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Estimation of soybean
yield parameters under
lodging conditions using
RGB information from
unmanned aerial vehicles
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Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural
Sciences, Beijing, China, 2Nanchang Branch of National Center of Oil Crops Improvement, Jiangxi
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The estimation of yield parameters based on early data is helpful for agricultural

policymakers and food security. Developments in unmanned aerial vehicle

(UAV) platforms and sensor technology help to estimate yields efficiency.

Previous studies have been based on less cultivars (<10) and ideal

experimental environments, it is not available in practical production.

Therefore, the objective of this study was to estimate the yield parameters of

soybean (Glycine max (L.) Merr.) under lodging conditions using RGB

information. In this study, 17 time point data throughout the soybean

growing season in Nanchang, Jiangxi Province, China, were collected, and

the vegetation index, texture information, canopy cover, and crop height were

obtained by UAV-image processing. After that, partial least squares regression

(PLSR), logistic regression (Logistic), random forest regression (RFR), support

vector machine regression (SVM), and deep learning neural network (DNN)

were used to estimate the yield parameters. The results can be summarized as

follows: (1) The most suitable time point to estimate the yield was flowering

stage (48 days), which was when most of the soybean cultivars flowered. (2)

The multiple data fusion improved the accuracy of estimating the yield

parameters, and the texture information has a high potential to contribute to

the estimation of yields, and (3) The DNN model showed the best accuracy of
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training (R2=0.66 rRMSE=32.62%) and validation (R2=0.50, rRMSE=43.71%)

datasets. In conclusion, these results provide insights into both best estimate

period selection and early yield estimation under lodging condition when using

remote sensing.
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1 Introduction

Global soybean (Glycine max (L.) Merr.) production steadily

increased during the last two decades, primarily in the United

States, Brazil, Argentina, China, Paraguay, and India, which

accounted for 94.3% of the global soybean production in 2021

(Agriculture, 2021). Accurately estimating the yields at the early

crop growth stage is important for the government to deploy the

appropriate share of imports.

Traditional ways of estimating soybean yield rely on

destructive sampling and manual experience (Jin et al., 2021),

they are time-consuming. Traditional methods of estimating

yields utilize plot yield as a qualitative indices (Geipel et al.,

2014), it is strongly influenced by the environment and a variety

of biotic factors (Hamblin et al., 1978) if there are a lot of

cultivars and a small plot area. So more stable yield parameters

(grain number of seeds per plant and grain weight per plant)

were used as field yield study data (Hamblin et al., 1978). Most

types of yield estimation neglect the effects of micro-

environmental factors owing to the large plot areas and a

limited number of cultivars (Ji et al., 2022), so they were

highly accurate in approximating the mean value of the yield

of cultivars but not were not effective at truly identifying

germplasm resources.

In recent years, high-throughput phenotyping has garnered

increasing attention, particularly the use of unmanned aerial

vehicles (UAVs) as a phenotyping platform combined with

high-quality image sensors (Guo et al., 2021). High-

throughput UAV phenotyping can not only reduce the

threshold of traditional phenotyping but can also efficiently

locate genes (Sukumaran et al., 2018) and provide basic data

support for molecular biology and the genetic breeding of crops

(Venkatalaxmi et al., 2004). With the developments of multi-

spectral sensors (Maimaitijiang et al., 2017), hyperspectral

sensors (Yue et al., 2018) and lidar (Jin et al., 2015), it can

provide tens of millions of MB data support for the identification

of diverse phenotypes and genotypes and molecular breeding

(Potgieter et al., 2017). But previous yield estimates have utilized

relatively inaccessible multispectral, hyperspectral (Paulus and
02
Mahlein, 2020), and even radar data, which are highly accurate

but unsuitable in real field plots.

In previous studies the UAV-derived datasets were used to

estimate multiple vegetation traits (Maimaitijiang et al., 2017)

and yield. The primary methods of estimating yields include

physical models and machine learning models. Crop growth

models have been proposed to estimate crop yields under

different scenarios, including climate, genotype, soil properties,

and management factors (Araus et al., 2021). For example, Ma

et al. (2022) used the single algorithm for yield (SAFY) crop

growth model to estimate the yields of wheat (Triticum aestivum

L.). The results obtained an R2 of 0.73, 0.83, and 0.49 for the leaf

area index (LAI), biomass, and yield with root mean square error

(RMSE) values of 0.72, 1.13 t/ha and 1.14 t/ha (Ma et al., 2022).

Jin et al. (2022) conducted research on the ChinaAgrosys crop

model on wheat. The R2 of estimated maturity, LAI, and yield

were higher than 0.73, 0.44, and 0.60 (Jin et al., 2022). These

models can provide reasonable explanations for a variety of

biochemical mechanisms and responses, but there are

deficiencies in the input parameters to estimate the yield

under complex and unpredictable scenarios (Zhao et al., 2013).

In addition, previous studies estimated yields using multispectral

images for machine learning or deep learning. Khaki and Wang

(2019) applied deep neural networks to estimate the yield of

maize (Zea mays L.) hybrids using environmental data. The use

of weather data reduced the RMSE to 11% of the average yield

and 46% of the standard deviation (SD) (Khaki and Wang,

2019). Feng et al. (2021) proposed a geographically and

temporally weighted neural network (GTWNN) model for 12

years of data from 2008 to 2019, and the GTWNN outperformed

other models (Feng et al., 2021). Maimaitijiang et al. (2020) used

five machine learning algorithms to estimate the yield of

soybeans, and DNN-F2 was the most accurate with an R2 of

0.72 and a relative root mean square error (RMSE%) of 15.90%

(Maimaitijiang et al., 2020). PLSR and RFR were used for

quantifying soil salinity (Wang et al., 2018). The validation

accuracy showed that the RFR model performed better than

the model of PLSR. The most effective model was built based on

the 1.5th order derivative of RF with respect to absorbance with
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the best values of R2 (0.93), RMSE (4.57 dS m(-1)). SVM is

mostly used for disease classification and monitoring, and

known studies include A. O. Conrad et al. (2020) used SVM to

build and evaluate the accuracy of disease prediction models

based on supervised classification. Sparse partial least squares

discriminant analysis was used to confirm the results. The most

accurate model comparing mock-inoculated and inoculated

plants was SVM-based with an overall test accuracy of 86.1%

(N = 72), while the most accurate SVMmodel had an overall test

accuracy of 73.3% (N = 105) (Conrad et al., 2020).

In summary, although studies on estimating yield have been

conducted quite frequently, these data are basically from a

limited number of cultivars (<10), and thus, are not widely

applicable and can only be considered to be an exploration of the

technique. In addition, they rarely consider the yield status

under specific environmental conditions, while the constant

environmental variability in the field has crucial effects on yield.

Therefore, in this study, the performance of five algorithms

to estimate yield parameters under lodging conditions was

estimated, and the optimal time point to estimate yield during

the early dates was studied based on more than 1,500 soybean

germplasm cultivars. The aims of this study were to 1) Find the

most suitable time point to estimate the yield parameters of

soybean. 2) Test the multi-data fusion of vegetation indices,

canopy cover, and crop height based on a Digital Elevation

Model (DEM), lodging, and texture indices to estimate yield

using different machine learning algorithms, and 3) To assess the

effect of lodging on the grain number of seeds per plant and

grain weight per plant.
2 Materials and methods

2.1 Materials

2.1.1 Study area
The experiment was conducted from July to November 2020

in Nanchang, Jiangxi Province, China (115°27’ ~116°35’ E, 28°

10’ ~29° 11’ N), which has a humid subtropical monsoon

climate, abundant precipitation of 2,167.9 mm in 2020

(Nanchang weather station NO.58606), average annual

sunshine of 1,772~1,845 hours, long summer and winter and

short spring and autumn throughout the year, and an average

annual temperature of 17.0°C-17.7°C. The experimental terrain

is a plain, with an average elevation of 22 m. The experimental

area of 0.92 acres was located in the southwestern suburbs of

Nanchang City (Figure 1).

A total of 1,615 cultivars and 190 plots of controls (30

cultivars) were sown on July 15, 2020, and the UAV photos were

collected at 17 time points (Li et al., 2022), which represented

different growing stages. Some of those cultivars that had either a

low germination or were under abiotic/biotic stresses were also

studied to maintain high diversity, instead of dropping in the
Frontiers in Plant Science 03
previous study (Li et al., 2022). The soybean cultivars came from

worldwide and the largest number of cultivars were from China

(70%), followed by the USA and Europe, and covered a wide

range of ecotypes. The growth states of the different cultivars

differed significantly. The plots were 1.8 m × 0.8 m with two

rows and 10 cm plant spacing, so there were 1,805 plots in total.

They were separated by furrows. Conventional N P K compound

fertilizer of potassium sulfate 15:15:15 was applied once (K2O4S,

50%, 112.5kg/ha).

2.1.2 Image collection parameters
A DJI Phantom 4 (DJI Technology Co., Shenzhen, China)

was used to collect the image data. As detailed in Table 1, the

image was outputted in the tiff format. The UAV (unmanned

aerial vehicle) platform was implemented with an autopilot

system (Şahin et al., 2022) to execute a predefined flight from

10:00 to 14:00 every 3 days for 20 minutes. To avoid the partial

loss of image texture feature information owing to cloud cover,

weather with stable solar radiation intensity and a clear and

cloudless sky was selected to acquire the images. The images had

a resolution of 1,600*1,300 pixels, and all the flight missions

were planned at the flight altitude and speed of 12 m and 1.2 m/s

with the lateral and forward overlaps (Kose and Oktay, 2020) of

75% and 60% (before 13 September)/75% (after 13 September),

respectively. Real-time kinematic (RTK) was used for

positioning. The RTK accuracy that was enabled was ± 0.1 m

vertically and horizontally (Oktay and Coban, 2017). The quality

of images was checked after the flight.

The experimental field design required that the soybean

planting site be treated with weed control in advance. Therefore,

the effect of weeds on each indices of the image was not

considered in this study. The 0.5 m × 0.5 m image ground

control points (GCPs) set between the different routes were kept

constant throughout the soybean growing stages. Agisoft

PhotoScan software (Agisoft LLC, St. Petersburg, Russia) was

used to stitch the UAV digital images. The software can perform

image geometry correction and eliminate the effects of UAV

attitude changes based on GCPs.
2.2 Methods

2.2.1 Overview for data process
This work used the UAV data and manually collected data.

The UAV data consisted of RGB (red, green, blue) and DEM

(digital elevation model) data. The degree of lodging and yield

parameters (grain number of seeds per plant and grain weight

per plant) were collected manually. The RGB data were

calculated for vegetation indices, including texture information

and canopy cover. The normalized results of crop height were

calculated using DEM. After the Indices and data had been

screened, the datasets were divided into a training dataset (70%)

and a testing dataset (30%), followed by modeling using five
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machine learning algorithms, and the performance of the

models was finally evaluated to estimate the yield parameters.

The flowchart is shown in Figure 2, and the details are

discussed below.

2.2.2 Measurements of yield parameters
The yield parameters used in this work were the grain

number of seeds per plant and the grain weight per plant

Figure 3A. The mean value was calculated after 10~15 plants

were randomly selected in each plot after harvest. The lodgings

were monitored by experts from the Jiangxi Academy of

Agricultural Sciences (Nanchang, China) to ensure reliable

data during the whole growth stage. The levels of lodging

severity were divided into five classifications (1-5) (Kato et al.,
Frontiers in Plant Science 04
2021). The degree of tilting stalks at maturity was used to divide

the plots with level 1 indicating that all the plants in plot were

upright, and level 5 indicating that all the plants in plot had

lodged Figures 3B, C. Stalk strength, root traits, and biological

yield, which are closely related to lodging, were not considered

mechanistically. Thus, a comprehensive index approach was not

utilized to evaluate lodging resistance.

2.2.3 Image pre-processing
(i) Stitching images. Agisoft Photo-Scan Professional

Version 1.2.2 (Agisoft LLC) was used to stitch images, it can

process photos based on multi-view 3D reconstruction

technology. (ii) Georeferencing used map coordinates to locate

the image. By georeferencing raster data, multi-period raster
B

C

D

A

FIGURE 1

Study area. (A) RGB orthomosaic map on August 1, 2020. (B) RGB orthomosaic map on August 20, 2020. (C) RGB orthomosaic map on
September 24, 2020. (D) The test field was in Nanchang, Jiangxi Province, China.
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data can be viewed, queried, and analyzed together. Typically,

raster data is georeferenced using existing spatial data in the

desired map coordinate system. Images from August 1, 2020

were used in this study. This process involved identifying a series

of GCPs (with known x, y coordinates) to link the location of the

raster dataset with the location of the spatial reference data

(target data). The control points were precisely identifiable

locations in the raster dataset and actual coordinates. More

than 10 coordinate points for each plot were selected for

georeferencing in this study. (iii) The images were cropped

after georeferencing using ESRI ArcGIS 10.7 (Redlands, CA,

USA) to outline the mask data, the software can be used to create
Frontiers in Plant Science 05
maps, perform spatial analysis, and manage data. Since each plot

was not strictly the same size during pre-planting, the specific

criteria for outlining plots were to remove roads and furrows.

Interactive data language (IDL) was then used to crop the

images. The IDL code was written by ENVI 5.3 (Exelis Visual

Information Solutions, L3Harris Geospatial, Boulder, CO, USA)

(Figure 4). ENVI provides professional spectrum analysis tools,

extended functions can also be written using IDL.

2.2.4 Vegetation indices Extraction
The vegetation indices were extracted using RGB images and

MATLAB R2021a (MathWorks, Portola Valley, CA USA).

Vegetation Indices can be constructed to enhance the

interpretation of remote sensing images through the linear or

nonlinear combination of two or more characteristic bands and

play an important role in crop growth monitoring. ExG and

ExGR are two common visible bands used as vegetation indices.

They provide a near binary intensity image that outlines the

vegetation area of interest, and then the vegetation information

can be extracted through threshold segmentation. The color

index of vegetation extraction (CIVE) integrates the red, green,

and blue bands to enhance the vegetation information. In

addition, the Green-Red Ratio Index (GRI), Green-Red

Vegetation Index (GRVI), Modified Green-Red Ratio

Vegetation Index (MGRVI), Visible Atmospheric Resistance

Index (VARI), and Warbeck Index (WI) change the linear

exponential to form a ratio to enhance the differences among

different cultivars. The Soil Adjusted Vegetation Index (SAVI)

reduces the sensitivity of soil to traditional vegetation indices

and thus, reduces their impact. The red green blue VI (RGBVI)

is defined as the normalized difference of the squared green

reflectance and the product of blue × red reflectance. The
B

C

DA

FIGURE 2

Flowchart for estimating the yield parameters. (A) RGB indices extraction process. (B) Calculation of the plant height using DEM. (C) Manual
data, including lodging and yield parameters, such as the grain number of seeds per plant and grain weight per plant. (D) Data cleaning and
model building. DEM, digital elevation model; RGB, red green blue.
TABLE 1 Drone technical details.

Project Technical details

Time per flight Approximately 20 minutes

Hover accuracy When RTK is enabled and RTK is working properly:
Vertical: ± 0.1 m;
Horizontal: ± 0.1 m

Controlled rotation
range

Pitch: -90 degrees to +30 degrees

Image sensor 6 1/2.9-inch CMOS;
Single sensor: 2.08 million effective pixels (2.12 million
total pixels)

Lens FOV: 62.7 degrees;
Focal length: 5.74 mm (35 mm format equivalent: 40
mm);
Infinity fixed focal length;
Aperture : f/2.2

The resolution of the
image

1600×1300(4:3.25)
CMOS, complementary metal oxide semiconductor (an image sensor); RTK, real-time
kinematic.
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vegetative index (VEG) was designed to manage the variability of

natural daylight illumination. The VDVI (visible-band

difference vegetation index) was constructed based on the

normalized diffuse vegetation index (NDVI) but only used the

visible band, which can render the vegetation and non-

vegetation index values more compact. comb1 and comb2 are

indices that are specifically used to determine greenness. They

are linear combinations of ExG, ExGR, CIVE, and VEG. The

plant pigment ratio (PPR) is an index that produces an output

image in which strongly pigmented foliage presents a high PPR,

while weakly pigmented foliage has a low PPR. In summary,

these 15 visible bands vegetation indices were used in this study

as shown in Table 2.
Frontiers in Plant Science 06
2.2.5 Canopy coverage extraction
Threshold segmentation is a simple method to extract

interesting regions from grayscale images. In this experiment,

the binary images were generated using the excess green index

(EGI, (2G-R-B)/G). The threshold value (Greenthreshold) was

established as 0.05 for canopy cover and background

segmentation. First, the EGI was calculated using the three

channels (R, G, B) of the image, and the EGI values > the

green threshold corresponded to the canopy (binary value = 1).

The values < Greenthreshold corresponded to the soil (binary

value = 0). The percentage of canopy (binary value = 1) pixels in

an image was calculated as the canopy coverage. Finally, the

canopy coverage of all the plots was calculated in turn.
B

C

A

FIGURE 3

Yield parameters and inversions collected manually. (A, B) Histogram distribution of the grain number of seeds per plant and the grain weight
per plant from manual surveys. (C) Lodging classification and percentage.
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2.2.6 Crop height extraction
In this study, crop height (CH) was extracted from the RGB

image point clouds and used as a canopy structure indicesto

estimate the yield parameters. UAV-based RGB images were

collected at an earlier stage of plant emergence on August 1,

2020, to create a bare ground DEM using a photogrammetric

three-dimensional (3-D) point cloud. Height peaks within the

plot were segmented using the Otsu algorithm (Qiao and Sun,
Frontiers in Plant Science 07
2014), and the lower peaks were used as the bare ground height.

Digital surface models (DSM) were created from UAV-based

RGB images collected after August 1, 2020. After that, a crop

height model (CHM) was obtained from pixel-level subtraction

of the DSM and DEM with subsequent normalization. A total of

190 manually collected ground CH measurements were used to

assess the accuracy of the CHM (Figure 5). OBM is manually

collected crop height. The distribution of CH reflects the

different genotypes and the heterogeneity of soybean fields.

2.2.7 Texture information extraction
The texture information was extracted using Python version

3.8 (Python Software Foundation, Wilmington, DE, USA) and

PyCharm version 2021.3.3 (JetBrains, Prague, Czechia). The

texture is a common method used to extract image

information in digital image processing. Although there is no

formal definition of texture, this descriptor intuitively measures

its properties. Calculating the texture consists of two methods:

statistical and spectral methods, with statistical methods

producing texture information, such as smoothness,

roughness, and graininess. Spectral methods are based on the

nature of Fourier spectrum and focus on detecting global

periodicity in an image by identifying high-energy narrow

peaks in the spectrum (Bharati et al., 2004). The spectral

texture information of the canopy was calculated using RGB
TABLE 2 Summary of the RGB-based vegetation index.

VI Abbreviation Equation Reference

Rn Rn =R/R(max) Arroyo, Guijarro, & Pajares et al. (2016) (Arroyo et al.,
2016)Gn Gn =G/G(max)

Bn Bn =B/B(max)

r r =Rn/(Rn+Gn+ Bn) Guijarro et al. (2011) (Guijarro et al., 2011)

g g =Gn/(Rn+Gn+ Bn)

b b =Bn/(Rn+Gn+ Bn)

Color Index of Vegetation Extraction CIVE =18.78745+(0.44r)-(0.88g)+(0.385b) Kataoka et al. (2003) (Kataoka et al., 2003)

Combined 1 COMB1 =(0.25ExG)+(0.3EXGR)+(0.33CIVE)
+(0.12VEG)

Guijarro et al. (2011)

Combined 2 COMB2 =(0.36ExG)+(0.47CIVE)+(0.17VEG) Guijarro et al. (2011)

Excess Green ExG =(2g)-r-b Woebbecke et al. (1995) (Woebbecke et al., 1995)

Excess Green Minus Excess Red EXGR =ExG-(1.4r)-g Guijarro, & Pajares (2011) (Guijarro et al., 2011)

Ratio Green Red Index GRI =G/R Li et al. (2010) (Li et al., 2010)

Green Red Vegetation Index GRVI =(G-R)/G+R Gitelson et al. (2002) (Gitelson et al., 2002)

Modified Green Red Vegetation Index MGRVI =(G2-R2)/(G2+R2) Bendig et al. (2015) (Bendig et al., 2015)

Plant Pigment Tatio PPRb =(G-B)/(G+B) Metternicht et al. (2010) (Metternicht, 2010)

RGB Vegetation Index RGBVI =((G2-(R*B))/((G2+(R*B)) Bendig et al. (2015)

Soil Adjusted Vegetation Index SAVI =1.5(G-R)/(G+R+0.5) Li et al. (2010)

Visible Atmospherically Resistant
Index

VARI =(G-R)/(G+R-B) Gitelson et al. (2002)

Visible Difference Vegetation Index VDVI =(2G-R-B)/(2G+R+B) Wang et al. (2015) (Wang et al., 2015)

Vegetation Index VEG =g/rab(1-a)∴a=0.667 Hague, Tillett, & Wheeler (2006) (Hague et al., 2006)

Woebbecke Index WI =(g-b)/|r-g| Woebbecke et al. (1995)
R, G, and B represent the DN variables from digital image red, green, and blue bands, respectively.
FIGURE 4

Flowchart of the UAV RGB image mosaic processing.
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data. This texture information was extracted from the RGB-

based grayscale co-occurrence matrix (GLCM) of the red, green,

and blue bands. The GLCM texture consists of nine indices,

including the mean, variance, homogeneity, contrast,

dissimilarity, entropy, energy, correlation, and autocorrelation.

The processing window is 3 rows x 3 columns. To obtain more

texture information, the mean, minimum, maximum, SD, and

coefficient of variation (CV) values of the GLCM metrics within

each plot were calculated. Thus, nine (GLCM indices) × three

(bands) × five (statistical metrics) = 135 RGB texture variables

that were generated.
2.2.8 Indices selection
Indices selection is an important step in machine learning.

The indices determine the upper bound of the model if the

algorithm determines the lower bound of it. In addition, it is

important to note that the model with as many indices as

possible will not always perform better. Sometimes several

indices will provide the desired result, and the high correlation

indices cannot always be deleted directly to obtain a better

performing model. This study tried many methods to filter the

indices. Boruta (Kursa and Rudnicki, 2010) used a random forest

approach based on the Boruta algorithm to screen the initial 72

Indices, the complete list of indices is given in the supplementary

table (Table S1). It disrupts the order of indices and calculates

the importance of indices. In this study, the lodging and canopy

cover were not participants in the screening process. The indices

matrix was then shuffled, and the shadow indices were combined
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with the real indices to form a new Indices matrix. The indices

were selected or removed in order of importance.

The steps for running the Boruta algorithm are as follows:
1. First, it adds randomness to a given dataset by creating

mixed copies of all the indices (shuffled features).

2. It then trains an extended dataset for random forest

classification and uses an indices importance measure

(set by default to an average reduction in precision) to

evaluate the importance of each indicator, with a higher

meaning indicating greater importance.

3. In each iteration, it checks whether a true indices has

higher importance than the best-shaded indices

(whether the indices scores higher than the largest

shuffled indices) and keeps removing indices that it

considers to be very unimportant.

4. Finally, the algorithm stops when all the indices have

been confirmed or rejected, or when the algorithm

reaches a prescribed limit for the operation of the

random forest.
Boruta follows all the relevant indices selection methods,

which capture all the indices related to the outcome variable. In

contrast, most traditional indices selection algorithms follow a

minimal optimization approach, which relies on a small subset

of indices and produces a minimal error in selecting the

classification. Compared to traditional indices selection

algorithms (recursive feature elimination algorithms [RFE]

(Liu and Wang, 2021)). Boruta can generate better results on

the importance of the indices and is also easy to interpret.

2.2.9 Data filtering
Outliers from the remaining indices were removed using the

One-Class-SVM outlier detection algorithm, which uses the

appropriate Python version 3.8 (Python Software Foundation,

Wilmington, DE, USA) packages and environment. One-class-

SVM uses a spherical rather than a planar approach and the

algorithm obtains a spherical boundary around the data in the

feature space, a hypersphere whose volume is minimized, thus

minimizing the effect of outliers.

One-Class-SVM (Tax and Duin, 1999) can be a good outlier

detection method when the data dimensionality is very high, or

there are no assumptions about the distribution of the data. It

finds the hyperplane for the partition and the support vector

machines using the support vector domain description (SVDD)

idea. All the samples that are not anomalies are expected to be

positive classes for SVDD, and it uses a hypersphere instead of a

hyperplane to divide. The algorithm obtains a spherical

boundary around the data in the feature space and expects to

minimize the volume of this hypersphere, thus, minimizing the

effect of outlier data. It is possible to determine whether the data

is within or not after the LaGrange dual solution was used. If the
FIGURE 5

Correlation between CHM and Observation. CHM is crop height
model, it is the plant height estimated data.
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distance ≤ to the radius, it is not an anomaly, and if it is outside

the hypersphere, it is an anomaly.

In this study, a radial basis function kernel is used with a

gamma value of 0.001, a lower bound on the support vector

fraction of 0.03, a residual convergence condition of 1e-3, and the

remaining parameters as default. The values are based on

experience or multiple attempts to select the most suitable

parameter value. To satisfy this condition means wrapping all

the suitable data points in the sphere to achieve unsupervised

outlier detection.

In scikit-learn version 0.23.2 (Pedregosa et al., 2012), One-

Class-SVM (Pedregosa et al., 2012) was used to detect outliers

using the SVM package.

2.2.10 Machine learning
Five machine learning algorithms were used to estimate

yields in this study, including support vector machine

regression (SVM), logistic regression (Logistic), random forest

regression (RFR), partial least squares regression (PLSR), and

DNN networks. All the model methods are based on the R

language version 4.1.1 (R Foundation, Vienna, Austria) with the

computation of DNN network using the h2o package version

3.34.0.3 (H2O.ai, Mountain View, CA, USA) package, which is

based on Java but provides a computational interface between

the R and Python. A total of 1,615 cultivars were divided into

two parts, 0.7 and 0.3, as the training set and the

validation datasets.

In this study, there were five principal components before

calculations to elucidate the mean center of all the data in PLSR.

During the process of data processing, leave-one-out cross-

validation was performed serially; the cross-validation was

optimized for speed, and some generality was sacrificed. In

particular, the model matrix was calculated only once for the

complete cross-validation. The jackknife method was also used

to correct for bias (Seasholtz and Kowalski, 1992).

The Logistic were 10 folds. The first was to obtain the

lambda sequence and calculate the result of the fit omitting

each fold. The errors accumulated, and the mean error and SD of

the folds were calculated. The alignment is “lambda”, and the

lambda values from the autonomous fit (all data) were used to

rank the predicted values from each fold (Simon et al., 2011).

The other parameters were set to default.

The random forest is the randomization of column variables

and row observations of a dataset to generate multiple classifiers,

and finally, the classification tree results are aggregated. Two

important parameters are the number of variables preselected by

tree nodes and the number of trees in the random forest. In this

study, the number of variables preselected by the tree nodes was

one-third of the dataset, and there were 500 trees in the forest

(Edwards et al., 2018).

SVM can be formalized as a problem of solving convex

quadratic programming and is also equivalent to the problem of
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minimizing the loss function of a regularized hinge. The learning

algorithm of SVM is the optimization algorithm for solving

convex quadratic programming. Radial was used as the kernel

function here; gamma is 1/(data dimension); the termination

criterion was 0.001, and epsilon in the insensitive-loss function

was 0.01 (Fan et al., 2005).

DNN is a feedforward multilayer artificial neural network. In

this study, the hidden layer has two hidden layers, each with 200

neurons, and 10 iterations are needed to make the network

converge; the target ratio of communication overhead to

computation was 0.05, and the learning rate was 0.005. These

parameter settings are based on empirical or model-

recommended optimal parameters (Xu et al., 2016).

2.2.11 Statistical indices
The coefficient of determination (R2), root mean square

error (RMSE) and relative root mean square error (rRMSE)

were selected to test the training and validation models (Liu

et al., 2021).
3 Results

3.1 Selection of the best estimation dates

All the indices (162 for every date) were used to identify

the most suitable time point to estimate the yield parameters.

Data were collected on 17 dates. Each of the data points for 17

days was used to provide a result to estimate the yield

parameters. In general, the estimations for grain number per

plant were poor before emergence to second trifoliolate stage

(21 days after sowing), with a gradual increase at the third

trifoliolate to the sixth trifoliolate stage (24~44 days after

sowing) until the peak at flowering stage (48 days), and then a

slow decline. The trend of the grain weight per plant was the

same before flowering stage (44 days after sowing). The

changes after seeds to maturity stage (48 days after sowing)

were not obvious, and there were many abrupt changes. This

was probably owing to the changes in the pixel colors that

were impacted by weather. In addition, they can be affected by

maturity (Figure 6). In this study, we wanted to obtain the

earliest time point as the result, so on balance we chose the

time point with the highest accuracy for early estimation and

the critical fertility period of common interest in soybean

production as the most appropriate time point for estimating

yield parameters.
3.2 Selection of indices

The 48-day red band texture information and RGB

vegetation indices were selected. These 72 indices (Table S1)
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included 45 texture indices, 24 RGB vegetation indices, canopy

cover, crop height, and lodging.

The indices of grain number of seeds per plant and the

grain weight per plant were screened separately using the

Boruta algorithm, which gave an average ranking of

importance and a recommendation to eliminate data points

(red) or retain them (blue) based on the results of 100 times

ranking. The top indices for the grain weight per plant were the

texture indices, while the vegetation indices were in the middle.

Out of the 100 times importance rankings provided by the

Boruta algorithm, indices with 80 times importance rankings
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below the shadow indices were marked red and removed. Thus,

the nine indices associated with the maximum and minimum

values in the red box plot in Figure 7B were deleted. The top

importance for the grain number of seeds per plant was

vegetation indices. The top one was lodging, and crop height

was also advanced, but all the texture indices were ranked at the

bottom (outside the top 10). The analysis of the grain weight

per plant was the same as the grain number of seeds per plant.

The nine indices that were deleted were the texture indices

related to the maximum and minimum values with the red box

plot in Figure 7A.
B

A

FIGURE 6

Accuracy of the estimation of different models on yield parameters at different dates. (A) Grain number of seeds per plant. (B) Grain weight per
plant. The digital numbers represent the days after sowing, and R, G, and B represent the spectral bands. The grey background represents the
selected optimal estimation model from day 48.
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3.3 Study on the estimation of yield
parameters by different indices and
machine learning algorithms

3.3.1 Grain number of seeds per plant
The spectral information extracted from the RGB images

was used to obtain texture information, canopy structure

information, and crop height. Machine learning algorithms

(support vector machines, random forests, partial least

squares, logistic regression, and DNN neural networks) were

used to estimate the grain number of seeds per plant

in soybean.

As shown in Table 3, the combination of spectral and canopy

structure information improved the accuracy of estimation of

yield parameters. As the number of indices increased, the

R2 increased, resulting in a decrease in both the RMSE and

rRMSE. The accuracy of estimation improved with the addition

of texture indices for support vector machines and the DNN,

while the others had limited changes. All the models had roughly

the same optimization with the addition of crop height, and a

significant change with the addition of lodging.
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All the model methods performed similarly for single

categories of indices. The SVM method performed slightly

better, but the DNN network quickly outperformed the SVM

when the indices were increased. They were clearly split into

three levels. The RFR and PLSR methods were relatively poor,

and the logistic method was in the middle, while the SVM and

DNN methods performed better. The best yield estimates were

r2 = 0.66 and rRMSE=32.62% when the DNN method was used

with 63 Indices (Figure 11).

The r2 gradually increased as the number of input indices

increased, and the rRMSE gradually decreased for all the

regression methods, indicating that all the methods can handle

the fusion of multimodal data to some extent. The DNN

outperformed other methods because of the large amount of

data in this study, but it has been demonstrated (Bonazza et al.,

2019) that traditional machine learning algorithms may work

better when there is less data. The DNN tends to perform better

when analyzing larger sample sizes and more complex non-

linear datasets.

Although the DNN neural network also performed well at

estimating the grain number of seeds per plant, there was a
B

A

FIGURE 7

The importance of indices for yield parameters. (A) Grain weight per plant. (B) Grain number of seeds per plant. The red box plot was the indices
recommended for removal; the blue box plot was the Indices recommended to be retained. The grey background represents the top 10 indices.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1012293
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bai et al. 10.3389/fpls.2022.1012293
decrease in the validation dataset, which could be owing to

errors in the manual measurement of data (Figure 8).

A comparison of the estimated dataset from each regression

method with the observed dataset indicated that each method

had a similar distribution of estimated yield parameters. In

common with the performance of the existing studies

(Maimaitijiang et al., 2017), all the regression methods

underestimated the higher yield parameters of cultivars.

Theoretically, this should not be an issue because we used

flowering data in which the nutritional growth had ceased. In

theory, there was no longer a significant increase in pod number.

However, 48 days may not be the flowering period for all the

cultivars, and some flowered late. This resulted in the lack of

determination of the grain number of seeds per plant during this

period (Figure 8).

3.3.2 Grain weight per plant
As shown in Table 4, the combination of all the information

(r2 = 0.64 in the training dataset and r2 = 0.49 in the validation

dataset) resulted in the most accurate estimation, and the

accuracy of the model increased with each additional category

of indices. Moreover, unlike the grain number of seeds per plant,

the 48-day vigorous growth state (specifically the photosynthetic

state) determined the final amount of biomass that accumulated

in the final plant to some extent, i.e., the result of the grain

weight per plant.

The combination of all the information was more accurate

than single category data for estimating the yield regardless of

the method used. The r2 ranged from 0.47 to 0.63 where the
Frontiers in Plant Science 12
grain weight per plant was more accurate than the grain number

of seeds per plant, possibly because the plant nutrition

influenced by canopy information was more likely to change

the grain weight than the grain number of seeds. However, the

texture information had a more pronounced effect on the grain

weight than the grain number of seeds, possibly because the

texture is related to photosynthesis (Heckmann et al., 2017). It

should be noted that the improvement in the estimation of yield

parameters with texture information compared with the

vegetation indices was not only substantial but suggested that,

although some methods have been used to remove redundant

data, it still contains a large proportion of redundant

information (Figure 9).

When all the data were combined to estimate yield, the DNN

neural network performed better for both the grain number of

seeds per plant and the grain weight per plant. DNN

outperformed the other machine learning algorithms for both

training datasets and validation datasets by a large margin. SVM

also performed well on the training dataset, but it performed the

validation dataset less accurately (Figure 10).

Unlike the grain number of seeds per plant, the estimation

for grain weight was not underestimated at higher values. There

are two likely reasons for this. (1) They were easier to measure

and gave more accurate results without too many outliers. (2)

The state of canopy was a greater determinant for the formation

of grain weight. There could be a deeper reason for this different

performance in estimating the grain number of seeds per plant

and grain weight per plant, and more experiments can be

designed to determine the answer.
TABLE 3 The accuracy of estimation of different models for the grain number of seeds per plant.

Type No. of indices Metrics PLSR RFR Logistic SVM DNN

VIs 25 R2 0.40 0.37 0.41 0.44 0.43

RMSE 26.69 27.46 26.41 25.98 26.30

rRMSE 45.00% 46.30% 44.60% 43.92% 43.84%

VIs+TI 60 R2 0.41 0.37 0.45 0.55 0.58

RMSE 26.38 27.31 25.55 23.41 24.27

rRMSE 44.52% 46.13% 43.15% 39.56% 42.34%

VIs+TI+CC 61 R2 0.42 0.37 0.45 0.55 0.58

RMSE 26.36 27.37 25.52 23.41 22.51

rRMSE 44.56% 46.25% 43.17% 39.58% 38.76%

VIs+TI+CC+CHM 62 R2 0.43 0.39 0.46 0.56 0.61

RMSE 25.97 26.98 25.16 23.11 21.50

rRMSE 43.80% 45.50% 42.50% 39.00% 38.00%

VIs+TP+CC+CHM+Lodging 63 R2 0.45 0.41 0.48 0.58 0.66

RMSE 25.39 26.39 24.76 22.5 21.00

rRMSE 42.97% 44.65% 41.86% 41.80% 41.70%
frontier
VIs, vegetation index; TI, texture information; CC, canopy cover; CHM, crop height; DNN, deep learning network; Logistic, logistic regression; PLSR, partial least square regression; RFR,
random forest regression; SVM, support vector machine regression. The best results in terms of R2, RMSE, and rRMSE values through different indices with various modeling methods are
shown in bold.
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FIGURE 8

Results of machine learning algorithms to estimate the grain number of seeds per plant. The left column is the training dataset, and the right
column is the validation dataset. The black dashed line is the 1:1 line, and the red solid line is the data fitted line. SVM, support vector machines
regression; RFR, random forests regression; PLSR, partial least squares regression; Logistic, logistic regression; DNN, deep neural network.
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4 Discussion

The optimal time point to estimate the yield parameters in

this paper was 48 days (flowering). In maize and rice studies,

Li et al. (2021) showed that crop yields can be satisfactorily

forecasted one to three months before harvest (Li et al., 2021).

Zhou et al. (2017) used three soybean cultivars to produce results

that indicated that the best estimation period is the gestation

period (Zhou et al., 2017). Previous research has provided results

comparable to those of this study. However, there are some

differences between them that could be attributed to two reasons.

(1) The soybeans are dried by hand after harvest, which usually

takes place when the plants are still green. Therefore, it is difficult

to obtain data for soybeans during this stage. (2) In earlier

studies, the limitation of the number of cultivars (usually < 5)

resulted in the spectral information of the flowering period not

being very distinguishable, while the later stage effects on yield

were more obvious owing to the cumulative effects. That

suggests that the results of these studies could be limited. In

contrast, this study found that the flowering period was the best

period to distinguish the cultivars, and the spectral information

was more easily distinguished in this stage. Physiologically, this

result is also supported by the fact that the flowering stage is a

peak period for soybean growth and development. Although 48

days after sowing was used as the base data in this paper, in the

future, a combination of Indices with a high correlation of yield

(possibly from different times) could improve the accuracy of

estimation. However, this would increase the difficulty of

interpreting the established models to estimate yield. Another

option could be to use a more reasonable time series-based

model approach.
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Previous studies used correlation (Hall, 1999) or recursive

feature elimination (RFE) (Granitto et al., 2006) algorithms to

remove indices. In comparison, the Boruta algorithm removed

Indices that were maximum or minimum values for texture

information. These values are usually unchanged or changed

only slightly. They provide almost no information and create

considerable interference information in the estimation results,

thus, affecting the accuracy of estimating the experimental

results. Overall, seven of the top 10 indices of the importance

for grain weight per plant were texture indices, suggesting that

the canopy structure is more influential for grain weight per

plant than the vegetation indices. The mean of texture (top one)

information reflects the degree of the neatness of growth, and a

neater state of growth is likely to result in a higher grain weight

per plant. The top 10 importance indices for the grain number of

seeds per plant were vegetation indices that reflected the

physiological status, while all the texture indices ranked lower,

with lodging ranked first, followed closely by GRVI and VARI,

which are all closely related to the biomass or NDVI. Zhou et al.

(2017) also found that NDVI-related indices had a higher effect

on yield (Zhou et al., 2017), and this study found that this effect

could be attributed more to the grain number of seeds per plant

than the grain weight per plant. Canopy cover reflects the ability

of the vegetation to receive energy, suggesting that the state of

the soybean itself may have a more pronounced effect on the

grain number of seeds per plant. The effect of lodging on the

grain number of seeds per plant was much greater than that for

grain weight per plant, indicating its importance. The effect of

lodging on yield has been evaluated very ambiguously in

traditional agronomic research. Cooper (1971) studied the

effect of early lodging on yield outcomes and identified a 21%
TABLE 4 The accuracy of estimation of different models for grain weight per plant.

Type No. of indices Metrics PLSR RFR Logistic SVM DNN

VIs 25 R2 0.43 0.42 0.45 0.48 0.48

RMSE 3.98 3.97 3.98 3.83 3.88

rRMSE 42.96% 42.53% 41.42% 41.26% 43.52%

VIs+TI 60 R2 0.45 0.45 0.51 0.58 0.58

RMSE 3.89 3.86 3.67 3.4 3.541

rRMSE 41.72% 41.31% 39.33% 36.34% 39.45%

VIs+TI+CC 61 R2 0.45 0.46 0.51 0.59 0.61

RMSE 3.9 3.85 3.67 3.40 3.28

rRMSE 41.75% 41.26% 39.32% 36.47% 35.29%

VIs+TI+CC+CHM 62 R2 0.48 0.49 0.52 0.61 0.62

RMSE 3.78 3.74 3.60 3.31 3.25

rRMSE 40.4% 40.00% 38.52% 35.40% 35.32%

VIs+TI+CC+CHM+Lodging 63 R2 0.48 0.49 0.53 0.62 0.64

RMSE 3.78 3.76 3.6 3.287 3.16

rRMSE 40.43% 40.22% 38.54% 35.18% 33.80%
frontier
VIs, vegetation index; TI, texture information; CC, canopy cover; CHM, crop height; DNN, deep neural network; Logistic, logistic regression; PLSR, partial least squares regression; RFR,
random forest regression; SVM, support vector machine regression. The best results in terms of R2, RMSE, and rRMSE values through different sensors with various modeling methods are
shown in bold.
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decrease in yield (Cooper, 1971). However, they did not address

the effect of lodging in more detail. This is primarily because

lodging is a combination of several complex traits. A separate

discussion of the different parameters of yield data could be a
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valid approach, and existing evaluation indices should be

updated or reconstructed.

In contrast to the previous study, Maimaitijiang et al. (2020)

also used some algorithms. They found less of a difference
FIGURE 9

Results of the machine learning algorithms to estimate the grain weight per plant. The left column is the training dataset, and the right column
is the validation dataset. The black dashed line is the 1:1 line, and the solid red line is the data fitted line. SVM, support vector machines
regression; RFR, random forest regression; PLSR, partial least squares regression; Logistic, logistic regression; DNN, deep neural network.
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between the different algorithms, with an R2 that ranged from

0.65 to 0.72 (Maimaitijiang et al., 2020). This could be because

their results were based on only three cultivars. However, this

study was based on a large number of cultivars to better

distinguish the performance of the different algorithmic

models. As for Figures 10 and 11, the five machine learning

algorithms were clearly divided into three parts, which exhibit

very different results. In addition, machine learning methods

performed similarly to DNN-based regression when fewer

indices were inputted, while the DNN outperformed other

methods when more indices were utilized. An increase in the

number of indices resulted in an increase in R2 and a decrease in

RMSE for all the regression methods. However, the magnitude of

increase or decrease varied. The DNNs performed better than
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the other regression algorithms owing to the large amount of

data in this study, but they do not have a very clear advantage

when the dataset is smaller. This could be owing to the ability of

deep learning to often outperform machine learning methods

when processing larger sample sizes and complex non-

linear datasets.

This work has some practical implications, firstly it given

more accurate conclusions of existing modeling methods

based on >1,500 cultivars, and we found a pronounced

stratification of the model, which will have a positive impact

between the technology and practical production. Secondly,

instead of estimating traditional yields, we estimated two yield

parameters and found that the effect of lodging was different, it

provided with ideas for doing some other complex traits later.
BA

FIGURE 11

R2 and RMSE for different models with different numbers of input Indices for the grain number of seeds per plant. 24 were vegetation indices.
60 were vegetation indices and texture indices. 61 were vegetation indices, texture indices, and canopy cover. 62 were vegetation indices,
texture indices, canopy cover, and crop height. 63 were vegetation indices, texture indices, canopy cove, crop height, and lodging.
BA

FIGURE 10

R2 and RMSE for the different models with different input indices for grain weight per plant. 24 were vegetation indices. 60 were vegetation
indices and texture indices. 61 were vegetation indices, texture indices, and canopy cover. 62 were vegetation indices, texture indices, canopy
cover, and crop height. 63 were vegetation indices, texture indices, canopy cove, crop height, and lodging.
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Finally, we evaluated the accuracy of the estimated yield

parameters with early stage, these allowing breeders to

evaluate the performance of specific cultivars at an

earlier stage.

Although this study has extracted as many indices as

possible to estimate the final yield parameters, the RGB itself

contains limited information, which resulted in the poor

accuracy of estimation. In addition, the diversity of cultivars

that numbered >1,500 exacerbated this result. But RGB is more

economical and practical than multiple spectral sensors, and it is

impractical to use hyperspectral in large test field currently.

Although existed hyperspectral methods will get better results,

they are often obtained by only 5-10 cultivars and have not been

validated over a large number of cultivars. Although only RGB

data were used in this study, our conclusions will be more

realistic and credible based on data from more than 1500

cultivars, apart from this, the process of moving from method

to field may require more experiments, such as multi-year and

multi-point experiments. In this study, the grain number of

seeds per plant and the grain weight per plant were used as yield

parameters instead of the traditional plot yield. There were

several reasons for this. First, analyzing such a large number of

cultivars, including the control cultivars, that totaled 1,805 plots,

with the land arrangement and post-survey was an enormous

task. The plot size could only be reduced to one plot with two

rows. Secondly, the plot yield can be too severely affected by

chance factors, including occasional biotic and abiotic effects,

such as seedling deficiency and diseases. These factors could

have too much influence on the final plot yield, which interfered

with the representation of the real yield data. The mean value of

the plots was also calculated for different vegetation indices and

textures, so that more reasonable yield parameters were used as

the final indicator. The grain number of seeds per plant and

grain weight per plant would also be easier to interpret. Use of

the Boruta algorithm to eliminate indices is not the best way to

do this, but it will provide suggestions for indices in the middle

of the range of importance, and the final selection can be

artificially conducted. Although the DNN had the best training

and accuracy of estimation, the recent rapid development of

deep learning algorithms will increase the likelihood of

improvements in modeling algorithms. Promising algorithms

include the use of long and short-termmemory learning (LTSM)

or an improved RNN algorithm in combination with time-

series data.
5 Conclusions

This study explored the potential of RGB data to estimate

yield parameters. UAVs provide canopy spectra, structure, and

texture information, and five machine learning methods were

used to estimate the yield parameters under lodging conditions.

The main conclusions are as follows:
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1. The most accurate time point for yield parameters

estimation is 48 days after sowing when most cultivars

are flowering. However, not all the indices correlate best

with yield parameters at the flowering stage.

2. A combination of all the screened indices most

effectively estimated the yield parameters. Spectral

information offers a substantial potential for

estimating the yield parameters, and the accuracy of

estimating higher yield parameters is the highest when

all the information indices are used.

3. The DNN-based model outperforms the PLSR, RFR,

logistic, and SVM when the input indices are increased.

4. The effect of lodging levels on yield parameters are

significant, and they affect both the grain number of

seeds per plant and the grain weight per plant. However,

the grain number of seeds per plant is more effective at

generating accurate results.
The results suggest that there is substantial potential to

estimate the yield parameters using multiple types of data

fusion combined with deep neural networks. However, there

are some limitations. First, as for breeders and cultivators, multi-

year multi-area performance is an important indices of model

stability, and it is difficult to judge the effectiveness of the model

when we have only one year data. Secondly, our model only

considered data from one time-point but considering multiple

periods data may increase the estimation accuracy of yield

parameters. Finally, we were numerically unable to the effect

of lodging on yield parameters, so it was impossible to estimate

the impact of lodging. To further improve the accuracy of

estimating yield parameters, a larger amount of data is needed

to support the estimation of yield parameters for so many

genotypes. A future goal is to try to use more efficient

methods to improve the stability of the estimated yield model.
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