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instance segmentation of plant
3D point clouds
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Accurate simultaneous semantic and instance segmentation of a plant 3D point

cloud is critical for automatic plant phenotyping. Classically, each organ of the

plant is detected based on the local geometry of the point cloud, but the

consistency of the global structure of the plant is rarely assessed. We propose a

two-level, graph-based approach for the automatic, fast and accurate

segmentation of a plant into each of its organs with structural guarantees.

We compute local geometric and spectral features on a neighbourhood graph

of the points to distinguish between linear organs (main stem, branches,

petioles) and two-dimensional ones (leaf blades) and even 3-dimensional

ones (apices). Then a quotient graph connecting each detected macroscopic

organ to its neighbors is used both to refine the labelling of the organs and to

check the overall consistency of the segmentation. A refinement loop allows to

correct segmentation defects. The method is assessed on both synthetic and

real 3D point-cloud data sets of Chenopodium album (wild spinach) and

Solanum lycopersicum (tomato plant).

KEYWORDS

instance segmentation, semantic segmentation, Fiedler vector, quotient graph,
phenotyping
1 Introduction

3D acquisition systems of plants and crops have become widespread in recent years.

This has allowed for automatic and non-destructive measurement of traits directly on the

output of these systems, enabling automatized computational phenotyping. In the case of

complex traits (leaf areas, stem length, internode distances, etc.), this is however only

possible when plant organs are automatically identified, as explained in the review made

by (Paulus, 2019). This means two things. First, the virtual representation of the plant,
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usually a 3D point cloud, should be decomposed into parts

corresponding to the plant organs. Second, each part should be

labelled according to the organ it represents. The first task is

often called instance segmentation, or sometimes part

segmentation. The second one is known as semantic

segmentation or classification.

Instance segmentation is often based solely on the local

geometry of the plant since the aim is to locate each organ within

the plant. On the contrary, semantic segmentation assumes that

some organ classes (e.g., “stem” and “leaf blade”) have been

defined. Prior knowledge about the plant is thus necessary. Both

tasks can be solved independently, however, there would be a

benefit to solving them simultaneously as prior knowledge about

the global plant structure is useful to correct or refine an instance

segmentation of the plant. Here, we propose a new approach

which alternates between an instance segmentation of the plant

based on its local geometry and the use of botanical knowledge

to both add semantic labels and detect the defects of this

segmentation (see Section 2.1). Our approach uses two graphs

that reflect the main scales of analysis: a similarity graph

expresses both the local geometry and the neighborhood

relationships between the points of the input point cloud,

while at a more macroscopic scale, the many points of the

similarity graph are clustered into a quotient graph that

represents the plant branching structure made up of organs.

A lot of work has already been done on the instance and

semantic segmentation of plant 3D point clouds, as we detail

below. The proposed approaches are either limited to a couple of

organ types (typically, stem vs. leaf blade), require a substantial

amount of user interaction (e.g. to create annotated data sets to

train machine learning systems), or do not guarantee botanical

consistency over the plant structure (e.g. a leaf blade could be

directly connected to the main stem). Here, we propose a

method that automatically and quickly segments a plant 3D

point cloud into labelled instances corresponding to the organs

of the plant, with an overall guarantee of the botanical

correctness of the segmented result.
1.1 Related work

3D point cloud segmentation and classification are

problems that have received attention for a long time in the

science community.

Early instance segmentation methods can be split into two

categories. In the first one, methods compute geometric

attributes on the point clouds in order either to grow regions

from seed points or to first detect their boundaries and then

recover each region from these boundaries. The second one

gathers geometric primitive fitting techniques. Our approach fits

in the first category. Methods of both types are numerous and

surveys can be found in (Nguyen and Le, 2013; Grilli et al., 2017;

Xie et al., 2020).
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Semantic segmentation can be done directly on the input

point cloud according to some pre-defined classes. For this

purpose, geometric features are computed locally on each

point using its nearest neighbors (Weinmann et al., 2015).

Semantic segmentation can also be done on each segment

once an instance segmentation has been carried out, by

computing geometric features at the segment level and/or

using additional knowledge describing how the data is

organized at a global level. In both cases, an inaccurate

instance segmentation can be corrected or refined, for example

by merging neighboring instances with similar features, by

splitting an instance, or by interactive operation with the user

(Teng et al., 2010). Global knowledge about the shape structure

can be expressed as a graph (Landrieu and Simonovsky, 2018;

Poux and Billen, 2019) or using an ontology (Hassan et al., 2010;

Dietenbeck et al., 2017; Poux and Ponciano, 2020). In our

approach, we use graphs to simultaneously segment the plant

into its organ instances and give semantic labels to these

instances. This allows performing several steps of correction or

refinement to recover the best plant structure.

Early automatic and simultaneous instance and semantic

segmentation methods for plant 3D point clouds have been based

on fitting simple geometric primitives to the plant organs, such as

cylinders for stems and branches, combined with implicit prior

knowledge about the plant’s global structure. For example (Paproki

et al., 2012), start with a coarse segmentation based on growing

regions. The main stem is then segmented into its internodes by

fitting cylinders. Petioles are also segmented using cylinder fitting.

Finally, normal clustering is used to segment each leaf blade into its

parts. Similarly (Gélard et al., 2017), first detects the main stem

fitting a generalized cylinder. The insertion points of the petioles on

the main stem are then detected, which allows to segment each leaf

into its petiole and leaf blade. As pointed out by (Ghahremani et al.,

2021), such methods lack robustness in the presence of acquisition

noise or outliers. As a consequence, the use of a probabilistic

framework has recently been proposed to overcome this problem

(Ghahremani et al., 2021). The alternative solution to fitting

primitives, which we use here, consists of computing local

geometric features around each point, using points from its

Euclidean neighborhood.

Features should express the local shape of the plant around the

point. Two main types of features have been used in the literature.

The first one takes the form of a histogram, called the Point Feature

Histogram (Rusu et al., 2009; Paulus et al., 2013), and allows to

segment a plant point cloud into its leaf blades and stems/petioles

(Wahabzada et al., 2015). However, additional work is required to

segment each organ instance. For example (Vijayarangan et al.,

2018), use both a cylinder fitting approach for the stem and region

growing for the leaf blades. The second type of features relies on a

neighborhood graph built from the point cloud. Features related to

a point can be defined either locally as the main directions of the

point neighborhood (Elnashef et al., 2019; Wang, 2020), or globally

as the set of eigenvectors of a so-called Laplacian matrix of this
frontiersin.org
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graph (Hétroy-Wheeler et al., 2016; Liu et al., 2018). Instances of the

segmentation can be retrieved using the computed features and

graph clustering techniques. Each instance can be labelled as either a

linear organ (stem, branch, petiole) or a leaf blade. We also use the

Laplacian matrix in our approach, but we show that only one of its

eigenvectors is enough to accurately segment a plant into its main

stem, branches, petioles, leaf blades and apices, as long as the norm

and the direction of this eigenvector are processed separately.

Using local features does not ensure any global consistency

over the plant structure. To solve this problem, (Vijayarangan

et al., 2018) detects intersection points between the main stem

and the leaves. (Hétroy-Wheeler et al., 2016; Liu et al., 2018) do

not check if the reconstructed architecture is consistent, but only

if the desired number of organs is reached at the end of the

segmentation process. In the context of forest tree point clouds,

(Wang, 2020) organizes instances as nodes of a superpoint graph,

a concept borrowed from (Landrieu and Simonovsky, 2018), and

optimizes this graph to retrieve which instances correspond to

wood. Our approach also relies on building a neighborhood

graph from the point cloud. As in (Paproki et al., 2012; Gélard

et al., 2017; Vijayarangan et al., 2018), we verify that each leaf is

connected to the main stem of the plant, but this is done using a

quotient graph linking each instance to its neighbors, in a way

similar to the superpoint graph of (Landrieu and Simonovsky,

2018; Wang, 2020). This graph allows imposing botanical

consistency constraints between organs during the plant

structure reconstruction and also allows a posteriori control of

these botanical rules.

Machine learning techniques can also be used for

simultaneous instance and semantic segmentation of a point

cloud. The last years have seen a boom in deep learning-based

segmentation methods, as detailed in (Guo et al., 2020).

Unfortunately, in the case of plants, most methods only allow
Frontiers in Plant Science 03
two types of organs: stem and leaf blade (Ziamtsov and Navlakha,

2019; Liu et al., 2021; Li et al., 2022a; Li et al., 2022b; Li et al.,

2022c), sometimes adding the ground when it has not been

removed beforehand (Schunck et al., 2021). Interestingly

(Boogaard et al., 2022), proposes a method which distinguishes

between stem and petioles, even adding the labels “growing point”

(similar to “apex” in our case), “node”, “ovary” and “tendril”.

Noticing that leaf blades typically contain more points than the

other organs, this method uses the state-of-the-art PointNet++

architecture (Qi et al., 2017) and adds a strategy to counter the

effects of such class imbalance. The results of these deep learning-

based techniques are generally quantitatively impressive. As a

counterpart, they need a large quantity of training data (typically,

several hundreds of manually segmented point clouds), which is a

very cumbersome manual task. Moreover, the training stage is

time and memory consuming and the input point cloud should

often be down-sampled to only a few thousand points, which

induces a loss of details and potentially of the smaller organs, and

restricts for the moment such approaches to small plants. In

contrast, our method does not require any training as it uses

botanical knowledge within the algorithm. As a consequence, it

can handle point clouds with hundreds of thousands of points

directly and find a semantic and instance segmentation in a few

minutes (see Figure 1C).
2 Graph-based instance and
semantic segmentation method

2.1 Method overview

Starting from a 3D point cloud of the plant corresponding to

the set of 3D spatial coordinates of each point, our mixed
B

CA

FIGURE 1

Semantic segmentation results on the tomato plant data set. (A) F1-score with respect to the stage of development of the tomato plants.
(B) Semantic segmentation results (in % ) on the real tomato plant data set containing two plants at 7 stages of development each. Semantic
segmentation IoU obtained by (Schunck et al., 2021) with three different neural network on the entire Pheno4D tomato data set.
(C) Computation time with respect to the size of the point cloud (the four biggest point clouds correspond to the tomato plants).
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instance/semantic segmentation algorithm proceeds in three

main stages, Figure 2. In the first stage, we cluster points

according to the local geometry of the point cloud. First, a

graph is constructed by linking points to their closest neighbors

in space (similarity graph). Then, spectral attributes are

computed on this graph. These attributes are computed only

once as they remain valid during the whole process. This stage,

detailed in Geometric clustering, produces as an output an

instance segmentation of the point cloud and a quotient graph

reflecting the macroscopic relationships between adjacent

instances (Section 2.2.3).

The second stage of our algorithm aims at modifying this

initial clustering using prior botanical knowledge. A label is
Frontiers in Plant Science 04
associated with each cluster, leading to a mixed instance/

semantic segmentation. For this, the known architecture of the

plant is used in an iterative way to transform the quotient graph

into a semantic quotient tree. During this stage, the main stem,

branches, petioles, apices and leaf blades are detected,

(Section 2.2.3).

Finally, in the last stage, we check if all botanical

constraints are met using the semantic quotient tree. If

not, the same geometric tools as in the first stage are used

locally on the corresponding clusters to refine the

segmentation. Once this is done, botanical knowledge can

be used again to correct the segmentation in a refinement

loop in section 2.4.
FIGURE 2

General principle of the mixed instance/semantic segmentation method.
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2.2 Geometric clustering

2.2.1 Computation of spectral attributes: The
Fiedler eigenvector

The preliminary steps of our method are meant to extract

geometric features from the raw point cloud, in order to get a

first clustering of the points. The computed features are also used

to correct defects later in the pipeline.

To construct the similarity graph, we first compute the k

-nearest neighbors of each point. The value of k must realize a

trade-off between the necessity of keeping a fully connected

graph and the need to keep reasonably small the number of

edges between nodes to avoid excessive computational times

subsequently. We found that a value of k=18 generally was

making such a compromise.

The similarity graph is thus made of nodes, indexed

from 1 to N , corresponding to the 3D points and of

undirected edges, corresponding to the computed point

neighbours. In addition, each edge (i,j) bears a weight wij

defining a local measure of similarity between nodes and

equals here to the inverse of the Euclidean distance between

its two endpoints.

To extract geometrical features from this similarity graph,

we used a spectral clustering approach, see e.g (von Luxburg,

2007). The spectral clustering method relies on the Laplacian

matrix L of the graph. This Laplacian matrix L of the similarity

graph is defined as:

L = D − A (1)

where D is the diagonal matrix of node degrees dii (e.g. number

of neighbors of node i ), and A is the graph adjacency matrix,

aij=wij if (i,j) is an edge in G and aij=0 otherwise. Note that aii=0

for all i=1,..,N. As a result, the elements Lij of L correspond to the

degree of node i if i=j , and to the opposite of the weight of edge

(i,j) if i≠j , and 0 otherwise. By construction, the matrix is of size

N×N with N the number of nodes of the graph.

As the Laplacian matrix L is symmetric, positive, and semi-

definite, its eigenvalues lk are real, positive, and correspond to N

orthogonal real-valued eigenvectors Vk of dimension N , such

that ∀k=1,..,N ,

LVk = lkVk (2)

Each eigenvector Vk consists in a list of scalar values, and

each value of this list is associated with a node in the graph. The

size of each eigenvector is therefore the size of the graph, N.

These eigenvectors have a general interpretation on the graph:

the eigenvectors corresponding to eigenvalue l1=0 identify the

different connected components of the graph G (here only one as

G is connected). The next eigenvector, denoted VF ,

corresponding to the first non-null lowest eigenvalue, l1
separates the graph into two main connected components

(corresponding to positive and negative node values in the

eigenvector respectively). The following eigenvectors still
Frontiers in Plant Science 05
continue to decompose further the graph G into sub-graphs of

smaller and smaller sizes (hence the term spectral). These

ordered eigenvectors are classically used to cluster 3D point

sets using the K eigenvectors corresponding to the K lowest

eigenvalues. However, we found that such a pure spectral

clustering method applied to our point clouds was not able to

segment satisfactorily plant organs. In addition, the method

needs K (that would correspond here to the number of plant

organs) as an input value, which is most of the time unknown

and difficult to estimate a priori.

The eigenvector corresponding to the first lowest non-null

eigenvalue of the Laplacian matrix (eq. 1) is named the Fiedler

eigenvector, VF . During this first analysis, we observed that the

variations of the Fiedler eigenvector components over the graph

behave in a specific manner in different parts of the plant

structure. It has been used to partition a graph into two parts

with theoretical guarantees: the number of edges which have one

endpoint in each of the two sub-graphs is minimized (Fiedler,

1989; Slininger, 2013). The Fiedler eigenvector basically gives a

value to every node according to the longest axis of the graph. In

the case of plants, it thus orders the points along the main stem

as it is often the plant’s longest organ. This is illustrated on the

toy branching system with one main stem and two side branches

at different heights depicted in Figure 3A. We also noticed an

additional interesting property: the variations of the Fiedler

eigenvector components show discontinuities at branching

points. To see this, let us re-order the nodes of the graph from

Figure 3A according to their values in the Fiedler eigenvector

and plot these values from the highest to the lowest, Figures 3B,

C. This function shows slope breaks on nodes connecting several

side branches of the graph (Figure 3), while no such slope breaks

are observed in the absence of side branches (Figure 3).

To detect such slope breaks in a real, more complex similarity

graph, we computed an average directional gradient (ADG) of the

Fiedler eigenvector. Let i be a node of the graph, xi be the 3D

coordinates of this node andN(i) the set of neighbouring nodes, f(i)

is the Fiedler eigenvector value at i , then the average directional

gradient of the Fiedler eigenvector is computed as:

�∇ f ið Þ = o
j∈N ið Þ

(f jð Þ − f ið Þ) xj − xi
� �

xj − xi
�� �� (3)

This defines a new vector field on the similarity graph called

the Fiedler ADG vector field. Note that we did not normalize by

the degree of the node i as all nodes in our graph have the same

degree (here 18) and that we computed directional gradients on

the topological graph without taking into account the edge

weights in the similarity graph.

As suggested by the analysis on the above toy example, the

directions of the Fiedler ADG vector field overall follow the

linear organs of the plant (main stem, branches), and we observe

breaks of directions where branching due to the connection of

different organs occurs, Figure 3E.
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Interestingly, we also noticed that the value of the norm of

the Fiedler ADG vector field drastically drops between points on

a petiole or a branch and points on a leaf blade or an apex, as can

be seen in Figure 3D. This is due to the fact that petioles and

branches are roughly one-dimensional shapes (hence with only

one main direction) while leaf blades and apices are mostly two-

dimensional and three-dimensional.

Based on these two observations we designed algorithms to

cluster the linear organs and to segment flat or volumetric

organs of the plant from linear ones.

2.2.2 Apices and leaf blades segmentation
We exploit the norm of the Fiedler ADG vector to

automatically detect the apices and leaf blades of the point

cloud. As the value of the norm drops on the leaf blades and

apices (see Figure 3D), we cluster the points with the smallest

norm values, using the K-means algorithm. To achieve correct

leaf blade and apex segmentations, we observed the

segmentation quality varies with K . For this, we used an

elbow criterion (Satopaa et al., 2011) which made it possible to

show that a value K=4 was most of the time optimal. Then, the

clusters whose centroids have the smallest norm are the clusters

containing apices or leaf blades.
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This process thus outputs a segmentation of the point cloud in

four clusters, with one cluster containing all leaf blades and apices,

as illustrated in Figure 3F in green. Each of the three other clusters

gathers points from the main stem, branches and/or petioles, but

each of these organs is not necessarily included in one cluster only.

The base of the main stem is also included in this cluster. This is

corrected in the following (see Section 2.2.3). Instances of apex or

leaf blade can then be retrieved from this cluster with a simple

region-growing algorithm on the similarity graph (Vijayarangan

et al., 2018). This produces one cluster for each occurrence of apex

or leaf blade. However, note that this region-growing algorithm

may not produce correct instances if the leaf blades are touching or

overlapping. To avoid this issue, a more advanced leaf segmentation

process has been proposed in (Li et al., 2019).

2.2.3 Linear organs segmentation
In this stage, we only work with points which have not been

detected as part of a leaf blade or an apex (flat or volume shape),

i.e. points that belong to the three remaining clusters with linear

shape: the main stem, the branches or leaf petioles. Our goal is to

cluster points according to their organ class. To do so, we use the

direction given by the Fiedler ADG vector field at each point in a

“split and merge” approach.
B

C

D

EA

F

G

FIGURE 3

Illustration of the behavior of the Fiedler eigenvector on a toy example. (A) Simple example: a linear graph with two side branches. The vertical
axis is composed of a hundred nodes chained together. The two remaining branches contain 20 nodes each chained together and connected
to a node of the main chain through the first node in their chain. The overall structure makes up a tree of node chains. We computed the
Fiedler eigenvector on this graph and its values are shown with a rainbow color scale (red = highest values, blue = lowest values). Arrows
indicate the directions of increasing values for the Fiedler eigenvector. (B) Values of the Fiedler eigenvector for each node from the bottom to
the top of the graph in a) without the two side branches. (C) Values of the Fiedler eigenvector on the whole graph in (A) with side branches.
Slope breaks correspond to extremal nodes or nodes connecting several branches. With the Fiedler eigenvector, we obtain the Fiedler ADG
vector field. (D) The norm of the vectors drops between the petiole and the leaf blade. (E) Unit vectors of the Fiedler ADG vector field are
displayed, demonstrating that the directions of the vectors follow the axes of the plant. (F) K -means clustering obtained using the norm of the
Fiedler ADG vector field, with K=4 . 2− and 3− dimensional shapes (leaves and apices) are in green while linear shapes are divided into red,
yellow and blue. (G) Instance segmentation obtained at the end of the first stage of our algorithm. Each instance is in a different color.
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First, to account for the different organ instances in the

semantic sub-clusters, each of the three clusters is further

divided into connected components. Then each connected

component is split into sub-clusters using again the K -means

algorithm. Here, however, the number of cluster K is

automatically computed using the classical elbow method with

the variance criterion, with a maximum of 20 sub-clusters per

cluster (Bengfort et al., 2018). The principle of this algorithm is

to compute a range of segmentation solutions by varying the

number of clusters. For each solution, it computes a criterion

that is plotted as a function of the number of clusters. Then it

detects the “elbow” of the curve, the optimal number of clusters

after which the criterion does not improve significantly. By

splitting the clusters using this method, we often get isolated

and small clusters as clustering direction noise enhances the

variance value. Besides, the areas where the directions shift are

overly segmented.

A solution to this issue is to merge the clusters depending on

their overall directions to avoid taking noise into account. To

perform this merging process, we construct a new object. We

define an equivalence relation on the points of the similarity

graph such that two points are equivalent if and only if they

belong to the same computed cluster. Based on this equivalence

relation, we construct a quotient graph Q by quotienting the

similarity graph with this equivalence relation (Godin and

Caraglio, 1998). Each (macro-)node of Q represents a

connected component of a sub-cluster, and edges between

nodes represent the adjacency relations between components

in the similarity graph (an edge is created in the quotient graph
Frontiers in Plant Science 07
between two (macro-)nodes if at least two (micro-)nodes in

these macro-nodes are neighbors in the similarity graph) (Godin

and Caraglio, 1998; Sanders and Schulz, 2011). This quotient

graph reflects the plant structure at a more macroscopic scale

and is much smaller than the original similarity graph (see

Figure 4). We additionally define a root node on the quotient

graph. This node corresponds to the bottom part of the main

stem. In our plant data sets, it could be defined as the node

corresponding to the lowest component of the plant. This

automatic criterion is manually checked as in rare cases some

branches fall to the ground. In this case, the root node would

simply be manually corrected by the user (the case did not occur

in our data sets). Nodes corresponding to the leaf blades and

apices previously identified are also added to the quotient graph

at the end of this stage, with connections to nodes representing

linear organs defined according to the similarity graph.

Finally, a high-level merge operation is carried out on the

quotient graph to merge potentially over-segmented linear

segments. Adjacent nodes of the quotient graph sharing similar

directions of the Fiedler ADG vector field are merged in a single

node. This is done by computing the mean �Di of the Fiedler ADG

vector field direction for each connected component, i.e. for each

node vi of the quotient graph. An energy Ei,j is defined on each edge

(vi,vj) of the quotient graph, based on the scalar product of the two

mean normalized directions of nodes i and j : Ei,j = 1 − �Di · �Dj.

Edges with the lowest energy indicate connected segments that

have similar directions. They are thus iteratively collapsed and the

components represented by their two nodes are merged until a

threshold is reached. We experimentally found that a threshold
B C

D E F

A

FIGURE 4

Construction of a quotient graph. (A–C) shows the construction pipeline of the quotient graph from the similarity graph. (A) Similarity graph.
(B) Similarity graph with instance segmentation. (C) Quotient graph of the similarity graph in (B). (D–F) show the same stages on a 3D point
cloud. (D) Similarity graph with a zoom to see its structure. (E) Segmented similarity graph, each color representing an instance of the
segmentation. (F) Superposition of a segmented point cloud with its associated quotient graph.
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corresponding to an angle of 30∘ between �Di and �Dj is adequate to

stop this merging process. In general, this threshold may depend

on the density of the point cloud and/or on the size of the

neighbourhood taken to compute the Fiedler ADG vector field.

At the end of this first stage, the initial point cloud is

segmented into instances corresponding to either a linear organ

(main stem, branch, petiole) or a two-dimensional or three-

dimensional organ (leaf blade, apex) of the plant (Figure 3G).

The quotient graph reflects these instances together with their

connections. Note that, at this stage, there is no guarantee these

connections are botanically correct, as they are purely based on

geometric cues.

The next stage aims at recovering cluster semantics by

distinguishing apices, leaf blades, main stem, branches and

petioles. This is done using botanical knowledge on the

quotient graph to check the plausibility of the connections

beween neighboring clusters.
2.3 Semantic segmentation using
botanical knowledge

From the geometric quotient graph, we then seek to obtain

an instance segmentation where each segment is labelled with a

unique organ type (apex, leaf blade, petiole, branch or main

stem). To reach this goal, prior botanical knowledge is used. We

illustrate our approach here on Chenopodium album.

We first use knowledge about the shape of the leaf blades to

distinguish leaf blades from apices (i.e. bouquet of small and

compactly aggregated leaves at the tip of growing axes). Then, we

recover the main stem of the plant and use the quotient graph to

connect it to the leaf blades and apices. This makes it possible to

differentiate branches from petioles.

2.3.1 Differentiation between apices and
leaf blades

The Fiedler eigenvector is directly used to separate apices

from leaf blades. As shown in Figure 3A, a local minimum or

maximum value is reached at each end of the point cloud. In

each cluster previously classified as either a leaf blade or an apex,

we thus look for all locally extremal values of the Fiedler

eigenvector on the graph G.Extremal values of the Fiedler

eigenvector are found using the similarity graph structure. For

each node v of G, we consider the nodes connected to v and

compare the value f(v) of the Fiedler eigenvector at v with its

values at these nodes. If f(v) is the smallest or biggest value, then

we count it as a locally extremal value. Clusters containing only

one extremum are classified as leaves (Figure 5A) and, otherwise,

as apices (see Figure 5B). Note that in the case of serrated leaves

(see Figure 5C), the size of the neighbourhood needs to be

increased so that only one local extremum is indeed detected. In

the case of multiple-lobed leaves (digitate leaves, for example), a

counting system could be set.
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2.3.2 Main stem determination
The main stem of the plant is determined by inspecting the

quotient graph, starting from the apices and the leaf blades. To do

so, we associate a leaf load with each node of the quotient graph.

The leaf load represents how many leaf blades or apices the organ

downstream of the node holds up in the plant. For example, the leaf

load is equal to 1 for each apex or leaf blade node, and the load for a

branch connected to two leaves should be equal to 2. Note that

more elaborate definitions of leaf loads are possible, for example

using the size (number of points) of the supported apices and leaf

blades, or the number of local extremal values of the Fiedler ADG

vector field. In our work, we have used the simplest definition

described above. Leaf loads are computed iteratively, starting from

the apices and leaf blades. At the beginning of the algorithm, we set

the leaf load of each node representing an apex or a leaf blade to 1,

and the load of any other node to zero.

We then compute for each apex or leaf blade node its

shortest path to the root node in the quotient graph. The load of

this apex or leaf blade node is added to the load of each other

node on this path, see Figure 6. Once each path has been

computed, we detect the main stem by identifying the path

that accumulates the highest load among the shortest paths from

apex/leaf blade nodes to the root node. To select the path with

the highest load, we actually do not sum all the leaf loads

associated with the nodes in the path, as the load of a path

would then depend on its number of nodes. Instead, we only

count the leaf loads at branching nodes in the graph. For

example, on Figure 6, the path associated with the lowest leaf

blade or apex gives the successive loads 1,1,5,5 along its nodes,

and then the total load of the path is computed as 1+5=6 rather

than 1+1+5+5=12.

The load on a path only augments at branching junctions in

the graph. To keep the algorithm independent of segmentation

fluctuations, we count loads only once on a path (i.e. only at

branching nodes). For example, on Figure 6, the lowest path

associated with the lowest limb or apex gives the loads 1,1,5,5 ,

then the total load of the path is computed as 1+5=6 rather than

1+1+5+5=12. The main stem is identified as the path that

accumulates the highest load among the shortest paths from

apex nodes to the root node.

All the nodes of the main stem are finally merged on the

quotient graph, except the apex node. The corresponding

clusters on the point cloud are merged as well.

At this stage, each node of the quotient graph has been

labelled as either a leaf blade, an apex, the main stem or a linear

organ. The nodes labelled as linear organs are the last to be

processed as they are divided into branches and petioles.

2.3.3 Labelling branches and petioles
Once the leaf blades, apices and main stem of the plant

have been labelled in the point cloud, the remaining points are

clustered into branches and petioles. The botanical consistency

of the resulting labelled quotient graph is then checked using
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prior knowledge about the plant species. Prior to this

processing, we merge the smallest clusters (typically

composed of 10 to 50 points) that may have been produced

by the previous stages.

Our goal is thus to transform the quotient graph into a

semantic quotient tree. We define a semantic quotient tree as an

acyclic graph derived from a quotient graph in which all edges

correspond to plausible connections between organs in a plant.

Starting from a quotient graph, we thus need to remove all cycles

and check that, for example, a leaf blade is not directly connected

to the main stem, or that two leaf blades are not connected to

each other. For this, we start by weighting each edge of the

quotient graph according to the botanical plausibility of the

adjacency of its endpoint labels. This is done by setting a weight

equal to 1 on all edges connecting a node representing a linear

organ to any other node, and a weight equal to infinity on all the

other edges, that is to say, edges connecting two leaf blades, two

apices, a leaf blade to the main stem, etc. Edges with infinite

weights represent connections which are not botanically

possible, that need to be discarded.

From each apex node, we then compute a shortest path to the

root node in the weighted quotient graph. If such a path is found

with a finite total weight, each node of the path corresponding to a

linear organ is labelled as a branch node. If not, it means no

plausible connection from the apex to the main stem using linear

organs can be found in the quotient graph. The connection

between the apex and the main stem will remain as an edge but

will be detected as an error in Section 2.4.
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The same process then applies to the leaf blade nodes. Each

node of a shortest path to the root node corresponding to a

linear organ is labelled as a petiole node if it has not been labelled

previously as a branch node and the total weight of the path is

finite. If no node is labelled as a petiole, it means the leaf blade

node is directly connected either to the root node or to a branch

node. Otherwise, the petiole node is necessarily connected to the

leaf blade node and either the root node or a branch node, but

may also be connected to additional nodes (e.g., to another leaf

blade node). In both cases, the inconsistency is detected and the

segmentation needs to be corrected, as described in Section 2.4.

At this point, the quotient graph can still contain cycles. Two

cases can occur: either a cycle goes through both the root node

and a leaf blade or apex node, or not. The first case means that

two distinct paths connect the root node to a leaf blade or an

apex node in the graph. We tag this leaf blade or apex node for

later correction, see Section 2.4. In the second case, unnecessary

connections between nodes occur. As some of the edges of the

cycle necessarily have infinite weights and were not used in any

previous short path, they are simply removed, which eliminates

the corresponding cycle.

It may happen that some nodes do not belong to any

computed shortest path. They usually correspond to small

clusters of points (less than 100 points). They are merged to

the adjacent node with which they share the highest number of

connections in the similarity graph.

Finally, we give an infinite weight to the edges that have not

been used in any shortest path from an apex or a leaf blade node to
B

C

A

FIGURE 5

Locally extremal values for the Fiedler eigenvector on three different organs represented by red dots. (A) A simple leaf blade, (B) an apex and
(C) a serrated leaf blade.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1012669
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mirande et al. 10.3389/fpls.2022.1012669
the root node. In doing so, the sub-graph of the quotient graph

containing only edges with unit weights is a botanically plausible

semantic quotient tree. The edges with infinite weights of the

quotient graph correspond to segmentation errors. They are

corrected in the last stage of our method (Section 2.4).
2.4 Segmentation refinement

The final stage of our method aims at correcting the

remaining botanical inconsistencies in the segmentation. As

explained in the previous section, four different types of

inconsistencies (corresponding to edges with infinite weights)

can remain on the quotient graph.

These errors are mostly due to under-segmentations in

different places of the plant. In case 1), an apex or leaf blade node

is directly connected to the main stem node in the quotient graph.

In case 2) a leaf blade node is only connected to a branch node. That

means a petiole has not been detected. In both cases, it is suggested

that the missing organ has wrongly been clustered with its adjacent
Frontiers in Plant Science 10
apex or leaf blade in previous stages.When a node corresponding to

a linear organ is connected to more than two leaf blades or apices

nodes (case 3), it is likely the related cluster contains at least two

linear organs. Finally, two paths may connect a leaf blade or apex

node to the root node (case 4), due to the region-growing algorithm

(see Section 2.2.2) that failed on the corresponding leaf blade or

apex cluster, which actually contains points belonging to more than

one leaf blade or apex, see Figure 7 for an example.

In all cases, we decide to locally refine the segmentation to

solve the problems. The considered clusters are further

segmented using the relevant spectral attribute (see Section

2.2): a cluster containing at least an apex or a leaf blade is

segmented using the norm of the Fiedler ADG vector field, while

a cluster containing several linear organs is segmented using the

direction of this Fiedler ADG vector field. The segmentation

algorithm used is the K -means algorithm, with K automatically

chosen using the elbow method, as in Section 2.2.3. Note that

new clusters are only labelled as linear or two/three-dimensional

organs. This refinement changes the quotient graph, as a node is

split into at least two nodes.
B

C D

A

FIGURE 6

Determination of the main stem using the quotient graph. The root node corresponding to the main stem is shown in red, the nodes
representing linear organs are in light blue and the apex or leaf blade nodes are in dark blue. (A-C) We compute the shortest paths from each
leaf blade or apex node to the root node and add one unit load to each blue node on each path. At the end of the process, the load on each
blue node corresponds to the number of shortest paths it belongs to. (D) Segmentation color-coded with the loads, from blue (0) to red (3).
The blue is associated with the leaf blades and apices.
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In order to retrieve a semantic quotient tree and distinguish

between apices, leaf blades, branches and petioles, the semantic

segmentation stage (Section 2.3) is repeated. This refinement

loop could potentially proceed as long as some defects are found

(on our data, we only did one iteration).
3 Experimental results

3.1 Data sets

We evaluated our method on two plant species with

contrasting leaf shapes and architecture, Chenopodium

album (also known as wild spinach, called Chenopodium in

the sequel) and Solanum lycopersicum (tomato plant). For the

tomato plant, we reused the data set provided by the

Pheno4D project (Schunck et al., 2021). For Chenopodium,

we created 2 new data sets, one obtained from real plant

architecture phenotyping, and the other from simulated

computational models of Chenopodium growth. The main

characteristics of the different data sets are reported

in Table 1.

3.1.1 Real Chenopodium data set
Chenopodium is generally considered a weed and has a

rapid and monopodial growth, see Figures 8A–D for an example.

It creates a well-defined main stem that dominates lateral axes

that grow out with a slight delay on the leader. The lateral axes in

turn then produce lateral axes of their own and so on. The leaves
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are simple, relatively small and have a triangular shape. The

plant growth produces terminal inflorescences after a few weeks

only. Here, we considered plants before they reach the

inflorescence stage.

3.1.1.1 Plant culture

Chenopodium plants were obtained from commercial

seed shops online. Plants were grown in culture chambers

on peaty-clay soil (clay: 60kg.m−3 ), watered with fertilizer (18

−10−18N−P−K ) and illuminated with LED lighting

(Valoya©, sunlight spectrum NS12, 150µmol.m−2.s−1 ) with

day/night regimes of 16h light and 8h dark. Temperature and

humidity are controlled as follows: 22°C and 60% humidity

during light, and 18°C and 70% humidity during nighttime.

After a few days of 4°C stratifications after sawing,

germinated seedlings were transplanted in individual pots at

8 or 10 days after germination (DAG) and plants were imaged

between 6 to 12 weeks DAG.

3.1.1.2 Plant imaging

Plants were imaged with 72 pictures taken regularly along a

circular path around the plant, using the ROMI Plant Imager

(v2, see the online documentation: https://docs.romi-project.eu/

plant_imager/build_v2/). This phenotyping robot is equipped

with a Sony RX0 RGB camera (1920 x 1060 pixels resolution)

attached to a CNC Cartesian arm with one degree of freedom for

panning. Optimal imaging contrasts are achieved with a

homogeneous black tissue as background and dimmable led

lightning. The images were retrieved through the camera’s

WiFi interface.
FIGURE 7

Examples of results of the refinement algorithm, when clusters detected as False are clustered again. The purple circle shows a leaf together
with an apex and its branch that were classified in the semantic class (Apex). The brown circle shows a cotyledon. As it is not detected
differently from the leaf blades, the algorithm considered that the leaf blade of the cotyledon was directly connected to the main stem and
therefore clustered it again.
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3.1.1.3 Image analysis for 3D point cloud
reconstructions

Plant 3D point clouds were reconstructed from the series of

2D images using the method described previously (Wintz et al.,

2018). Briefly, it consists of five consecutive steps. First, for each

image, the exact position and orientation of the camera, as well

as the intrinsics of the camera model (incorporated in the so-

called camera matrix) were obtained using a structure-from-

motion algorithm [Colmap (Schönberger and Frahm, 2016;

Schönberger et al., 2016)]. Second, possible deformations of

the images (e.g. created by lens optical aberrations) were

corrected using the camera intrinsics computed previously

with the OpenCV library (Bradski, 2000). Third, to isolate the

plant from other elements in the scene, a binary mask was

applied to each image using a linear SVMmethod where a linear

combination S of three red, green and blue channels is computed

for each pixel using respective weights of (0,1,0). Final masks are

generated using a parametrizable threshold value on S and

possible dilation of pixels (computed with the Scikit-image

library (Van der Walt et al., 2014), to avoid missing thin

elements in the final reconstruction. Fourth, a volume carving

algorithm was applied using a regular voxel grid: this outputs a

visual hull, which is made by the set of all 3D points whose

projection in all (masked) views is inside the reconstructed 3D

volume (the size of the projection of each voxel is about the size

of a pixel in each of the pictures). Depending on the plant, this

step could be restricted to an appropriate bounding box to

improve the plant reconstruction and/or computing speed.

Fifth, to correct the discretized aspect of the obtained carved

surface, we applied a level-set method (Sethian, 1996) to get a

smooth estimate of the real surface of the scanned object. The

signed distance function needed for this algorithm is computed

using a fast marching algorithm implemented in SciPy (Virtanen

et al., 2020). The entire code is open source and available online

(https://github.com/romi/plant-3d-vision).

The final Chenopodium data set thus contains a total of 22

point clouds, see Table 1.
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3.1.1.4 Construction of ground truth data

To create a ground truth reference, we selected 5 point clouds

in this data set to manually annotate clusters corresponding to the

different plant organs. We used the CloudCompare software

(CloudCompare, 2022) to separate each organ from the whole

point cloud. We could then label it with labels taking into account

the organ class and the instance (for example: from 300 to 399 for

the apices, from 400 to 499 for the leaf blades). Finally, we merged

all the labelled organs together to obtain an instance and semantic

ground truth segmentation. We obtain a semantic ground truth

segmentation with 5 semantic classes: main stem, branches,

petioles, leaf blades, apices.
3.1.2 Synthetic Chenopodium data set
Synthetic plant point clouds (Figures 8B–E) were also

generated to comparatively evaluate our approach using virtual

plants according to the method described in (Chaudhury and

Godin, 2020). The development of Chenopodium plants was

modelled using L-systems and the L-Py software (Boudon et al.,

2012). The simulated virtual plants were then sampled to obtain

ground-truth labelled point clouds. By construction, three

semantic classes were available in the models: petiole, stem

and leaf blade. This means the ground truth segmentation is a

semantic segmentation limited to 3 semantic classes. The model

does not contain the apex class. This class was introduced in our

segmentation algorithm to represent the aggregated set of small

leaves at the extremities of growing stems. An entity with the

apex class in the segmentation thus corresponds to a set of

terminal aggregated small leaves in the ground truth. We thus

considered that apices in the segmented data correspond to the

leaf class in the ground truth. Similarly, we merged the branch

and main stem classes in the segmented data. 24 synthetic

Chenopodium point clouds were generated to evaluate our

semantic segmentation. Each point cloud contains 10,000

points. Evaluations were conducted on a 2.6 GHz Intel Core i7

processor and 32 GB of memory. Our segmentation method
TABLE 1 Main characteristics of the plant data sets used to evaluate our approach.

Number of
point
clouds

Number of
Ground
Truth

Number of
Plants used

for
evaluation

Average
number of
points

Acquisition Reference
segmentation

Classes available in reference

Chenopodium
(real)

22 5 5 10 000 photogrammetry Instance and
semantic

Leaf blade, apex, main stem,
branches, petioles

Chenopodium
(synthetic)

24 24 24 50 000 simulation Semantic leaf (incl. leaf blade and apex),
petioles, stem (incl. main stem and
branches)

Tomato (real,
Pheno4D)

140 77 14 4-5 105 laser Instance
(leafblades only)
and semantic

stem (incl. brances, petiole sand and
main stem) leaf (incl. leaf blade and
apex)
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processes the whole data set of 24 point clouds containing 10 000

points each in an average of 12 minutes in total.
3.1.3 Pheno4D real tomato data set
By contrast with Chenopodium, tomato plants (Figures 8C–

F) have a sympodial growth and produce composed leaves,

generally leading to complex aerial architectures. To test our

method on significantly different plant species, we used the

tomato plant point clouds of the Pheno4D data set (Schunck

et al., 2021) from which we extracted 14 points clouds

corresponding to two different individuals observed at 7 time

instants during their growth, Table 1. In this data set, the

labelling of the points is done according to three classes: soil,

stem and leaf (leaf blade), and instances of the leaf blades (but

not the stems) are segmented on all point clouds. The reference

ground truth for this data set is a semantic segmentation with 2

semantic classes. As for the synthetic Chenopodium point

clouds, we have thus merged the apex with the leaf blade

classes, as well as the petiole and the branch with the main

stem ones. We have also removed the soil in all point clouds as

our method does not consider this class. Point clouds of this data

set are dense, up to 4 million points without the soil. In order to

speed up computation, we down-sampled these point clouds by
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slightly increasing the minimum distance between any two

points. This allowed us to keep 500,000 points maximum per

point cloud.
3.2 Semantic segmentation evaluation

We first evaluate the semantic segmentation result of our

pipeline on the different data sets. Figure 9 shows several

examples of these results on different plant individuals. In

general leaf blades are correctly detected and accurately

delineated and the stem is robustly detected. However, petioles

are sometimes merged with the corresponding leaf blade or with

the stem they are attached to.

To quantify these tendencies, we assessed how well each

point has been clustered in the category indicated by an expert

(or by the simulation algorithm in the case of virtual plants). For

this, we used the following classical metrics used in similar works

[e.g (Turgut et al., 2020)].

3.2.1 Evaluation metrics
Let us denote TPc resp. (FNc , FPc ) the number of true

positives (resp. false negative, false positive) for the class c and

TP resp. (FN , FP ) the number of true positives (resp. false
B C

D E F

A

FIGURE 8

Plant data sets used for the assessment of our pipeline. Pictures of typical architectures from a: (A) real Chenopodium, (B) synthetic
Chenopodium, (C) real tomato plant (our photo) illustrating the Pheno4D data set from Schunck et al. (2021). Corresponding raw point clouds
processed by our pipeline are respectively shown in (D-F). Point clouds (D, E) have the same view angles as pictures (A, B).
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negative, false positive) in the whole point cloud. The recall Rec ,

precision Prc , intersection over union IoUc and F1-score are

defined respectively as:
Rec =

TPc
TPc + FNc

(4)

Prc =
TPc

TPc + FPc
(5)

IoUc =
TPc

TPc + FNc + FPc
(6)

F1 =
TP

TP + 0:5* FP + FNð Þ (7)

We compute the mean of all F1-scores, i.e. a macro F1-score to

obtain an overall score for each data set. Note that the F1-score is

a more relevant measure in our case than the total accuracy

(ratio of the number of well-classified points to the total number

of points) because of the class imbalance. Since leaf blades

contain many more points than petioles, errors in petiole

classification would be overlooked by the classification results

for the leaf blades.

3.2.2 Results on our data sets
We first tested our approach on our synthetic ground truth

data as a control experiment. The pipeline was run on the

synthetic Chenopodium data set with and without the

refinement stage of our approach (see Section 2.4). This

produced segmented point clouds as an output, i.e. points

labelled with one of the classes: leaf blade, main stem,
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branches, petioles and apex. We then applied the above

metrics to evaluate these results (remember that to carry out

this analysis of the synthetic data set results, we had to merge the

main stem and branch classes to a unique ‘stem’ class, and apex

and leaf blade to a unique ‘leaf blade’ class), see Table 2.

We note that leaf blades were overall well segmented with

high recall and precision values and a segmentation score (IoU) of

90% . The refinement procedure did not change significantly these

scores. These results are consistent with the macro F1 -scores of

91% and 88% without and with the refinement, respectively.

Similarly, stems are also well segmented with slightly less high

scores in general. However, the class petiole has contrasted recall

and precision scores, indicating that many truly petiole points

were not recognized as part of a petiole, but that if points were

recognized as petiole, they were indeed truly petiole points. IoU

confirms that a majority of truly petiole points were not correctly

identified as petioles by the algorithm (about 74%).

The low figures for the petiole class can be explained by

three main factors. First, petioles are usually small organs and

therefore contain much fewer points than stems and leaf blades.

As the boundaries between organs are not precisely determined

both by manual and automatic segmentations, there may be

greater point classification errors close to organ borders. In the

case of petioles, these arbitrary errors at both extremities of such

small organs can significantly impact the overall segmentation

quality of the organ (see Figure 10A), despite the fact that the

organ is actually recognized (Figure 10B) as reflected by the

limited precision score in Table 2. Second, if the algorithm
B
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A

FIGURE 9

Semantic segmentation results. (A, B) Semantic segmentation of two different synthetic Chenopodiums. Points labelled in blue, (resp. green,
orange, red, yellow) correspond to leaf blade (resp. stem, petiole, branch, apex) labels. (C, D) Same segmentations as in a) and b) where labels of
the apex class have been relabeled as leaf blades. (E, F) Semantic segmentation of two real Chenopodiums. (G, H) Semantic segmentation of
two real tomato plants.
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wrongly detects a leaf as an apex, then the petiole will tend to be

wrongly interpreted as a stem, thus leading to a wrong

classification of all its points. Finally, the petiole might be

merged by the algorithm with its leaf blade, also leading to a

wrong classification of all its points (Figure 10E).

Contrarily to the case of real plants (see below), the

refinement procedure does not improve the results for the

petiole class in the case of synthetic plants. This can be

explained in several ways. First, if the petiole has initially been

included in a stem, the refinement stage looks for a petiole in the

leaf blade point cloud rather than in the stem, degrading the

result for the leaf blade cluster instead of improving that of the

stem (Figures 10C, D). Second, when the petiole is merged with

its leaf blade, this cluster is often labelled as an apex and the

refinement will correct it to an apex plus a branch rather than a

petiole. Third, if the corresponding leaf blade has been correctly

delineated but labelled as an apex, the fact that the petiole has

been labelled as a branch is not considered a defect by the

algorithm that thus does not correct it. The refinement however

improves the results, as shown in Figures 10E, F), when the

petiole has been labelled as part of a leaf blade.
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Altogether, for synthetic plants, the refinement procedure

did not have a good balance between correcting errors and

producing new ones. However, we will see that this procedure

may have a positive impact on the segmentation of different

organs for real plants.

We then tested our algorithm on five Chenopodiums from

the real data set for which a ground truth segmentation was

manually made. Here, this manual ground truth made it possible

to reuse the exact same classes as the ones produced by the

algorithms. We, therefore, did not have to merge any of the

original classes as we did in the case of synthetic plants.

Quantitative results are given in Table 3.

In general, results are comparable to the ones obtained on

the synthetic plant data set, if we consider classes that appear in

both tables (note that the ‘Stem’ class from the previous table is

split here into ‘Main stem’ and ‘Branches’). The macro F1 -score

is 78% and 80% without and with the refinement, respectively.

Quantitative scores are however slightly lower for leaf blades and

stems but are now mostly substantially improved by the use of

the refinement procedure. Contrary to synthetic plants, recall

scores are now markedly higher than precision, meaning that the
TABLE 2 Semantic segmentation results (in % ) on the synthetic Chenopodium data set, without and with the refinement stage explained in
Section 3.4.

Without refinement With refinement

Class Re Pr IoU Re Pr IoU

Leaf blade 95 92 90 94 94 88

Stem 88 91 81 91 87 80

Petiole 30 68 26 38 51 27
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FIGURE 10

Main segmentation errors and refinement corrections. Five examples of semantic segmentations of different plant parts (A-J). (A-F) are
presented without (top row, a, c, e) and with (bottom row, b, d, f) refinement. (G, I) are the ground truth labelled point clouds of the part
segmented by our algorithm in (H, J). Points labelled as on a petiole are in orange, on a branch in red, on a leaf blade in blue, on an apex in
yellow-green and on a stem in green.
sin.org

https://doi.org/10.3389/fpls.2022.1012669
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mirande et al. 10.3389/fpls.2022.1012669
algorithm identified in these classes a larger number of points

that do not belong to them, probably due to greater variability of

the organs' shapes. Interestingly, the new ‘Apex’ class, figuring

the terminal bouquet of small leaves at the end of plant axes, has

on the opposite a high precision score while keeping a limited

recall value. This means that points detected as apices were

correctly classified but that some apex points were missed and

detected as part of another organ (Figures 10G, H). Petioles and

branches have similar scores that together reflect the similar

scores obtained in the synthetic plants’ experiment. Note that the

branch class contains fewer points than the petiole class in the

real Chenopodium data set, see Figures 10I, J.

Finally, to test the robustness and ability of our pipeline to

handle other plant species, we evaluated it on a data set of 14

tomato plant point clouds. We excluded seedlings as our method

applies to already developed branching structures. As only two

semantic classes, ‘Leaf’ and ‘Stem’, were available in this data set,

we merged our classes ‘Apex’ and ‘Leaf blade’ into a ‘Leaf’ class,

and ‘Main stem’, ‘Petiole’ and ‘Branch’ into a single ‘Stem’ class.

Results are shown in Figure 1B. We did not adapt our refinement

algorithm to the case of tomato plants and therefore discarded

the refinement stage in this case.

Despite a markedly different overall plant architecture

compared to Chenopodium, the algorithm was able to correctly

segment a large majority of the points (F1-Score: 85 %). As in

the above experiments for real and synthetic Chenopodiums,

leaf segmentation scores were high. Stems scores were lower.

However, as points could be labelled with either one of the

‘Leaf’ or ‘Stem’ classes, one can see that the quantity of points

that were wrongly classified by the algorithm in one class

contributes exactly to the errors for the other class. For

example, a recall of 59 % for stems means that 41 % of the

stem points were badly classified as leaves. These 41% of points

actually make up the 15 % of failed points indicated in the Leaf

precision score. Hence, the difference in intensity between

these scores reflects in part the relative quantity of points in

the different classes. These results can be compared to those

obtained in (Schunck et al., 2021) where the authors used the

whole set of tomato plants available and segmented the data set

with three different deep neural networks: PointNet (Qi et al.,

2017), PointNet++ (Qi et al., 2017) and LatticeNet (Rosu et al.,
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2019). The IoU for the classes leaf and stem were respectively

84 % and 12 % for PointNet, 89 % and 20 % for PointNet++

and 99 % and 87 % for LatticeNet. While our algorithm

performs better than the PointNet and PointNet++ networks

for stem detection, it is not as accurate as LatticeNet on

this dataset.

We also checked how these scores depended on the stage of

development of a tomato plant (Figure 1A). The 14 individuals

in the tomato plant data set actually correspond to 2 plants

observed at 7 stages of development. The curves suggest that the

segmentation results do not depend on the stage of plant

development, at least as long as the plant architecture

complexity remains reasonable.
3.3 Instance segmentation evaluation

We used the real Chenopodium data set to perform an

evaluation of our instance segmentation method, and a set of

statistical indicators commonly used to evaluate instance

segmentation of point clouds, e.g. in (Chen et al., 2021). The

Rand index defines a similarity measure between two

segmentations, e.g. our automatic instance segmentation and

the corresponding ground truth, by looking at the proportion of

pairs of points that are rightly or wrongly appearing in the same

or in different clusters (Pedregosa et al., 2011). The adjusted

Rand index corrects this raw index to obtain a value between 0

and 1, 0 corresponding to a random segmentation and 1 to an

exact matching between clusters. In the case of size disparities

between the clusters (e.g. between petioles and leaf classes), an

(adjusted) mutual information score provides an adequate

metric to compare segmentations (Romano et al., 2016). Here

again, a value of 1 means that the two segmentations are

identical, while two segmentations with independent labels will

have a score around 0 (it can be negative).

We also use two complementary indices: completeness and

homogeneity, that reflect the quality of individual segmented

clusters (Rosenberg and Hirschberg, 2007). Completeness

measures how much a cluster contains all of the points that

should be in it and if it missed a lot of points, while homogeneity
TABLE 3 Semantic segmentation results (in % ) on the data set of 5 real Chenopodiums, without and with the refinement stage explained in
Section 2.4.

Without refinement With refinement

Class Re Pr IoU Re Pr IoU

Leaf blade 85 76 70 90 79 73

Main stem 90 78 73 94 76 73

Apex 72 90 69 73 95 71

Petiole 52 38 26 54 39 29

Branch 52 18 16 58 18 16
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measures how much each cluster only contains points of a single

class (Rosenberg and Hirschberg, 2007).

Results reported in Table 4 show that if class size disparity

is properly corrected for (here by the Adjusted mutual

information score), the quality of our instance segmentation

is quite correct (index = 0.89) indicating that a large majority

of points that should be found in the same cluster is indeed in

the same cluster. The high homogeneity score means that

clusters made by the algorithms correspond mainly to a

unique cluster of the ground truth segmentation (but which

may occasionally be badly labelled). The relatively high

completeness score indicates that around 85% of the points

on average in each instance cluster are correctly found in the

same cluster.

For the five plants, on the total 28 leaf blade segmented

instances obtained with the refinement procedure, we computed

a mean recall of 97% , a mean precision of 99% and a mIoU of

97%, showing that the leaf blades points were faithfully identified

by the algorithm.
3.4 Extraction of phenotypic traits with
agronomical value

Finally, we aimed to assess whether the method was able to

faithfully extract phenotypic traits classically used in

agronomical applications. Among others such as plant volume,
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leaf area density, surface-to-area ratio, normalized difference

vegetation index, etc., we selected stem height and leaf area index

(LAI) as they are derived from reconstructed stems and leaves

respectively. Both traits characterize the plant growth status.

Stem height is directly linked with the plant’s primary growth

and its variation in time is a key characteristic of the plant

dynamics and response to the environment. LAI is usually

defined for crops and corresponds to the amount of (one-

sided) leaf area above one unit surface of ground. It is a

dimensionless quantity that may range between 0 (non-

covered soil) to several units in dense canopies. This index is

physiologically significant as it integrates various aspects of crop

physiological status: the height of the plant, the size of the leaves

in different height strata, and their orientation in space. It is

commonly used in ecophysiological models as a key parameter

to estimate direct light interception by crops (through the Beer-

Lambert law), and thus a key variable to build estimates of

plant photosynthesis.

We tested the ability of our method to extract these high-

level phenotypic traits on the five chenopodiums for which

ground truth was available. The height of the plant was

estimated as the main stem length extracted from our

segmentation algorithm and compared to ground truth

data (Table 5).

The average error on the plant height was less than 2,3 %

and suggests that the method could work on larger data sets

when larger ground truth data will be available. To estimate

LAIs, we first computed a Bézier surface (Boukhana et al., 2022)

on each leaf blade defined by the ground truth segmentation. We

did the same for the leaf blades defined by the segmentation

obtained by our algorithm and compared the obtained surfaces,

see also Table 5. The 28 resulting leaf blades had an average

surface of 377 mm2 with a standard deviation of 7,85 mm2 . We

then estimated the LAI by computing the bounding box of each

plant and taking the surface area of the bounding box basis as a

proxy for the ground surface above which leaf surface area

was computed.

These first results of our phenotyping pipeline at an

integrated level show that physiologically meaningful canopy

parameters can be extracted with a fairly good accuracy (mean

relative error of 2,3 % and 3,7 % standard deviation for plant
TABLE 4 Mean scores to evaluate instance segmentation results on
the real Chenopodium data set, without and with the refinement
stage explained in Section 2.4.

Score Without
refinement

With
refinement

Rand 0.96 0.97

Rand adjusted 0.79 0.82

Adjusted mutual information 0.89 0.91

Completeness 0.85 0.87

Homogeneity 0.94 0.95
TABLE 5 Comparison of total leaf blade areas and LAI values between the ground truth and the segmentation performed on 5 real
Chenopodiums, as well as comparison of the main stem height computed on 5 synthetic Chenopodiums on ground truth and segmented models.

Total leaf blade area (mm²) LAI Main stem height (mm)

Plant Bounding box area (mm2) Ground truth Segmented Ground truth Segmented Ground Truth Segmented

Chenopodium 1 6397,1 1216,9 1172,6 0,19 0,18 70,3 71,0

Chenopodium 2 5117,6 1420,2 1395,4 0,28 0,27 71,8 74,9

Chenopodium 3 4915,8 1745,4 1734,9 0,36 0,35 41,4 44,1

Chenopodium 4 8655,9 4060,7 4008,1 0,47 0,46 62,7 63,5

Chenopodium 5 6254,1 1895,7 1887,3 0,30 0,30 70,3 69,0
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height and -1,5% and standard deviation of 2,3% for leaf blade).

The analysis of more plants will help confirm this trend when

additional ground truth data will be available.
4 Discussion

The automatic and simultaneous semantic and instance

segmentation of 3D plant models is an important issue for

automatic plant phenotyping. Recent approaches are restricted to

specific species and/or to very few classes (typically, stem vs. leaf). A

recent trend has been to use deep neural networks and is showing

promising results. However, these approaches suffer from inherent

limitations as i) point clouds usually need to be drastically down-

sampled, hence loosing details such as petioles, flowers, etc., ii) a

massive quantity of annotated data is required to train the network,

iii) no guarantee is given over the global botanical consistency of the

segmentation, e.g., a leaf blade could be directly connected to the

main stem, or leaves connected to other leaves.

Our work demonstrates that geometry-based methods can

still be efficient while not (or less) suffering from these drawbacks.

By combining robust local geometric features and global botanical

knowledge encoded in our graphs and algorithms, our approach

generates in a fewminutes segmentations semantically correct and

whose instances are accurately delineated, for point clouds

containing up to hundreds of thousands of points. We have

shown that the norm of the average directional gradient of the

Fiedler eigenvector is efficient to segment two-dimensional organs

such as leaf blades and apices, while its direction can be used to

identify linear organs. A quotient graph connecting each organ to

its neighbors is a useful tool to optimize this classification using

macroscopic semantic information and check botanical

consistency over the branching structure of the plant.

Our preliminary results show that organs are accurately

demarcated. In particular, the norm of the Fiedler ADG vector

field is efficient in differentiating two-dimensional and linear

organs, as expressed by the recall, precision and IoU scores for

the leaf blade class in Table 2. This supports the idea of using

spectral components such as the Fiedler eigenvector, in place of, or

complementary to, the classical geometric tools (linearity,

planarity, scattering) used on human-made shapes (see e.g

(Landrieu and Simonovsky, 2018). Our experiments on

Chenopodiums and tomato plants tend to show that the Fiedler

eigenvector could be equally used for various plant species. Our

approach is fast, computationally cheap and does not require

extensive parameter tuning, as we always use k=18 neighbours for

the construction of the similarity graph andK=4 for the apices and

leaf blades K -means segmentation. Our experiments also showed

that the results are at least as good as non-specialized neural

networks such as PointNet and PointNet++.

Spectral clustering approaches are known to be robust to

non-uniform point density and acquisition noise. However, in

our case, special attention must be taken to the computation of
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the average directional gradient of the Fiedler eigenvector

(Eq. 3). For simplicity’s sake we currently use the k nearest

neighbours at each point; using the neighbours in a sphere

centred at the point would be more robust in the case of non-

uniform sampling but would require adapting our definition.

Using only geometry-based features is not enough to accurately

segment a point cloud, as it is for example hard to discriminate

petioles from branches (Boogaard et al., 2022). Our proposal to

include botanical knowledge encoded as a semantic quotient tree

into the segmentation process enables us to control the consistency

of the segmentation and refine it if necessary, both semantically

(e.g., deciding between petioles and branches) and per instance (e.g.,

to split a petiole from the associated leaf blade). Such a semantic

quotient tree is easy to define, compute and modify. Furthermore, it

will make it possible to extend the evaluation of our algorithms at a

macroscopic scale by comparing the output tree structures from

instance segmentation with the ground truth ones at a global level.

For this more work needs to be done to use tree comparisonmetrics

(Ferraro and Godin, 2000; Boudon et al., 2014) on quotient trees to

assess results at more macroscopic levels.

Preliminary results show that our approach reaches

competitive quantitative results in terms of classical classification

metrics (precision, recall, F1-score), especially for the leaf blades.

However, we believe these results can still be improved using more

advanced clustering techniques than the K -means algorithm. We

have provided an example of how botanical knowledge could be

encoded to define a semantic quotient tree. Other rules or semantic

classes could be added and a full method could be developed to

express and integrate botanical knowledge in our algorithms in a

more systematic way. In the tomato plant case, for instance, rules

could be defined to isolate composed leaves (made of several leaf

blades and stem segments) for instance or to integrate fruits and

flowers in the segmentations in a botanically consistent way.
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