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Chitinases are responsible for catalyzing the hydrolysis of chitin and contribute
to plant defense against fungal pathogens by degrading fungal chitin. In this
study, genome-wide identification of the chitinase gene family of wild apple
(Malus sieversii) and domesticated apple (Malus domestica) was conducted,
and the expression profile was analyzed in response to Valsa mali infection. A
total of 36 and 47 chitinase genes belonging to the glycosyl hydrolase 18
(GH18) and 19 (GH19) families were identified in the genomes of M. sieversii and
M. domestica, respectively. These genes were classified into five classes based
on their phylogenetic relationships and conserved catalytic domains. The
genes were randomly distributed on the chromosomes and exhibited
expansion by tandem and segmental duplication. Eight of the 36 MsChi
genes and 17 of the 47 MdChi genes were differentially expressed in
response to V. mali inoculation. In particular, MsChi35 and its ortholog
MdChi41, a class IV chitinase, were constitutively expressed at high levels in
M. sieversii and domesticated apple, respectively, and may play a crucial role in
the defense response against V. mali. These results improve knowledge of the
chitinase gene family in apple species and provide a foundation for further
studies of fungal disease prevention in apple.
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Introduction

Malus sieversii is the primary progenitor of many cultivars of
domesticated apple (M. domestica) and is mainly distributed in
Central Asia and Xinjiang, China (Volk et al., 2013; Duan et al,
2017). A previous study of the phylogenetic relationships of
cultivated apple and its ancestor revealed that M. sieversii from
Xinjiang, China, was most closely related to the M. domestica
cultivar ‘Golden Delicious’ (Zhou and Li, 2000). Malus sieversii
is an important species in natural forest of the Tianshan
Mountains in Xinjiang, and features high genetic diversity and
disease resistance, thus providing a valuable genetic resource for
molecular breeding of cultivated apple (Chen et al., 2007; Zhang
et al., 2007; Ballester et al., 2017). The fruit of M. sieversii contain
higher phenolic and flavonoid contents compared with those of
cultivated apple, and potentially could be used to breed cultivars
that produce fruit with red flesh and high flavonoid content
(Zhang et al., 2008).

Recent studies have reported that the wild M. sieversii
population in the Tianshan Mountains has experienced a
dramatic decline partly as a result of Valsa canker (Bozorov
et al., 2019; Liu et al, 2020). Valsa canker is caused by the
necrotrophic pathogen Valsa mali, which is a major threat to
apple production in China, Japan, Korea, and Central Asia,
where it leads to severe yield losses (Lee et al., 2006; Suzaki, 2008;
Yin et al., 2015; Wang et al., 2016). Fungicide applications are
not always effective to control fungal mycelia within the host
xylem (Yin et al, 2016). The mining of candidate genes and
development of disease-resistant cultivars are effective and
practical approaches to control the disease. The transcriptomic
changes in response to V. mali infection have been investigated
previously in M. sieversii (Liu et al., 2021) and M. domestica
(Yin et al, 2016). The plant-pathogen interaction, plant
hormone signal transduction, flavonoid biosynthesis, and
phenylpropanoid biosynthesis pathways of M. sieversii (Haxim
etal, 2021; Liu et al,, 2021), and chitin signaling pathway of M.
domestica (Yin et al, 2016) were significantly enriched in
response to infection by V. mali. Exploration of the disease-
resistance genes in apple responsive to V. mali infection is
important for disease prevention in domesticated and wild
apple species, especially M. sieversii.

Chitinases (EC 3.2.1.14) are glycosyl hydrolases that
breakdown glycosidic bonds in chitin, a major structural
component of fungal cell walls, and play important roles in
plant defense responses (Grover Plant Chitinases, 2012; Hamid
et al., 2013). Plant chitinase hydrolyzes the B-1,4-glycosidic
bonds of chitin into chitin oligosaccharides during fungal
infection and these oligosaccharides activate the immune
responses of the host plant (Shibuya and Minami, 2001; Kaku
et al.,, 2006; Hamid et al., 2013). To date, more than 175 different
families of glycosyl hydrolases have been identified based on
sequence similarity (http://www.cazy.org). On the basis of
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catalytic domains and amino acid sequence similarity,
chitinases have been classified into the glycosyl hydrolase 18
(GH18) and 19 (GH19) families (FHenrissat and Bairoch, 1993;
Hamid et al, 2013). In addition, to reflect phylogenetic
relationships, plant chitinases have been categorized into five
classes (Class I to V), of which the GH18 family comprises
classes IIT and V, and the GH19 family contains classes I, II, and
IV (Grover Plant Chitinases, 2012). Chitinases are involved in
the response to diverse abiotic stresses, such as heat, cold, salt,
wounding, drought, heavy metal toxicity, ozone, and ultraviolet
light, as well as a variety of plant phytohormones, including
jasmonic acid, salicylic acid, ethylene, cytokinin, and indole
acetic acid (Kasprzewska, 2003; Su et al, 2014). Members of
the chitinase family from plant species are able to inhibit fungal
growth in vitro (Liet al., 2019) and in vivo (Xiao et al., 2007), and
therefore are potential candidates with which to enhance plant
resistance to fungal pathogens (Kumar et al., 2018).

The availability of plant genomic sequence data allows
genome-wide mining of the chitinase gene family. Recently,
the chitinase gene family has been identified in the genomes of
several tree species, such as Populus trichocarpa (Zhang et al,
2022), Eucalyptus grandis (Tobias et al., 2017), and Hevea
brasiliensis (Misra, 2015). However, to date, the chitinase
genes of apple species have not been systematically analyzed.
The availability of whole-genome sequences for apple species,
including M. sieversii and M. domestica, enables genome-wide
identification of chitinase genes. In this study, the chitinase
family members in the genomes of M. sieversii and M. domestica
were surveyed and their phylogenetic relationships, gene
structure, and gene duplication events were analyzed. In
addition, the expression patterns of the chitinase genes in
response to V. mali infection were analyzed. The present
results extend knowledge of chitinases in apple species and
might provide effective gene resources for improvement of
apple resistance to V. mali.

Materials and methods
Plant material and pathogen infection

Malus sieversii (Ledeb.) M.Roem. seeds were purchased from
the Nature and Wildlife Conservation Station of Xinyuan
County, Xinjiang, China. Malus domestica ‘Golden Delicious’
seeds were purchased from the Liqun Nursery Co. Ltd.
(Shandong, China). The seeds were germinated in a petri dish
after removal of the husks. Three-week-old seedlings were
planted in pots containing a mixture of soil and vermiculite
and were grown at 24°C under a 16 h/8 h (light/dark)
photoperiod. The V. mali isolate EGI1 (Liu et al., 2020) was
grown on potato dextrose agar (PDA) medium (Rishui
BioTechnologies, Qingdao, China) at 25°C for 3 days. Six-
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month-old plants were infected with V. mali as described
previously (Liu et al, 2020; Haxim et al, 2021). Briefly,
mycelial plugs (diameter: 5 mm) were excised from 3-day-old
cultures of isolate EGI1 on PDA medium. Detached leaves of the
host plant were wounded with a fabric pattern wheel and then
inoculated with the mycelial plugs. The inoculated leaves were
placed in petri dishes sealed with parafilm and were incubated in
the dark at 25°C.

RNA isolation and real-time quantitative
PCR analysis

Total RNA was isolated from M. sieversii leaves collected at
different time points (0, 1, 2, and 5 days post-inoculation [dpi])
after inoculation with V. mali using the E.ZN.A.® Plant RNA Kit
(No. R6827, Omega Bio-tek, Norcross, GA, USA) in accordance
with the manufacturer’s instructions. The first-strand cDNA was
synthesized from 1 pg total RNA using the PrimeScript RT
reagent Kit with gDNA Eraser (No. RR047Q, Takara, Dalian,
China). To validate the expression level of the chitinase genes,
gene-specific primers (Table S1) were designed using DNAMAN
version 9.0 software (Lynnon BioSoft, Vaudreuil, Quebec,
Canada) and synthesized by Sangon Biotech (Shanghai, China).
The transcripts of the target genes were detected using the TB
Green Premix Ex Taq II Kit (No. RR820A, Takara) with the
CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA,
USA). The thermal profile for qRT-PCR was as follows:
preheating at 95°C for 30 s, then 40 cycles of 95°C for 5 s and
58°C for 30 s. A melting curve analysis was conducted to confirm
the amplification specificity. The relative transcript abundance of
the chitinase genes was analyzed with the 27" method (Livak
and Schmittgen, 2001). The EF-1a (Elongation factor 1-0) gene
has been evaluated for internal reference in apple species (Zhu
et al., 2019) and served as reference in our previous work (Liu
et al, 2021; Haxim et al., 2021; Liu et al., 2021) because of its stable
expression in our previous work under V.mali infection.
Therefore, the EF-10. gene was also used as an internal
reference for the qPCR quantification in the present study. Each
sample comprised three biological replicates and each biological
replicate was analyzed with three technical replicates. Statistical
analysis of the data was performed with analysis of variance using
SPSS 18 software (SPSS, Chicago, IL, USA).

RNA-sequencing data analysis

Transcriptome data for M. sieversii (NCBI BioProject:
PRJNA687214) (Liu et al, 2021) and M. domestica (NCBI
SRA accession: SRP034726) (Yin et al., 2016) in response to V.
mali infection were used to analyze differentially expressed
genes. The fragments per kilobase of transcript per million
fragments mapped (FPKM) value was calculated for each gene.
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Differential expression analysis of three biological replicates per
condition was performed using the ‘DESeq’ R package (1.18.0).
The P-values were adjusted using the Benjamini-Hochberg
approach to control the false discovery rate. Transcripts with
an adjusted P-value < 0.05 and log, fold change > 1 were
considered to be differentially expressed. The log, fold-change
values were used for heatmap generation.

Genome-wide identification of
chitinase genes

To identify potential chitinase genes in the two apple species,
the M. sieversii genome (version JAHTLV010000000) and M.
domestica genome (Daccord et al., 2017) (GDDH13 version 1.1)
were retrieved from the NCBI (https://www.ncbi.nlm.nih.gov/)
and GDR (https://www.rosaceae.org/) databases, respectively. A
hidden Markov model seed profile of Glyco_hydro_18
(PF00704) and Glyco_hydro_19 (PF00182) was downloaded
from the Pfam database (Mistry et al, 2021) and chitinase
genes in the genomes were identified using TBtools software
(Chen et al., 2020). The SMART (Letunic et al., 2021) database
was used to confirm the presence of chitinase domains with a
cut-off E-value < 0.0001.

Phylogenetic relationships, gene
organization, and conserved
motif analysis

To study evolutionary relationships, the full-length amino
acid sequences of chitinase proteins from M. domestica, M.
sieversii, and Arabidopsis thaliana were aligned using Clustal X2
(http://www.clustal.org/). A phylogenetic tree was generated using
MEGA-X software (https://www.megasoftware.net/) with the
maximum likelihood method and topological support was
assessed by means of a bootstrap analysis with 1000 replicates.
The exon-intron organization of the chitinase genes was
visualized using TBtools (Chen et al., 2020). Conserved motifs
and domains were identified with the MEME Suite (Bailey et al.,
2006) and SMART database (Letunic et al,, 2021), respectively,
and were visualized using TBtools (Chen et al., 2020). The domain
signatures were identified using the PROSITE database (Sigrist
et al,, 2013). The SignalP 5.0 online server (Almagro Armenteros
et al, 2019) was used to identify signal peptides in the chitinase
proteins of M. sieversii and M. domestica.

Chromosomal location and gene
duplication analysis

The chromosomal location of the chitinase genes was
visualized with the MG2C online tool (http://mg2c.iask.in/
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mg2c_v2.1/) based on genomic annotation data. Gene
duplication events and synteny relationships of the chitinase
genes were analyzed using the multiple collinearity scan toolkit
MCScanX (Wang et al., 2012) and were visualized with TBtools
(Chen et al., 2020). For tandem duplication events, two or more
chitinase genes separated by five or fewer genes within an
interval of 100 kb on the same chromosome were considered
to be tandem duplicated genes (Wang et al., 2010; Zhao et al.,
2018). Substitution rates of synonymous (K;) and non-
synonymous (K,) chitinase genes were calculated with
KaKs_Calculator 3.0 (Zhang, 2022). The evolutionary
duplication time (T) was calculated with the formula T =
Ky/2A x 10 million years ago (Mya), where A = 1.5 x 10™® in
apple (Zhang et al,, 2018).

Prediction of cis-acting elements in
promoter regions

The promoter sequence (the 2.0 kb DNA sequence upstream
of the start codon) of each chitinase gene was retrieved from the
M. sieversii genome (version JAHTLV010000000) and M. x
domestica genome (GDDHI13 version 1.1). The cis-acting
elements in each gene was predicted using the PlantCARE
online tools (Lescot, 2002).

Gene co-expression network analysis for
M. sieversii

Gene co-expression network analysis was performed using the
weighted gene co-expression network analysis (WGCNA) tools
from the BMKCloud platform (https://international.biocloud.net/
zh/software/tools/list). Normalized gene expression data
(FPKM > 1) in the 12 samples from M. sieversii were used as
the input, and the expression level of the chitinase genes was used
as a trait. The WGCNA modules of eigengenes correlated with
chitinase gene expression profiles were identified with the default
settings using a dynamic tree cut-off algorithm (minimum cluster
size 30 and merging threshold function 0.3). Module membership
(MM) was calculated based on Pearson correlation analysis
between the expression level and the module eigengenes (ME;
representative of the gene expression profile in each module).
Gene significance (GS) was calculated as the correlation between
the trait data and MEs.

Transient expression assay

For the transient expression, the full length of MsChi35 gene
was cloned into pBI121 plant expression vector by using an In-
fusion HD cloning kit (TAKRA, Code No.639648). The pBI121-
MsChi35 was transiently expressed in detached M.sieverssi
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leaves by agroinfiltration method as described (Liu et al,
2021). After the 3 days of agroinfiltration, these leaves were
wounded by a fabric pattern wheel and inoculated with V.mali
isolate EGI1 as described (2.1) (Liu et al., 2020; Liu et al., 2021).
Leaves inoculated with sterile ddH,O were used as controls.
After a 4-days of inoculation of the V. mali, the lesion areas were
measured by Image] software and lesion ratios (%) was
calculated as proportion of lesion area in the whole leaf. Each
sample contained ten leaves with three biological replicates.
Statistical analysis of the data was performed with analysis of
variance using SPSS 18 software (SPSS, Chicago, IL, USA).

Results

Genome-wide identification of chitinase
gene family in two apple species

The whole-genome sequences of M. sieversii and M. x
domestica were used for genome-wide exploration and
phylogenetic analysis of the chitinase gene family. We used the
Pfam database (Mistry et al., 2021) and the Glyco_hydro_18
(PF00704) and Glyco_hydro_19 (PF00182) domains to search
for chitinases in the two apple genomes. The SMART (Letunic
et al,, 2021) database was used to verify the predicted genes. We
accurately identified 36 putative chitinase genes in M. sieversii, of
which 25 genes were members of the GH18 family and 11 genes
belonged to the GH19 family (Table S2). In the M. x domestica
genome, 47 chitinase genes were identified (Table 52), of which
33 genes were identified as members of the GH18 family and 14
genes belonged to the GH19 subfamily. For M. sieversii, the
chitinase genes were annotated as MsChil to MsChi36, whereas
for M. x domestica the genes were annotated MdChil to
MdChi47, where the genes were numbered sequentially based
on their chromosomal location in the genome.

The length of the 36 predicted MsChi proteins ranged from
101 (MsChi36) to 517 (MsChil) amino acid residues, of which
only MsChil was longer than 500 amino acids. The predicted
molecular weight (MW) and isoelectric point (PI) ranged from
10.97 kDa (MsChi36) to 57.42 kDa (MsChil) and from 4.34
(MsChi7) to 9.64 (MsChi23), respectively. Of the 36 MsChi
proteins, 25 were predicted to contain a signal peptide in the
C-terminus.

Chromosomal location and
phylogenetic analyses

To accurately locate the chromosomal position of the genes,
a chromosomal distribution map was constructed based on the
start-end position of each chitinase gene. The 36 MsChi genes
were mapped to 11 chromosomes, whereas the 47 MdChi genes
were distributed on 13 chromosomes (Figures 1A, B).
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FIGURE 1

Chromosomal locations and phylogenetic relationship of MsChis and MdChis. Distribution of chitinase genes on M.sieversii (A) and M.domestica
(B) chromosomes. MG2C online tools were used (http://mg2c.iask.in/mg2c_v2.1/) to depict chromosomal location, and genes were marked
with short lines. The tandem duplicated gene pairs are marked by red braces. The major classes are represented as follows: orange=Class |,
purple=Class I, green=Class lll, blue= Class IV and black=Class V. Scale bar represents Mb. The full-length of amino acid sequences of putative
chitinase protein from two glycosyl hydrolase families: GH18 (C) Class Il (green) and V (black), and GH19 (D) Class IV (sky blue), Class Il (purple),
Class | (orange) in M.domestica, M.sieversii and A.thaliana were aligned using ClustalW method in MEGAX. An unrooted phylogenetic tree was
built using the Maximum Likelihood method with 1000 replicates. The roman numerals (I-V) representing each gene cluster and genes from

each species were labelled with different shapes. The numbers at the nodes represent statistical frequency.
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To explore the evolutionary relationships of the chitinase
gene family, an unrooted phylogenetic tree for the 36, 47, and 25
chitinase proteins from M. sieversii, M. x domestica, and A.
thaliana, respectively, was constructed using the maximum
likelihood method. The GHI18 subfamily was grouped into
three lineages, whereas the GH19 subfamily was grouped into
four branches. Based on the classification of A. thaliana
chitinases (Passarinho and Vries, 2002), the MsChi and MdChi
genes were further classified into five classes (Figures 1C, D). The
number of members in each class differed between M. sieversii
and M. x domestica (Table S3), especially in Class V.
Interestingly, Class IV chitinases comprised only one member
in M. sieversii, but three members in M. x domestica.

Gene duplication and synteny analysis

In the course of evolution, gene duplication plays a crucial
role in the expansion of a gene family (Cannon et al., 2004;
Yanai, 2022). To further study the expansion mechanism of the
chitinase genes, we employed the basic local alignment search
tool for proteins (BLASTP) and MCScanX tools to identify
duplication events in the chitinase gene family of the two
apple species. Segmentally duplicated genes in the M. sieversii

Ms-Chr7

A S
3 22
L .
® o S
& [ o, ¥
: / 4
5 1/ .
4 .
C / v
hig / )
o, / y
hiz—g, °
WsChizg S = [ E’
M.sieversii wNsCirt Ms-Chr2  MsChr3  MsChrd  MsChr5  Ms-Chr6
M.domestica

FIGURE 2

i s § s §f e i ccitons |f exm—" i ex— ¥ cn—
Md-Chr00  Md-Chr01 Md-Chr02 Md-Chr03 Md-Chr04 ~Md-Chr05 Md-Chr06 Md-Chr07 Md-Chr08 Md-Chr09 Md-Chr10 Md-Chri1 Md-Chr12 Md-Chr13 Md-Chr1d

10.3389/fpls.2022.1007936

and M. x domestica genomes were identified by collinearity
analysis (Figures 2A, B). In detail, 14 pairs of MsChi genes were
segmentally duplicated among 10 chromosomes, whereas 12
MdChi genes were segmentally duplicated among nine
chromosomes (Table S4). In addition, 16 and 22 chitinase
genes were tandemly duplicated in M. sieversii and M. x
domestica, respectively (Table S4). These results demonstrated
that tandem duplication was a major driving force in expansion
of the chitinase gene family in M. sieversii and M. x domestica.

To further explore the evolutionary history of the chitinase
family, we calculated the K, and K substitution rates for
duplicated chitinase gene pairs (Table S4). Almost half of the
segmental or tandem duplicated MsChi genes were subjected to
positive selection (K /K > 1), whereas the remainder had
undergone purifying selection (K,/K; < 1). The segmental or
tandem duplication of MsChi genes was estimated to have
occurred from 3.62 to 128.71 Mya. Among MdChi genes,
purifying selection was dominant for segmental duplication,
whereas positive selection accounted for the highest
proportion of tandem duplication events. Duplication of
MdChi genes was estimated to have occurred between 1.93
and 138.52 Mya.

To understand the orthologous relationships within the M.
sieversii and M. x domestica, we further analyzed the synteny of

-
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ez’ %

ooz @

Ms-Chr8 ~ Ms-Chr9  Ms-Chr10 Ms-Chr11 Ms-Chr12 Ms-Chr13 Ms-Chr14 Ms-Chr15 Ms-Chr16 Ms-Chr17

Md-Chri5  Md-Chr16 Md-Chr17

Collinearity analysis of MsChis and MdChis. Distribution of segmental duplication of chitinase genes on M.sieversii (A) and M.domestica

(B) chromosomes. Chromosomes are represented by gray or yellow boxes. Segmental duplication genes are connected with red lines. The gray
lines indicate all synteny blocks within the genome, and the chromosome numbers were indicated at the inside of the box. (C) Synteny analysis
of chitinase genes in M.sieversii and M.domestica. Gray lines in the background indicate the collinear blocks within M.sieversii and M.domestica

genomes, while the red lines highlight the syntenic chitinase gene pairs.
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chitinase genes. A tightly conserved collinearity relationship and
strong orthologs of chitinase genes were observed between the
syntenic regions among the M. sieversii and M. x domestica
genomes (Figure 2C). Thirty orthologous chitinase gene pairs
were identified between M. sieversii and M. x domestica
(Table S5).

Gene structure and conservative
motif analyses

To determine structural features of the chitinase genes from the
two apple species, we analyzed the exon—intron distribution of the
genes. Most GH18 chitinase genes contained one or two exons,
except for the genes of Class V, which contained seven or eight
exons (Figure 3B). In contrast, three exons were most common for
GH19 chitinase genes (Figure 3E). Interestingly, three genes
(MsChil5, MsChi2l, and MdChi29) in Class III (Figure 3B) and
only one gene (MsChi33) in Class II contained relatively long
introns (Figure 3E). Most of the closely related genes in the two
apple species were similar in length and number of exons/introns.

To further study the architecture of chitinase proteins, the
conserved motifs were predicted with the MEME Suite. A total of
20 distinct motifs were identified (Figures 3A, D). The number
and location of motifs of certain closely related genes in the two
apple species were highly conserved, providing further evidence
to support the phylogenetic and functional relationships.
Furthermore, several class-specific motifs were detected in the
GHI18 family. For instance, motifs1, 2, and 17 were restricted to
Class III, wheras motif18 was the only motif in some members of
Class V (Figure 3A). Motif2 was common in each class of GH19,
except in MdChi38. In addition, motifl7 and motifl6 were
unique to Class IV and Class I, respectively (Figure 3D).

Conserved domains and active site
analysis of chitinase genes

To examine the similarity and diversity of domain architecture
of chitinase proteins from the two apple species, the localization of
the catalytic domain within the protein was analyzed by searching
for featured domains using the SMART database. Glycosyl
hydrolase family 18 (GH18) domains were present in classes III
and V chitinases, and Glycosyl hydrolase family 19 (GH19)
domains were detected in classes I, II, and IV. To locate the
catalytic domain and active site in each chitinase protein, we
generated a multiple sequence alignment and conducted a motif-
based sequence analysis. Analysis of the amino acid sequences
combined with the domain signature revealed that Class III
chitinases possessed the GHI18 catalytic domain with the
CHITINASE_18 active site signature (PS01095, [LIVMFY]-[DN]-
G-[LIVMF]-[DN]-[LIVMF]-[DN]-x-E) except for MdChi30 and
MdChil7 (Figure 4A). Among Class V chitinases, 10 members had
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the CHITINASE 18 active site signature (Figure 4B). The Class I
chitinases contained the GHI9 catalytic domain with the
CHITINASE_19_2 signature (PS00774; [LIVM]-[GSA]-F-x-
[STAG](2)-[LIVMEY]-W-[EY]-W-[LIVM]) and
CHITINASE_19_1 signature (PS00773; C-x(4,5)-F-Y-[ST]-x(3)-
[FY]-[LIVMF]-x-A-x(3)-[YF]-x(2)-F-[GSA]) (Figure 5A). In
addition, Class I chitinases had the chitin-binding domain with
the CHIT_BIND_I 1 signature (PS00026; C-x(4,5)-C-C-S-x(2)-G-
x-C-G-x(3,4)-[FYW]-C) except for MdChi45. Class IV chitinases
contained the GH19 catalytic domain with the CHITINASE 19_1
and CHITINASE_19_2 signatures. Only MdChi40 had the chitin-
binding domain with the CHIT_BIND_I 1 signature (Figure 5B).
Among Class II chitinases, the CHITINASE_19_1 signature was
detected in only three members (MdChi38, MdChi47, and
MsChi34), and no CHITINASE 19_2 signature was detected in
any members of this class (Figure 5C).

Prediction of potential cis-acting
elements in chitinase genes

To explore the transcriptional modulation of the chitinase
genes, we predicted the presence of cis-acting elements in the
promoter region (within 2000 bp upstream of the coding region)
of the genes in the two apple genomes. The number of cis-acting
elements involved in response to drought, low temperature, light,
and phytohormones were predicted (Figures S1, S2). Among these
cis-acting elements, the W-box (TTGACC) (Rushton and Somssich,
1998), P-box (CCTTTTG) (Lois et al., 1989), L-box
(ATCCCACCTACQC) (Lois et al., 1989), and S-box (AGCCACC)
(Kirsch et al,, 2000) are reported to respond to fungal pathogen
infection. The most frequent cis-acting elements in all promoters
were the TATA-box, CAAT-box, and AT-TATA box.

Expression of chitinase genes in
response to V. mali inoculation

To investigate expression of the chitinase genes of M. sieversii
and M. domestica in response to V. mali attack, we analyzed the
transcriptome of M. sieversii and M. domestica leaves after
inoculation with V. mali. A total of 36 MsChi transcripts from
M. sieversii were subjected to further differential expression analysis
through comparisons of fold-change expression. Five M. sieversii
GH18 genes (MsChil, MsChi7, MsChi9, MsChil8, and MsChil9)
and one M. domestica GH19 gene (MsChi35) were up-regulated,
whereas a single M. sieversii GH18 gene (MsChi26) was down-
regulated significantly in response to V. mali infection (Figure 6A).
For M. domestica, we analyzed previous transcriptome data in
response to V. mali infection (NCBI SRA accession ID :
SRP034726) (Yin et al, 2016). Thirteen genes were up-regulated,
whereas four genes were down-regulated (Figure 6C). To validate
the expression pattern of each transcript, we quantified the
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Structural analysis MsChis and MdChis. The conserved motifs in GH18 chitinase subfamily (A) and GH19 chitinase (D) proteins from M.domestica
and M.sieversii were identified by MEME (Bailey et al., 2006). Schematic representation of exon-intron structure of GH18 (B) and GH19

(E) chitinase subfamilies in M.domestica and M.sieversii. Active domains of GH18 (C) and GH19 (F) chitinase proteins from M.sieversii and
M.domestica were identified by SMART (Letunic et al., 2021) database. Motifs, domains and exon-intron structures were visualized by TBtools
software (Chen et al,, 2020). Each single signature is indicated by a colored box on bottoms of the figure and presented proportionally.

transcript abundance of each MsChi and MdChi gene by qRT-PCR
at different time points after inoculation. The qRT-PCR results for
the MsChi transcripts were consistent with the RNA-sequencing
data (Figures 6B, D).

Co-expression network of MsChi genes

To further predict the transcription factors associated with
chitinase gene expression, we preformed WGCNA based on the
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FPKM values from the RNA-sequencing data. After filtering
(FPKM > 1), 8780 genes were subjected to further analysis and
20 co-expressed gene modules were identified. A module with a
correlation coefficient (r) > 0.80 and p < 0.05 was defined as a
MsChi-specific module. In this manner, 10 MsChi-specific modules
were identified (Figure 7B). Notably, the MEblack module with
1010 genes was positively correlated with six up-regulated MsChi
genes (MsChil, MsChi7, MsChi9, MsChil8, MsChil9, and
MsChi35) in response to V. mali infection. Calculation of MM
and GS for the 1010 genes in the MEblack module revealed that
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1GWI SDJIRIIAGDARVLPR -~ ~VVLEAF PARLLLTKKKQRSKATNL TVNECKEMRY DG TVLESWSRWAAYRTLHDPSLRJLALQFTKELGDALHGYSLERNDKQRL QI YV I GPPHS EKL DGFSLMTYDF
GDAKVLPR---VVLEAF DAl LTKKKQRSKAINLI FRI LQFTKELGD: YVIGPROSEKL DDAVDGESLMTY D H
_ -MEX LTLTMAVRYIPTFESL---- Y| - LPLKENVTGAHAAI DPSSYVNTDYGI KQWLNYSFPASKPYLGLPYHGYANT IANPKDNNGI GARGD-
: HLL TARLPLLLTAAVYFSADFFLDATPRSYPASSLKKYLRRINBLY YGLRSWIKAGMPPEKLVMGLAQYGRSWELQNLKNHSFGATATGP
PKDAL-EMSNLALL PRLLLTSAVYYASKFTFYGGPRSYPAGAISKY T ISTHYGIGSWIEAGVESKKLVMGLPLYGRTHTLKDSKVNGIGAPALGH
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NEPK- RGNS SSFAFCIGPL ITGIKKKGLISVAS IAPFYSTARR- - YVQL TDY[p DAFKIRAAQFGKEKLLPAYEVDGRG -~ I0GDAFFDALTLLQTNGFEINGVMIFS
NN . T e e ————— TSTRYGIGSH I BAGV PHKLYVGLPLYCRTWT KOS KINRIGAPALGY
WLNTAL-DMINMEKLLDQVRAAJTS EARNTGL SRLKLTMAY!

Multiple alignments of GH18 chitinase subfamily Class Il (A) and Class V (B) of MsChis and MdChis. Amino acid sequences were aligned using
ClustalW and visualized using BioEdit. Shaded amino acid sequences are 75-100% homologous. Red line indicates signal peptide sequence and
blue line for GH18 catalytic domain. The amino acids in the purple dash line box represent residues essential for catalytic activity, Chitinase_18
signature (PS01095). The partial amnio acid sequences were presented in (B)
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FIGURE 5

Multiple alignments of GH19 chitinase subfamily Class | (A), Class Il (B) and Class IV (C) of MsChis and MdChis. Amino acid sequences were aligned
using Clustal W and visualized by using BioEdit. Shaded amino acid sequences are 75-100% homologous. Red line indicates signal sequence and
blue line for GH19 catalytic domain. The amino acids in the green dash line box represents CHITINASE_19 _1 signature (PSO00773); red dash line box
represents CHITINASE_19_2 signature (PS00774); orange dash line box represents CHIT_BIND_I_1 signature (PSO00026)

55.6% of the genes (562/1010) had high MM (>0.8) and GS (>0.8)
scores, implying that they had relatively high connectivity (r = 0.83,
p < 1e-200) within the module (Figure 7C). Twenty-nine genes
were identified as transcription factors in the MEblack module of
which seven were WRKY transcription factors (Figure 7D). These
results inferred that WRKY transcription factors may function as
upstream positive regulators of a majority of the MsChi genes in
response to V. mali infection.

Discussion

Apple is among the most commonly consumed fruits
worldwide. Fungal diseases, such as Valsa canker, are a major
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threat to apple production. Fungal resistance proteins, such as
chitinases, are essential to prevent canker diseases in apple.
Chitinases are synthesized in diverse organisms, including
bacteria, fungi, plants, insects, animals, and humans (Hamid
et al, 2013). The chitinase gene family has been identified in
numerous plant species, such as vegetable (Bartholomew et al,
[[NoYear]]; Cao and Tan, 2019; Mir et al., 2020), crop (Su et al.,
2015; Xu et al., 2016), and tree species (Tobias et al., 2017; Zhang
et al,, 2022). Reliable genomic sequence information and
annotations are available for a number of Malus species
(Daccord et al., 2017). However, genome-wide identification of
the chitinase gene family and its expression patterns under
fungal infection have not been reported previously for apple
species. In the present study, 36 and 47 putative chitinase genes
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Expression profile of MsChis and MdChis during V.mali infection. RNA-seq data analysis of chitinase genes in M.sieversii (A) or M.domestica
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(C) in response to V.mali. The heatmap generated by using TBtools (Chen et al., 2020) software based on the log2fold change values of each
chitinase genes. The colors represent expression levels, red colors represent high expression and blue colors represent low expression. *' represented
significantly (P<0.05) different expression. Verification of the expression of chitinase genes in M.sieversii (B) or M.domestica (D) under V.mali infection
by gRT-PCR. EF1-a was used as an internal reference gene. The relative expression data were analyzed by one-way ANOVA method. *' represented
significantly different (P< 0.05, n = 3), and error bars indicate mean + SE.
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FIGURE 7

Weighted Gene Co-Expression Network Analysis (WGCNA) of MsChi genes. (A) Gene dendrogram obtained using dynamic tree cut-off. Each
colored row in the bottom represents a module which contains group of highly connected genes. (B) Association of module eigengenes (MEs)
with expression profiles of selected chitinase genes. Corresponding P-values of module-chitinase gene expression correlations are indicated in
parenthesis. The panel on the left side shows the 20 modules and number of genes in each module. The color scale on the right side shows
module-trait correlation from —1 (blue) to 1 (red). Scatter plot of the correlation of module membership vs. gene significance in grey60 (C),
black (E), darkorange (G) and brown modules (I). Statistics of transcription factors in grey60 (D), black (F), orange (H) and brown modules (J).

were identified in the genomes of the wild apple M. sieversii and It is noteworthy that the chitinase genes were not evenly
domesticated apple M. domestica, respectively. Based on their distributed on chromosomes. The chitinase genes of wild apple
phylogenetic relationships and functional domains, the were mainly concentrated on chromosomes 1, 7, 9, 13, and 17,
chitinases were classified into five classes (I-V). whereas those of domesticated apple were concentrated on
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chromosomes 1, 2, 4, 7, and 15 (Figures 1A, B). In some
instances, the chitinase genes clustered on individual
chromosomes were members of the same class. For instance,
MdChi2, MdChi5, MdChi9, and MdChil0 belonged to class V
and were clustered on chromosome 15 (Table S4). The
distribution pattern of chitinases in wild and domesticated
apple showed similarity with the genome of other tree species,
such as E. grandis (Tobias et al., 2017).

Human activity, including agricultural breeding and genetic
engineering, have driven rapid evolutionary changes in
domesticated plants and animals (Palumbi, 2001; Turcotte et al.,
2017). We identified a greater number of chitinase genes in
domesticated apple compared with wild apple, reflecting that
domestication drives evolution. The structural diversity of
chitinase genes may provide an improved understanding of the
evolutionary patterns of chitinase genes. The average exon
number of each class of chitinase genes has remained almost
unchanged in wild and domesticated apple, and Class V chitinase
genes have more exons compare with the other classes (Figure S3).
For instance, the exon number of 28 MdChi genes preserved the
number in ancestral orthologs (T'able 57), implying that the gene
structure has remained conserved during evolution. With regard
to intron number, stress-responsive genes generally contain
relatively fewer introns (Jeffares et al., 2008). For example, the
cotton Class IV chitinase gene GrChi28 has a single intron and is
strongly up-regulated in response to Verticillium dahliae infection
(Xu et al, 2016). Similarly, MsChi35 (Class IV) and MdChi4l
(Class IV) were strongly up-regulated (Figure 6) after V. mali
inoculation and each contained a single intron (Figure 3D). In
accordance with this pattern, all significantly up- or down-
regulated chitinase genes in wild or domesticated apple
contained two or fewer introns (Figure 3).

Gene duplication is a major driving force of expansion of a gene
family. The expansion of chitinase genes in wild and domesticated
apple resulted from segmental duplication and tandem duplication.
Duplicated genes likely experience functional specification (Prince
and Pickett, 2002). In wild apple, 27% of chitinase genes originated
from tandem duplication, whereas 36% were segmentally
duplicated (Table S4). These duplicated chitinase genes
maintained a close phylogenetic relationship but structural
variation was evident. For instance, MsChi25 lost the signal
peptide sequence compared with its paralog MsChi8. The genes
MsChil, MsChi4, and MsChi7 formed a tandemly arrayed gene
cluster, but only MsChi7 possessed the CHITINASE_18 active site
signature (PS01095) in the GH18 catalytic domain (Figure 4B) and
was strongly up-regulated under infection by V. mali. In addition,
MsChil3, MsChil5, MsChil7 and MsChil8 were tandemly arrayed
on chromosome 13, but exhibited various expression patterns in
response to V. mali infection. Similarly, duplicated chitinase genes
in domesticated apple showed high structural variety despite their
phylogenetic affinity. For example, MdChi40 and MdChi4l were
tandemly duplicated gene pairs under purifying selection, but
MdChi40 gained a single chitin-binding domain at the
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N-terminus (Figure 5C). Interestingly, MdChi41 was up-regulated
in response to V. mali infection and its expression level was ten-
times higher than that of MdChi40. We hypothesize that the gain of
the chitin-binding region of MdChi40 may affect its enzymatic
activity and lead to functional diversification. Although the present
results infer that duplicated genes may acquire a new structure and
function, additional evidence is required to confirm the functional
differences between duplicated chitinase genes.

Chitinases vary in molecular structure, substrate specificity,
and catalytic mechanism (Hamid et al., 2013). In the current
study, structural variation of the chitinase proteins was detected.
Similar motif composition was observed in classes I and III,
suggesting that these classes show functional similarity
(Figure 3). The variation in motif composition was not obvious
between classes II and IV, but very distinct in Class V chitinases
(Figure 3). In addition, a majority of the chitinase proteins in this
study included a signal peptide, which was absent in several
chitinase proteins. Plant chitinase proteins mature by trimming
of the N-terminal signal peptide (Taira et al., 2009) and confer
enhanced plant resistance to fungal pathogens (Singh et al., 2015).
Chitinase genes that were significantly up-regulated in response to
V. mali infection all carried the signal peptide sequence, indicating
that they are secreted into the apoplast and may be involved in
plant-pathogen interaction.

To explore the mechanism by which the chitinase genes were
transcriptionally regulated, we analyzed the promoter regions of the
chitinase genes. We detected a number of pathogen-responsive cis-
acting elements, such as the W-box. Some of the chitinase genes,
such as MsChi35 or its ortholog MdChi4l, were observed to have
two W-box cis-elements in the promoter region (Figures S1, 52) and
were strongly up-regulated in response to V. mali infection
(Figure 6). These results indicated that expression of MsChi35
and MdChi4l was likely regulated via the W-box cis-acting
element in the promoter region. A gene co-expression network
revealed that MsChi35 was highly co-expressed with seven WRKY
transcription factors under V. mali infection (Figure 7). Further
analysis showed that six of the seven WRKY transcription factors
were significantly differentially expressed at 5 dpi (Figure S4).
WRKY transcription factors are among the largest families of
transcriptional regulators in plants and bind to the W-box cis-
acting element in the promoter of the target gene (Zhu et al., 2017).
In Lilium regale, L'WRKY2 can activate expression of LrCHI2,
which encodes a chitinase, through binding to the W-box cis-
element in the promoter of LrCHI2 to enhance host resistance to
root rot caused by Fusarium oxysporum (Li et al, 2021). The
tobacco Class I chitinase gene NtCHN48 has two W-boxes in the
promoter region that are recognized by NtWRKY1 and NtWRKY4,
respectively (Yamamoto et al, 2004). In a previous study, we
demonstrated that MsWRKY16, one of the seven WRKY
transcription factors, enhances resistance to V. mali (Liu et al,
2021). Based on these results, it is speculated that WRKY
transcription factors bind to the W-box cis-element in the
promoter region of MsChi35 or MdChi4l to positively regulate

frontiersin.org


https://doi.org/10.3389/fpls.2022.1007936
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Haxim et al.

10.3389/fpls.2022.1007936

Valsa mali

Class IV chitinase giry

FIGURE 8

Schematic model illustrating the responses of apple chitinase family genes against to V.mali infection.

their expression in response to V. mali infection. The genes
MsChi35 and MdChi4l are orthologs belonging to Class IV
chitinase. The two genes were highly conserved in their
composition and arrangement of exons-introns (Figure 3E) or
motifs (Figure 3D) and shared a high level of homology (100%) in
amino acid sequence and enzymatic domain (Figure 5C). The
MsChi35 and MdChi41 were the most highly expressed chitinase
genes in response to V. mali infection. Moreover, the transient over
expression of MsChi35 enhance M.sieverssi resistance to V. mali
infection (Figure S5). Therefore, these results suggested that
MsChi35 and MdChi4l were the dominant fungal resistance
chitinase genes in the two apple species.

The present research allows proposal of a framework for the
response of chitinase family genes to V. mali infection in M.
sieversii and M. domestica (Figure 8). The results provide useful
insights for further functional investigation of the chitinase gene
family, particularly of MsChi35 and MdChi41, in the mediation
of fungal pathogen resistance in apple species.
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