NCBI/PRJNA694456

http://gigadb.org/dataset/view/id/100906/

Genome annotation M. integriflia
HAES 741

Nock et al. (2020) NCBI/PRJNA748012 https://www.ncbi.nlm.nih.gov/bioproject/
748012

M. integriflia
HAES 344

Lin et al. (2022) CNCB/PRJCA004595 https://ngdc.cncb.ac.cn/gwh/Assembly/
23196/show

Chloroplast assembly
and annotation

M. integriflia Nock et al. (2014a) NCBI/PRJNA264682 https://www.ncbi.nlm.nih.gov/genome/?
term=txid60698

M. ternifolia Liu et al. (2017) NCBI/PRJNA421511 https://www.ncbi.nlm.nih.gov/genome/
browse/#!/organelles/66349/

M.
tetraphylla

Liu et al. (2018) NCBI/MH778649 https://www.ncbi.nlm.nih.gov/nuccore/
MH778649

Mitochondrion
assembly and
annotation

M. integriflia Niu et al. (2022b) NCBI/MW566570 https://www.ncbi.nlm.nih.gov/nuccore/
MW566570

M. ternifolia Niu et al. (2022b) NCBI/MW566571 https://www.ncbi.nlm.nih.gov/nuccore/
MW566571

M.
tetraphylla

Niu et al. (2022b) NCBI/MW566572 https://www.ncbi.nlm.nih.gov/nuccore/
MW566572

Transcriptome M. integriflia
HAES 741

Nock et al. (2020) NCBI/PRJNA593881 https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA593881

M. integriflia
HAES 344

Lin et al. (2022) NCBI/PRJNA706119 https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA706119

M. integriflia
H2

Lin et al. (2022) NCBI/PRJNA706119 https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA706119

Genetic linkage maps M. integriflia Langdon et al. (2020) https://researchportal.scu.edu.au/esploro/
outputs/dataset/991012821025202368

SSRs M. integriflia Schmidt et al. (2006); Nock et al. (2014b); Langdon et al.
(2019)

http://MacadamiaGGD.net/nut/toRef

SNPs M. integriflia O'Connor et al. (2019a); O'Connor et al. (2020) http://MacadamiaGGD.net/nut/toRef

M. integriflia
M. ternifolia
M. integriflia
×
M.
tetraphylla
M. jansenii

(Alam et al., 2018)
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The datasets were deposited in the repositories of the China National Center for Bioinformation (CNCB), the National Center for Biotechnology Information (NCBI), and the GigaDB.
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bp; melting temperature (Tm), 53 °C; amplicon size, 350-500 bp;

and GC content, 40-60%.
Marker analysis, data analysis and map
construction

The SSR PCR mixture (10 mL) comprised 1 mL of DNA, 0.4

mL of each primer (10 mM), 5 mL of Rapid Taq Master Mix

(Vazyme, China) and 3.2 mL of double-distilled water. The

amplification reaction program was as follows: 5 min at 95°C;

36 cycles of (30 s at 95°C, 53°C and 72°C); and a final extension

of 5 min at 72 °C. Afterward, the mixture was held at 16°C. The

PCR products were examined by electrophoresis on a 7%

nondenaturing polyacrylamide gel run at 220 V for 40 min

and visualized by silver staining. The density distribution map of

polymorphic SSR markers on chromosomes was generated using

MG2C software (http://mg2c.iask.in/mg2c_v2.1/).
Results

Overview of MacadamiaGGD

MacadamiaGGD contains the most comprehensive

bioinformatics datasets of macadamia (including five genomes,

a total of 89.28 Gb of transcriptomic data, three chloroplast and

mitochondrion genomes, germplasm data for four species and

262 main varieties, nine genetic linkage maps, 35 SNPs and 657

SSR markers), which provides convenient access to the large

amount of germplasm and genomic information of macadamia

(Figure 1A). MacadamiaGGD is composed of 11 main

functional modules: Home, Germplasm, Genomes, Expression,

BLAST, Markers, Maps, Tools, References, Download and Help

(Figure 1C). MacadamiaGGD can be used to search and

visualize genomic information by using various tools,

including search, JBrowse, BLAST, primer designer, sequence

fetch, enrichment analysis, multiple sequence alignment,

genome alignment, and gene homology annotation (Figure 1).

MacadamiaGGD also provides information about macadamia

germplasm and genome-related references. In summary,

researchers can use the above functional modules of the

database to quickly acquire the germplasm and genomic

information of macadamia.
Germplasm

In the Germplasm module of MacadamiaGGD, 23

agronomic traits of four species and 16 agronomic traits of 262

main varieties were carefully described, including tree vigor, leaf

type, fruit shape, flower color, the early-bloom stage and full-

boom stage, and others. Users can easily obtain information on
Frontiers in Plant Science 05
the morphological characteristics of four macadamia species and

262 varieties in the germplasm module. In addition, a

phylogenetic analysis tool based on the results of Alam et al.

(2018), which shows genetic distances between individuals

genotypes, is provided in this module.
Genome browse and search

The MacadamiaGGD database provides public information

on the assembled genomes of the M. integrifolia, M. tetraphylla,

M. ternifolia, and M. jansenii, which are available in different

public databases. For example, when “Genomes” is clicked on,

the column header label appears, showing the suboptions as in

Figure 2A. We can choose any label to access the sublinks and

search for the needed information. When the user enters a gene

“LOC122078696” in Macadamia integrifolia HAES 741 genome

Browse, it will get the structure and function annotation

information of all transcript of the gene (Figure 2B).

Moreover, when the user clicks “Search”, a new layer appears

with four options: “Keyword”, “Gene ID”, “Gene Name”, and

“Region” (Figure 2C). Then, if one clicks “Gene ID”, the

interface appears as a blank box (Figure 2C). The user can

enter the gene “LOC122078696” in the box and click the Search

button; then, the requested information is displayed (Figure 2C).
Genome JBrowse

Gene annotations in MacadamiaGGD are displayed

graphically in the genome JBrowse, which includes the

information of the gene location, nucleotide sequences, amino

acid sequences, and other features. For example, if a user selects

the genomic region from 192751 bp to 203445 bp on

Chromosome 14 (NC_056557.1) for browsing, all genes

located within this zone are displayed properly (Figure 2D).

Further, when the mRNA XM_042644823.1 is clicked on,

detailed information on its mRNA, coding sequence (CDS),

and other features are displayed (Figure 2E).
Transcriptomes of macadamia from
different tissues

In the expression module of MacadamiaGGD, a total of

89.28 Gb of raw RNA-seq data were collected from tissues of

young leaves, shoots, and flowers from the cultivar ‘Mauka’

(Nock et al., 2020); tissues of leaves, stems, flowers, and roots

from the cultivar ‘Kau’; and shells and kernels at five different

development stages from cultivar ‘Hinde’ (Lin et al., 2022). By

mapping the transcriptome data to the reference genome and

using transcripts per million (TPM) for calculation, we acquired

the expression matrix of the annotated genes of macadamia.
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BLAST

BLAST is the most commonly used tool and is included as a

separate module in the MacadamiaGGD database. It allows users

to perform both BLASTp and BLASTn searches to rapidly align

sequences to the database. In the BLAST module, pasting the

DNA/protein sequences in the query box or uploading a FASTA

file is acceptable. For example, the users can enter “Example 1”

sequence in the blank box and select the against database type, e-

value, and max target sequence number and then click the “Run”

button to obtain the comparison results via the “BLASTp”

function (Figure 3A). In addition, when pulling down the
Frontiers in Plant Science 06
search result interface, a user is presented with all the

comparison results (Figure 3B), including the description

information of the candidate subject sequences alignment

parameters (Figure 3C) and the matching information between

the query sequence and each subject sequence (Figure 3D).
Markers

In the “markers” module, we included 657 SSR markers and

35 SNPs. Macadamia trees have a relatively long juvenile period

(commonly four to five years); thus, it would take a great deal of
A

B

C

FIGURE 1

Feature diagram of MacadamiaGGD. MacadamiaGGD is a collection of germplasm, genomic, transcriptomic, maps, and molecular marker data
of macadamia, and multiple bioinformatic tools. All the data are stored and managed in a PostgreSQL database. (A), Data source layer.
(B), Middleware layer. (C), Application layer.
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time to select high-yielding cultivars for breeding. Molecular

markers that are associated with key yield traits are extremely

important for developing rapid cycle breeding programs in

macadamia (O'Connor et al . , 2020). To verify the

polymorphism of SSR markers from previous research

(Schmidt et al., 2006; Nock et al., 2014b; Langdon et al., 2019),

we randomly selected 8 primer pairs from MacadamiaGGD

(Table S2) and identified polymorphisms of these SSRs via

electrophoresis. The results showed that the selected primer

pairs were polymorphic.

In this study, a total of 145593 SSR loci were obtained from

M. integrifolia HAES 741 genomic sequences (Nock et al., 2020).

They were evenly distributed on 14 chromosomes, with an

average density of 10400 loci per chromosome (Table 2). SSR

motifs exist as one of three main types: dinucleotide repeats

(DNRs), trinucleotide repeats (TNRs) and tetranucleotide

repeats (TTRs). Among these SSRs, DNRs were the most

abundant (115139), followed by TNRs (26400) and TTRs

(4054), which accounted for 79%, 18% and 3%, respectively

(Table 2). A total of 927 primer pairs were designed by the

selection of the SSR loci with repeat numbers ≥30 from the total

SSR loci (Table S3). Out of 927 amplified products, 605 primer

pairs were polymorphic, with an average of 1.17 SSR markers per

Mb on 14 chromosomes. According to the SSR density

distribution map, chromosome 5 had the highest number of

SSRs (81), but chromosome 12 had only 13 SSRs (Figure 4). In

addition, a total of 35 SNPs were included in the “markers”

module, which were significantly associated with the yield
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component traits identified by genome-wide association

studies (GWASs) (O'Connor et al., 2019a; O'Connor

et al., 2020).
Maps

The map module contains nine genetic linkage maps

derived from three macadamia cultivars, HAES 741, HVP

A268 and HVP A4. In each map, there were 14 linkage

groups (LGs), which correspond to the number of haploid

chromosomes in macadamia. When the users open this

module, the features of the maps are displayed, including the

description and number of maps. The images of the maps

appear at the lower left of the module, while the detailed

information of the LG location, the marker numbers, the

largest and smallest gap, the total length and the average

length between markers is displayed at the lower right.
Tools

The tools module contains several utilities, including

“Primer designer”, “Sequence Fetch”, “Enrichment analysis”,

“Multiple sequence alignment”, “Genome alignment”, and

“Gene homology annotation”, which allow a relatively

complete bioinformatics analysis. The user can click the

“Primer designer” button, input the nucleic acid sequence or
A B

D E

C

FIGURE 2

General view of the “Genomes” module. (A), The genome module includes “11 macadamia genomes”, and three tools including “Browse”,
“Search”, and “JBrowse”. (B), The Browse information of gene “LOC122078696” in Macadamia integrifolia HAES 741 genome. (C), Showing the
Search result of gene “LOC122078696”. (D), The JBrowse information of gene “LOC122078696”. (E), Detailed description interface of mRNA
XM_042644823.1.
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select a scaffold range, adjust the appropriate parameters, and

click the “Run” button to obtain a satisfactory pair of primers.

Users can screen functional genes of interest (GOIs) based on

the data of the M. integrifolia transcriptome, click the

“Enrichment analysis” button, input the gene ID in the

dialog box and select Kyoto Encyclopedia of Genes and

Genomes (KEGG) or Gene Ontology (GO) for functional

clustering analysis. “Sequence Fetch” can be used to

efficiently obtain the sequence of GOI from the M.

integrifolia genome, which can acquire either a certain or

multiple gene sequences at the same time. “Muscle” is a

multisequence alignment tool that not only can be used to

obtain homology between genes but also can be used to build

an intuitive diagram. The “primer designer” tool can be used to

design specific primers to clone GOIs for functional research.

In addition, by using the “LASTZ” and “GeneWise” tools, users

can complete genome alignment and gene homology

annotation, respectively.
References

Currently, the “Reference” module contains the

macadamia germplasm and genome-related references, which

allows users to query approximately 40 articles information

related to the data contained in MacadamiaGGD. The

completion and optimization of macadamia genome

sequencing results among these publications contribute to
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the study of macadamia funct ional genomics and

comparative genomics and are convenient for molecular

plant breeding efforts.
A case study involving the use of
MacadamiaGGD

MacadamiaGGD integrates BLAST, enrichment analysis,

and other tools for functional genomic research of

Macadamia. Acyltransferases are the potential molecular

targets for genetic engineering to increase the oil content and

alter the fatty acid composition in the oil crops (Zhang et al.,

2021). Here, we provide a case study on the diacylglycerol

acyltransferases (DGATs) of M. integrifolia by using the

“BLAST” , “GO enrichment” , “JBrowse” , and “Gene

Expression” function of MacadamiaGGD. By using BLAST in

MacadamiaGGD, the Conserved Domains Database (CDD) of

the NCBI database, the SMART database (https://smart.embl.

de/) and MEGA 11 software (https://megasoftware.net/), we

obtain one DGAT1 (MiDGAT1), three DGAT2 (MiDGAT2-1,

MiDGAT2-2, MiDGAT2-3), and one DGAT3 (MiDGAT3)

(Figure 5A). Of the five MiDGAT genes, two genes

(MiDGAT2-1, MiDGAT2-3) were mapped to chromosome 14,

and their physical positions were very close (Figure 5B).

To verify the expression features of MiDGATs during

triacylglycerol (TAG) biosynthesis, we downloaded the

transcriptome expression data of M. integrifolia kernel
A B

DC

FIGURE 3

View of the “BLAST” module. (A), Demonstration of the “BLASTp” box. (B), Example of the search result after a sequence was input. (C), Descriptions
of the alignment result. (D), Match information between the query sequence and subject sequences.
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development from MacadamiaGGD. By using gene ontology (GO)

annotation information available from MacadamiaGGD, we

conducted the GO enrichment analysis of the five MiDGAT

genes from M. integrifolia. The results showed the five MiDGATs

were enriched in more than 30 GO terms, which are involved in

fatty acid and TAG biosynthesis in plants (Figure 5C). Further, we

also investigated the expression profile ofMiDGATs at five stages of
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kernel development. MiDGAT2-1 and MiDGAT2-3 were highly

expressed in stages I and II (Figure 5D).MiDGAT2-2 exhibited low

expression levels in stages I and II, whereas it was highly expressed

in stages III, IV, and V. Consistent with these results, The

expression pattern of MiDGAT2 was recently found to be mainly

correlated with fatty acid biosynthesis at different stages of

developing kernels (Gao et al., 2021).
TABLE 2 Characterization of the screened SSRs in Macadamia integrifolia.

Chromosome DNR TNR TTR All
SSR loci

Proportion to all
SSR loci (%)

All SSRs SSRs densitydistribution
on chromosome(1/Mb)

Chr1 6453 1276 196 7925 5.44 21 0.58

Chr2 10092 2386 352 12830 8.81 28 0.64

Chr3 9217 2048 349 11614 7.98 25 0.66

Chr4 8935 2142 318 11395 7.83 67 1.79

Chr5 11249 2537 400 14187 9.74 81 1.72

Chr6 8208 1823 291 10322 7.1 63 1.54

Chr7 8730 2065 289 11084 7.61 24 0.65

Chr8 8878 1991 288 11157 7.66 73 2.09

Chr9 6890 1566 249 8705 5.98 22 0.52

Chr10 7443 1833 269 9547 6.56 44 1.29

Chr11 7625 1856 271 9752 6.7 59 1.74

Chr12 7315 1666 250 9231 6.34 13 0.41

Chr13 6562 1516 257 8335 5.72 57 1.95

Chr14 7542 1695 275 9512 6.53 29 0.88

Total 115139 26400 4054 145593 100 606
DNR, dinucleotide repeat; TNR, trinucleotide repeat; TTR, tetranucleotide repeat; Mb, megabase.
FIGURE 4

Density distribution map of polymorphic SSR markers on chromosomes in Macadamia integrifolia.
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Discussion

The macadamia database MacadamiaGGD serves as an

integrated germplasm and genomic research platform that can

facilitate the genomic research and molecular breeding of

macadamia. MacadamiaGGD integrates the currently

published macadamia datasets of genomes, genetic maps,

molecular markers, and morphological data of four macadamia

species. MacadamiaGGD consists of 11 functional modules:

Home, Germplasm, Genomes, Expression, BLAST, Markers,

Maps, Tools, References, Download and Help.

Compared to other existing genome databases, the

MacadamiaGGD provides a more comprehensive database and

tools to characterize germplasms and genes of macadamia

species. For example, “Phylogenetic Analysis”, which is
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integrated in the Germplasm module of MacadamiaGGD, was

not included in the Citrus Genome Database (CGD, https://

www.citrusgenomedb.org/), the Rice Genome Hub (RGH,

https://rice-genome-hub.southgreen.fr) (Droc et al., 2019), the

Kiwifruit Genome Database (KGD; http://kiwifruitgenome.org/)

(Yue et al., 2020), and the functional genomics database for

cannabis (CannabisGDB, https://gdb.supercann.net) (Cai et al.,

2021). Databases of two kinds of molecular markers, SSR and

SNP, are included in MacadamiaGGD, but not available in RGH,

KGD, CannabisGDB, and the Gossypium Resource and

Network Database (GRAND, http://grand.cricaas.com.cn)

(Zhang et al., 2022). And MacadamiaGGD provides genetic

linkage maps of nine genotypes, whereas genetic linkage maps

are not available in KGD, CannabisGDB, and GRAND. Given

the comprehensive information, interactive nature, and user-
A

B
D

C

FIGURE 5

A case study for the application of MacadamiaGGD. (A), Phylogenetic analysis of macadamia MiDGATs and DGATs from other plants. The
phylogenetic tree was constructed via the neighbor-joining method and 1000 bootstraps by the software MEGA 11 (https://megasoftware.net/).
The tree was visualized by iTOL (https://itol.embl.de/). Macadamia MiDGAT proteins and their sequence accessions are MiDGAT1
(Mi03Gene67030), MiDGAT2-1 (Mi03Gene16888), MiDGAT2-2 (Mi03Gene52987), MiDGAT2-3 (Mi03Gene16887) and MiDGAT3
(Mi03Gene46198) from Macadamia integrifolia. The proteins and their sequence accessions from other plants are AtDGAT1 (NP_179535),
AtDGAT2 (AEE78802) and AtDGAT3 (Q9C5W0.2) from Arabidopsis thaliana, GmDGAT1-1 (NP_001237289), GmDGAT1-2 (NP_001237684.2),
GmDGAT1-3 (NP_001242457.1), GmDGAT2 (NP_001299586.1) and GmDGAT3 (XP_003542403.1) from Glycine max, AhDGAT1 (AGT57761.1),
AhDGAT2 (AEO11788.1) and AhDGAT3 (AAX62735.1) from Arachis hypogaea, JcDGAT1 (NP_001292926), JcDGAT2 (NP_001292973) and
JcDGAT3 (XP_012083005.1) from Jatropha curcas, ZmDGAT1 (NP_001349157.1) and ZmDGAT2 (AQL03438.1) from Zea mays, and EgDGAT1
(XP_039165824.1), EgDGAT2 (XP_010033619.2) and EgDGAT3 (XP_010024878.2) from Eucalyptus grandis. (B), Distribution of MiDGAT genes
within the macadamia genome. The chromosome number is indicated at the top of each chromosome. The red font indicates the specific
physical position of the genes. (C), GO enrichment of MiDGATs. (D), Expression pattern of MiDGATs at different developmental stages of
macadamia kernels. The transcripts per million (TPM) values of expression levels are graphically represented by the Pheatmap package (R 4.2.0).
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friendly database, MacadamiaGGD makes it easy to retrieve

genomic information of macadamia. Thus, MacadamiaGGD not

only provides a convenient way for researchers to understand

and acquire basic germplasm and genomic information but also

can largely help advance the molecular breeding of macadamia

in the future.

The macadamia genome was used for the exploration of the

SSR motifs, which were found to be evenly distributed across all

14 chromosomes. However, the percentage of the three SSR

motifs was different, among which DNRs accounted for 79%,

TNRs accounted for 18%, and TTRs accounted for 3%. This

pattern is consistent with that inMyrica rubra (Jiao et al., 2012),

in which DNRs were dominant. In this study, 927 primer pairs

were designed for the verification of SSR locus polymorphisms,

among which 605 primer pairs were found to be polymorphic.

The density of microsatellite distribution was approximately

1.17 SSRs/Mb on 14 chromosomes, which was much higher

than that in previous studies (Nock et al., 2014b). The main

reason for this discrepancy may be due to the differences in

genome quality and the SSR prediction method. In summary, we

developed the first database of macadamia germplasm, genome,

and genome-based SSR marker information, which will facilitate

the molecular breeding of macadamia.
Conclusion

In conclusion, we developed the first comprehensive

macadamia germplasm and genomic database MacadamiaGGD,

which could serve as a central portal for macadamia species.

MacadamiaGGD integrates data from germplasm, genomes,

transcriptomes, genetic linkage maps, and SSR markers from

various macadamia species. MacadamiaGGD also provides a

group of user-friendly modules that enable users worldwide to

efficiently retrieve and analyze genomic data. At present,

MacadamiaGGD is in its first version but will be updated in a

timely manner when new macadamia germplasm and omics data

are available or published. We believe that MacadamiaGGD not

only will broaden the understanding of the germplasm, genetics

and genomics of macadamia species but also will facilitate the

molecular breeding of macadamia.
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